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Abstract

The phenomenon of synchronization of a two-dimensional discrete dynamical system is studied for the model of an

economic duopoly game, whose time evolution is obtained by the iteration of a noninvertible map of the plane. In the case of

identical players the map has a symmetry property that implies the invariance of the diagonal x1�x2, so that synchronized

dynamics is possible. The basic question is whether an attractor of the one-dimensional restriction of the map to the diagonal

is also an attractor for the two-dimensional map, and in which sense. In this paper, a particular dynamic duopoly game is

considered for which the local study of the transverse stability, in a neighborhood of the invariant submanifold in which

synchronized dynamics takes place, is combined with a study of the global behavior of the map. When measure theoretic, but

not topological, attractors are present on the invariant diagonal, intermittency phenomena are observed. The global behavior of

the noninvertible map is investigated by studying of the critical manifolds of the map, by which a two-dimensional region is

defined that gives an upper bound to the amplitude of intermittent trajectories. Global bifurcations of the basins of attraction

are evidenced through contacts between critical curves and basin boundaries. # 1998 IMACS/Elsevier Science B.V.
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1. Introduction

The phenomenon of synchronization of a two-dimensional discrete dynamical system

T : �x1�t�; x2�t�� ! �x1�t � 1�; x2�t � 1��; t 2 N �1�
defined by the iteration of a map of the form x0�T(x), where x�(x1, x2) and 0 denote the unit-time
advancement operator, has been in recent years the object of increasing interest in many fields. The
possibility of synchronization arises when an invariant one-dimensional submanifold of R2 exists. For
instance, in the case, frequently met in applications of a two-dimensional map which models the
interaction of two identical one-dimensional systems, obtained by coupling two identical one-
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dimensional maps (see [12,9,22,14]), the invariant subset on which the synchronized dynamics occurs
is the diagonal

� � f�x1; x2�jx1 � x2g �2�
In this case, the synchronized trajectories are characterized by

�x1�t�; x2�t�� � fTt�x1�0�; x2�0��jx1�t� � x2�t� 8t � 0g �3�
These trajectories are governed by the restriction of T to the invariant submanifold on which the
synchronized dynamics occur, given by the one-dimensional map

f � Tj� : �! � �4�
A trajectory of T starting outside of � is said to synchronize if

jx1�t� ÿ x2�t�j ! 0 as t!1
The basic question examined in the recent literature is whether an attractor A of the one-dimensional

map f is also an attractor located on the invariant submanifold �, of the two-dimensional map T. In this
context, new and interesting mathematical problems have been evidenced since measure theoretic, but
not topological, attractors appear quite naturally in this context together with new striking properties of
the basins (see [2,3,20,4,15]).

The very particular feature of the invariance of a submanifold of lower dimensionality than the total
phase space becomes generic if the map T has some symmetry property. This is often the case for maps
that are obtained as models of dynamic duopoly games with identical players. The time evolution of
these games, in which two players make their moves (x1, x2)2R2 at discrete time periods t�0,1,2,.., is
often modeled by the iterations of a two-dimensional map (1). In the case of identical players, the map
T must remain the same under the exchange of the players, i.e. T � S�S � T, where S:(x1, x2)! (x2, x1)
denotes the reflection through the diagonal �. This symmetry property implies that the diagonal is
mapped into itself by T, i.e.

T��� � �

In such models this invariance property corresponds to the obvious statement that identical players,
starting with identical initial strategies x1(0)�x2(0), behave identically for each t�0, even if each of
them behaves chaotically. In this case, the common behavior of the two players is summarized by the
dynamics of the simpler one-dimensional map (4).

In this context, it become important to see if games starting from different initial strategies of the two
identical players, i.e. with initial condition outside of �, evolve toward synchronization, so that the
long-run behavior is characterized by the one-dimensional attractors of the restriction (4), included into
the invariant diagonal. Of course, these attracting sets of the map f are stable with respect to
perturbations along �, hence an answer to the question addressed above requires a local study of the
stability with respect to perturbations transverse to � (or transverse stability). Moreover, when the
attractors of the one-dimensional restriction (4) are also attractors for the two-dimensional map (in the
usual topological sense or in a weak metric sense) the shape of the boundaries and the inner structure of
their basins of attraction becomes an important question for practical purposes. The study of the basins
and their qualitative changes (or bifurcations) as some parameters are let to vary requires the knowledge
of the global properties of the map.

560 G.-I. Bischi et al. / Mathematics and Computers in Simulation 44 (1998) 559±585



In order to study in detail such problems a particular duopoly model is proposed in this paper, for
which the restriction f is conjugate to the standard logistic map. We show that the attractor A of f along
� looses asymptotic stability due to the appearance of transverse unstable sets of cycles belonging to
�. The loss of asymptotic (Lyapunov) stability is in general associated with one of the following
different types of global dynamics determined by the different behavior of the local unstable manifolds
of the transversally repelling cycles: the unstable sets can (i) be folded back towards �, thus giving
intermittency phenomena, or (ii) may belong to the basin of another attractor, in which case the
phenomenon of riddled basins can be obtained (see [2,20]).

As noticed in [20,3,4,14], the difference between these two situations is determined by the global
properties of the map. On the contrary, the study of the Lyapunov exponents, which is the method
usually followed to study the onset of transverse instability, only give local informations in a
neighborhood of �. This paper is organized as follows:

In Section 2, the economic system modeled by the dynamic duopoly game is briefly described, and
the general properties of the noninvertible two-dimensional map, whose iteration gives the time
evolution of the duopoly game, are studied in the symmetric case of identical players. The basic
definitions concerning attractors, basins and critical curves are recalled, and the main properties of the
attractors of the synchronized trajectories are described. A method to obtain the boundary separating
the basin of attraction of infinity from the basin of bounded trajectories is presented.

In Section 3, the critical curves of the map are used to define the boundaries of an invariant area of
the phase plane inside which the bounded trajectories are confined when the invariant set on the
diagonal looses transverse stability.

In Section 4, some global bifurcations are described: one that changes the structure of the basins, one
that causes the disappearance of the invariant area described in Section 3 and one causing the
disappearance of any bounded attractor. Such global bifurcations are characterized as contact

bifurcations, related to tangencies between critical curves and basin boundaries.
The main purpose of this work is that of stressing the crucial role of the critical curves (see [11,18])

in the characterization of the global properties of the map considered in this paper, and, in particular,
their role in the occurrence of the different dynamical behaviors described above.

2. General properties of the duopoly model

2.1. The economic model

We consider a repeated Cournot duopoly game which describes a market where two quantity-setting
firms, producing homogeneous goods, update their production strategies at discrete time periods
t�0,1,2,.. The dynamic game is based on the assumption that the two producers have not a complete
knowledge of the market, hence they behave adaptively, following a bounded rationality adjustment
process based on a local estimate of the marginal profit @�i/@xi (see [5] and references therein). At each
time period a firm decides to increase its production xi if it perceives positive marginal profit, or
decreases its production if the marginal profit is negative

xi�t � 1� � xi�t� � vixi�t� @�i�x1; x2�
@xi

; i � 1; 2; t � 0; 1; 2; . . . ; �5�
where �i(x1,x2) is the one-period profit of producer i and vi is a positive parameter which represents the
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relative speed of production adjustment of producer i. As usual in duopoly models, the price of the good
is determined by the total supply Q(t)�x1(t)�x2(t) through a given inverse demand function p�g(Q), so
that the one-period profit for firm i is given by

�i�x1; x2� � xig�x1 � x2� ÿ cixi; i � 1; 2 �6�
where the positive constants ci represent the marginal costs of the two firms. With this assumption the
time evolution of the dynamic game (5) is determined by the iteration of the following two-dimensional
map:

T :
x01 � x1 � v1x1 g�x1 � x2� � x1

@g
@x1
ÿ c1

h i
x02 � x2 � v2x2 g�x1 � x2� � x2

@g
@x2
ÿ c2

h i
8<: �7�

Starting from some nonnegative initial productions

�x1�0�; x2�0�� � �x1;0; x2;0� �8�
the iteration of (7) uniquely defines the forward time evolution of the repeated game, represented by the
trajectory (x1(t), x2(t))�T t(x1,0, x2,0), t�0.

In this model, the producer labelled by i is characterized by the two parameters vi and ci, representing
the relative speed of adjustment and the marginal cost, respectively. In the case of identical producers
characterized by the same values of the parameters

c1 � c2 � c and v1 � v2 � v �9�
the map has a symmetry property: it remains the same after a reflection through the diagonal � of
equation x1�x2, obtained by the operator P:(x1, x2)! (x2, x1). This implies that the diagonal � is an
invariant line for the map T, so that synchronized dynamics can occur on �.

In the following, we consider a particular duopoly game (7) obtained by taking a linear demand
function, very often used in economic modeling, given by p�g(Q)�aÿb(x1�x2), with a, b positive
constants. With this choice, the map (7) becomes

T :
x01 � x1 1� v1�aÿ c1� ÿ 2bv1x1 ÿ bv1x2� �
x02 � x2 1� v2�aÿ c2� ÿ 2bv2x2 ÿ bv2x1� �

�
�10�

2.2. Invariant sets and local stability properties

The map (10) is a noninvertible map of the plane, i.e., starting from some nonnegative initial
production strategy (8), the iteration of (10) uniquely defines the forward trajectory, whereas the
backward iteration of (10) is not uniquely defined because a point (x1

0, x2
0) of the plane may have

several preimages, obtained by solving the fourth degree algebraic system (10) with respect to x1 and x2

(see [18] for a description of the main properties of noninvertible maps of the plane).
The map (10) is characterized by the presence of four fixed points: E0�(0,0), E1 � �aÿ c1=2b; 0�,

E2 � �0; aÿ c2=2b�, located on the invariant coordinate axes, and

E� � a� c2 ÿ 2c1

3b
;

a� c1 ÿ 2c2

3b

� �
�11�
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which is interior to the positive quadrant provided that

2c1 < a� c2 and 2c2 < a� c1 �12�
It is easy to verify that when (12) is satisfied, the fixed point E* represents the unique Nash

equilibrium for the duopoly game.
An important feature of the map (10) is that it always has an asymptotically stable attractor at

infinity, i.e. it can generate unbounded trajectories, if the initial condition (8) is taken sufficiently far
from the origin, i.e., in a suitable neighborhood of infinity. In fact, if k�x1;0; x2;0�k is sufficiently large
then the first iterate of (7) gives negative values x0i < 0, i�1, 2, so that the successive iterates give
negative and decreasing values. This implies that any attractor at finite distance cannot be globally
attracting in R2

�:
It is worth noticing that each coordinate axis xj�0, j�1,2, is invariant for the map (10) since xj�0

gives x0j � 0. The dynamics on the invariant manifold xj�0 is governed by the restriction of the map T
to that axis, given by the following one-dimensional map, obtained from (7) with xj�0.

x0i � fi�xi� � �1� vi�aÿ ci��xi ÿ 2bvix
2
i i � 1; 2 �13�

The two restrictions f1 and f2 are conjugate to the standard logistic map

z0 � �iz�1ÿ z�; i � 1; 2 �14�
through the linear transformation

xi � 1� vi�aÿ ci�
2bvi

z; i � 1; 2 �15�

from which we obtain the relation

�i � 1� vi�aÿ ci�; i � 1; 2 �16�
In the symmetric case (9) of identical producers, the two restrictions of Ts to the invariant coordinate

axes are given by the same map f1�f2. Furthermore, in this case, as stated above, also the diagonal
x1�x2 is invariant. Under the assumption (9) the map (10) becomes

Ts :
x01 � �1� v�aÿ c��x1 ÿ 2bvx2

1 ÿ bvx1x2

x02 � �1� v�aÿ c��x2 ÿ 2bvx2
2 ÿ bvx1x2

�
�17�

the Nash equilibrium (11) becomes

E� � aÿ c

3b
;
aÿ c

3b

� �
2 � �18�

and the two boundary equilibria E1 and E2 are in symmetrical positions with respect to the line �. The
restriction Tsj� of Ts to � is given by

x0 � f �x� � �1� v�aÿ c��xÿ 3bvx2 �19�
which is conjugate to the standard logistic map

z0 � �z�1ÿ z� �20�
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with parameter

� � 1� v�aÿ c� �21�
by the linear transformation

x � 1� v�aÿ c�
3bv

z �22�

Thus, the dynamical behavior of the restriction of T to the invariant manifold �, where synchronized
dynamics of the identical players takes place, can be obtained from the well known behavior of the
standard logistic map by an homeomorphism.

We shortly recall some properties of the logistic map (20) to be used below. The positive fixed point
z*��ÿ1/� is stable for 1<�<3, corresponding to 0<v(aÿc)<2 for the map (19), and its basin of
attraction is given by Dz�(0,1), corresponding to Dx�(0,(1�v(aÿc))/3bv) for the map in (19). Of
course, the positive fixed point of (19) on the diagonal � coincides with the Nash equilibrium (18) of
the duopoly game. At � ��0�3, the fixed point z* looses stability through a flip bifurcation, and for
3 < � < 1� ���

6
p

an attracting cycle of period two is the only attractor of (20). Also, this cycle
undergoes a flip bifurcation at � � �1 � 1� ���

6
p

that creates an attracting cycle of period four, and so
on, a sequence of flip bifurcations occur at � � �n, n 2 N, leads to chaotic behavior (see e.g. [7,19]).
The sequence f�ng is increasing and convergent to �*�3.5699 . . . (called Myrberg, or Feigenbaum,
point). For �>�* the ! -limit set of the generic trajectory of the logistic map starting with z02(0,1) is
either an attracting cycle or cyclic-invariant chaotic intervals or a weak attractor represented by a
Cantor set (see e.g. [19,23]).

In any case, for each �2(2,4), the existing attractor belongs to the absorbing interval, I � �C1;C�,
which is an attracting set bounded by two critical points, C � f Cÿ1� � � �=4;C1 � f 2 Cÿ1� � � �=4�
1ÿ �=4� ��;Cÿ1 � 1=2 being the point of maximum of f. Absorbing or trapping means that any point in

a suitable neighborhood of I has the !-limit set in I. More precisely, for the standard logistic map (20)
we have that any point inside the interval [0,1] has the !-limit set in I. For the synchronized trajectories
of T, occurring on �, this means that for each v(aÿc)2(1,3), any trajectory starting from a point
(x0, x0)2�, with x0 2 0; �1� v�aÿ c��=3bv� �, has its !-limit set inside the segment of diagonal

I��C1C� �, where C � �1� v�aÿ c��2=12bv; �1� v�aÿ c��2=12bv
� �

is the rank-1 critical point

(the maximum value) of Tj�, and C1�Ts(C).

The point �* is also the limit point for the decreasing sequence f��ng of parameter's values at which
homoclinic bifurcations of the cycles of period 2n occur. At each ��n the logistic map is chaotic, with
absolutely continuous invariant measure on a chaotic attractor given by the union of 2n�1 subintervals
inside I. Analogous sequences of homoclinic bifurcations of cycles of period different from 2n occur:
indeed, for � 2 ���; 4� there are infinitely many `windows' (following [7]) or `boxes' (following [19])
started by fold bifurcations, followed by period doubling cascades and closed by homoclinic
bifurcations. So, infinitely many values of �� exist at which homoclinic bifurcations occur. At each of
such values of �, the logistic map has cyclic chaotic intervals with absolutely continuous invariant
measure. For �>4, corresponding to v(aÿc)>3 in (19), the generic trajectory of the logistic map is
divergent (see e.g. [8]).

Thus, for 2<v (aÿc) <3 there are infinitely many parameters' sets at which the two-dimensional map
Ts has synchronized chaotic dynamics on the invariant submanifold �.
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In the following, we shall denote by A the attractor of f � Tsj�. It belongs to the segment
I� � CC1 � �. This segment is absorbing with respect to perturbations along �, but in order to
see if it is a trapping segment for the two-dimensional map Ts its transverse attractivity must
be examined.

In order to study the transverse stability of the attractor A � I� we consider the Jacobian matrix of
the map (17),

DTs�x1; x2� � 1� v�aÿ cÿ 4bx1 ÿ bx2� ÿvbx1

ÿvbx2 1� v�aÿ cÿ bx1 ÿ 4bx2�
� �

that computed on the line � assumes the structure

DTs�x; x� � l�x� m�x�
m�x� l�x�
� �

�23�

with l�x� � 1� v�aÿ c� ÿ 5vbx and m�x� � ÿvbx: The eigenvalues are

�k � l�x� � m�x� � 1� v�aÿ c� ÿ 6vbx; with eigen vector rk � �1; 1�;
�? � l�x� ÿ m�x� � 1� v�aÿ c� ÿ 4vbx; with eigen vector r? � �1;ÿ1� �24�

Of course, the eigenvalue �k, associated with the invariant manifold along the line �, coincides with
the multiplier of the restriction Tsj� given by (19). Notice also that the eigenvector associated with the
other eigenvalue is always orthogonal to � and independent of x.

For a k-cycle f��1; �1�; . . . ; ��k; �k�g of (17), embedded into the invariant line � where
synchronized dynamics take place and corresponding to the cycle {�1,. . .,�k} of the one-dimensional
quadratic map (19), the two multipliers are

�
�k�
k �

Qk
i�1�l��i� � m��i�� �

Qk
i�1�1� v�aÿ c� ÿ 6bv�i�

�
�k�
? �

Qk
i�1�l��i� ÿ m��i�� �

Qk
i�1�1� v�aÿ c� ÿ 4bv�i�

�25�

Also for the cycles the conditions for stability and local bifurcations along � are the same as for the
corresponding cycle of the quadratic map (19). Hence, in the following we focus our attention on the
transverse stability of the invariant sets located on the line �. For the fixed point E* the transverse
eigenvalue is

�
�E��
? � 1ÿ 1

3
v�aÿ c� �26�

so it is transversally attracting for all parameters that give bounded dynamics on �, i.e. for 0<v(aÿc) <3.
For 0<v(aÿc) <2, E* is an asymptotically stable node, whereas it is a saddle for 2<v(aÿc)<6, with
unstable set along � and local stable set orthogonal to it. Notice that at v(aÿc)�3, we have �

�E��
? � 0.

For sufficiently small values of v(aÿc) any attractor of the restriction Tsj� is also an asymptotically
stable attractor also for the two-dimensional map T.

Before considering more complex situations we recall some definitions. Let A be a closed invariant
set such that T(A)�A.

Definition 1. The stable set of A, denoted by B(A), is the set of points x for which !(x)�A , i.e. the

!-limit sets of x belongs to A.
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Note that when T is a noninvertible map any cycle has a stable set, even a repelling node or a
repelling focus.

Definition 2. A is an asymptotically stable attractor (or topological attractor) if it is Lyapunov stable,
i.e. for every neighborhood U of A there exists a neighborhood V of A such that Tt�V� � U 8 t � 0,
and B(A) contains a neighborhood of A.

If A is a topological attractor then a neighborhood W �A exists such that T t(x)!A as t!�1 for
any x2W. In this case, the stable set B(A), also called basin of attraction, is given by
B�A� � St�0 Tÿt�W�.

An attractor A of the one-dimensional map (19) is also an asymptotically stable attractor of the two-
dimensional symmetric map Ts if and only if all the trajectories belonging to A are transversally
attracting. If A is a k-cycle this is ensured by the condition j��k�? j < 1, where �

�k�
? is given by (25),

whereas if A is a chaotic attractor a stability condition can be given in terms of the natural transverse
Lyapunov exponent

L? � lim
�!1

1

�

X�
t�0

lnj1� v�aÿ c� ÿ 4bvx�t�j �27�

where x(0)2A and {x(t)} is the corresponding trajectory generated by the map f � Tsj�. If L? < 0 for
each trajectory starting inside A then A is asymptotically stable.

Of course, if x(0) is a point of a k-cycle, or belonging to the stable set of a k-cycle, then L?�ln j��k�? j,
so in this case the condition L?<0 is equivalent to j��k�? j < 1. Instead, if A is a chaotic attractor, with
absolutely continuous invariant measure, then almost all the aperiodic trajectories in A give the same
value of L?. It is clear that in this case it is difficult to prove that A is a topological attractor (since we
should check the values of j��k�? j for all the cycles embedded in it), whereas it is easier to see when A is
not a topological attractor. In fact, for this it is enough to find at least one k-cycle embedded in A with
j��k�? j > 1. In this case, the fact that L?<0 for the generic aperiodic trajectory in A means that A is
transversally attracting on the average, in the sense that the majority of the trajectories on A are
transversally attracting, but some (even infinitely many) trajectories inside A can exist whose
transverse Lyapunov exponent is positive. In other words, transversally repelling trajectories can be
embedded into a chaotic set which is attracting only `on average'. This type of stability is known as
weak stability or stability in Milnor sense (from [16], see also [2,4]).

Definition 3. A closed invariant set A is said to be a weak attractor in Milnor sense (or simply Milnor

attractor) if its stable set B(A) has positive Lebesgue measure.

Note that a topological attractor is also a Milnor attractor, whereas the converse is not true.
Really the more general notion of Milnor attractor has been introduced to evidence the existence
of invariant sets which `attract' many points even if they are not attractors in the usual topological
sense. In this case, in [16] B(A) is called `realm of attraction', reserving the term `basin' when
B(A) is an open set. However, since the term basin is more standard in the literature, we shall use
such term even when A is a Milnor (but not topological) attractor, for which B(A) is not, in general,
an open set.
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If A�� is a chaotic attractor of Tsj� with absolutely continuous invariant measure, then the
condition L? < 0 ensures that, for any neighborhood W of A, ��B�A� \W� > 0, where � denotes
Lebesgue measure. Thus, a sufficient condition for a chaotic attractor of Tsj� (with absolutely
continuous invariant measure) to be a Milnor, but not topological, attractor for the two-dimensional
map Ts, is that

(a) at least one k-cycle embedded in A is transversally repelling, i.e. j��k�? j > 1, and
(b) the Lyapunov exponent (27) computed for the generic aperiodic trajectory is negative.

In other words, the transition (or bifurcation) of an invariant set A� � from topological attractor of
Ts to a Milnor (but not topological) one occurs when the eigenvalue �

�k�
? of one (or more) cycle

embedded in A exits the unit circle while all the other cycles in A are transversally stable. We remark
that `generally' this occurs for a cycle of low period. This fact has been noticed in [13], qualitative
reasons to explain this are given in [15], and it seems to be confirmed in our example.

We note that in the existing literature, the studies on Milnor attractors, riddled basins and
synchronization phenomena are often given for the study of coupled maps, i.e. maps of type

�x0; y0� � F�x; y� � �fa�x� � "g�xÿ y�; fa�y� � "g�yÿ x�� �28�
so that the restriction Fj� � fa is independent of the coupling parameter " (see [12,9,22,14,15]). In this
case, the main bifurcations of the invariant sets of the two-dimensional map belonging to the subspace
where synchronized dynamics occur, such as the bifurcation from topological attractor to a non
topological one, can be studied as a function of the coupling parameter " without altering the dynamical
properties of the attractors of the restriction, depending only on the parameter a. This kind of study is
not possible in our example. In fact the parameter v, that we are changing as a bifurcation parameter in
order to study the transverse stability along �, influences both the coupling and the dynamics of the
restriction Tsj�. The same is true for the other parameters of the map (17).

A numerical computation of L?, performed with a�10, b�0.5 and c�3, is shown in Fig. 1 as a
function of the parameter v1. With this set of parameters, a numerical computation of the cycles on �
up to period 16, together with their transverse eigenvalues, has been performed with different values of
the parameter v. We have obtained that the conditions for asymptotic stability of the attractor A along
� are fulfilled for v<0.37562 (we remark that for this set of parameters the Feigenbaum point is given
by v*�0.36713. . .).

2.3. Basins of attraction

The basin of attraction B(A) of the bounded attractor existing on � belongs to the complementary
set of the basin of infinity B(1), defined as the set of points which generate unbounded trajectories. If
no other bounded attractor (or attractor at finite distance) exists, then B(A) is given by the set of the
interior points of the set R2=B�1�.

Let @B�1� be the boundary of B�1�, which is also the boundary of B�A�, when A is the only
attractor at finite distance. It behaves as a repelling set for the points near it, since it acts as a watershed

1The results obtained with these fixed values of the parameters a, b and c are general in the sense that different values give

similar bifurcations. The values chosen to perform the numerical simulations are such that the Nash equilibrium E* is always

positive.
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for the trajectories of the map T. Points belonging to @B�1� are mapped into @B�1� both under
forward and backward iteration of Ts. More precisely, it is invariant for application of Tÿ1

s and mapped
into itself by Ts, i.e., Tÿ1

s �@B�1�� � @B�1� and Ts�@B�1�� � @B�1�(see [17,18]). This implies that
if a saddle-point, or a saddle-cycle, belongs to @B�1�, then @B�1� must also contain the whole stable
manifold Ws, and if a repelling cycle (node or focus) belongs to it then @B�1� contains all the
preimages of the cycle (see [11,18]).

Let us first consider the dynamics of T restricted to the invariant axes. From the one-dimensional
restrictions fi�xi�; i � 1; 2, defined in (13), we can easily deduce that bounded trajectories along the
invariant axis xj�0, j6�i, are obtained, if vi (a-ci) <3, provided that the initial conditions are taken inside
the segment !i � �0; 0�i�ÿ1�, where 0

�i�
ÿ1 is the rank-1 preimage of the origin computed according to the

restriction fi, i.e.

0
�i�
ÿ1 �

1� vi�aÿ ci�
2bvi

; i � 1; 2 �29�

Instead, negatively divergent trajectories along the invariant axis xj � 0 are obtained starting
from an initial condition out of the segment !i. Of course, under the assumption of identical producers
(idem) the two segments are congruent and symmetric with respect to � being 0

�1�
ÿ1 � 0

�2�
ÿ1 �

�1� v�aÿ c��=2bv:
The segments !1 and !2 on the two coordinate axes play an important role in the determination of

@B�1� for the two-dimensional map Ts. In fact

Fig. 1. Natural transverse Lyapunov exponent L? as a function of v ranging from 0.367 to 0.427, with c�3, a�10, b�0.5.

Each point is obtained by iterating the map (starting from an initial condition on the diagonal) 10 000 times to eliminate

transient behavior, and then averaging over another 50 000 iterations.
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(a) from the computation of the eigenvalues of the cycles belonging to !1 and !2 we have that the
direction transverse to the coordinate axes is always repelling, and
(b) point �x1;0; x2;0� generates a divergent trajectory if x1;0 < 0 or x2;0 < 0. From (a) and (b) it follows
that !1 and !2 belong to @B(1), as well as their preimages of any rank. From these arguments
the following proposition can be stated, that gives an exact delimitation of @B(1).

Proposition 1. Let 1 < v�aÿ c� < 3 and !1 � �0; 0�1�ÿ1�, !2 � �0; 0�2�ÿ1� be the segments of the coordinate
axes x1 and x2, respectively, with 0

�i�
ÿ1; i � 1; 2 defined in (29). Then

@B�1� �
[1
n�0

Tÿn
s �!1�

 !
[

[1
n�0

Tÿn
s �!2�

 !
�30�

In fact, since !1 and !2 belong to @B(1) also their preimages of any rank belong to @B(1). In order
to show that, for the map Ts, the whole @B(1) is given by the union of such preimages we compute
!ÿ1

1 � Tÿ1
s �!1� and !ÿ1

2 � Tÿ1
s �!2�. Let us consider a generic point P � �0; p� 2 !2, i.e.

0 < p < �1� v�aÿ c��=2bv. Its preimages are the real solutions of the algebraic system obtained
from (map) with �x01; x02� � �0; p�

x1�1� v�aÿ c� ÿ 2bvx1 ÿ bvx2� � 0

�1� v�aÿ c��x2 ÿ 2bvx2
2 ÿ bvx1x2 � p

�
�31�

From the first of (31), we obtain x1�0 or

1� v�aÿ c� ÿ 2bvx1 ÿ bvx2 � 0; �32�
which means that if the point P has preimages, then they must be located either on the same invariant
axis or on the line of Eq. (32). With x1�0, the second equation in (31) becomes a second degree
algebraic equation which has two distinct, coincident or no real solutions. A similar conclusion holds if
(32) is used to eliminate a state variable in the second equation of (31). From this, we can deduce that
the generic point P of !2 can have no preimages or two preimages on the same axis (which are the same
obtained by the restriction of Ts to the axis x2) or four preimages, two on the same axis and two on the
line of Eq. (32). This implies that the points of !ÿ1

2 are located on the same axis and on the line (32).
Following the same procedure we can state that !ÿ1

2 has preimages on itself and on the line of
equation

1� v�aÿ c� ÿ bvx1 ÿ 2bvx2 � 0 �33�
It is straightforward to see that the origin O�(0,0) has always 4 preimages:

O
�0�
ÿ1 � �0; 0�; O

�1�
ÿ1 �

1� v�aÿ c�
2bv

; 0

� �
; O
�2�
ÿ1 � 0;

1� v�aÿ c�
2bv

� �
and

O
�3�
ÿ1 �

1� v�aÿ c�
3vb

;
1� v�aÿ c�

3vb

� �
�34�

where O
�3�
ÿ1 is located on the intersection of the lines (32) and (33). Notice that

�1� v�aÿ c��=3vb � fÿ1�0�, i.e. O
�3�
ÿ1 is the rank-1 preimage of the origin computed by the restriction

of Ts on the diagonal �. It turns out that Tÿ1
s �!1 [ !2� is made up of four segments that form the
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quadrilateral OO
�1�
ÿ1O

�3�
ÿ1O

�2�
ÿ1 (see Fig. 2). All the points outside it generate divergent trajectories, i.e., the

complementary of the quadrilateral OO
�1�
ÿ1O

�3�
ÿ1O

�2�
ÿ1 constitutes the immediate basin of infinity. In fact,

the initial conditions (8) with x1,0<0, as well those with x2,0<0, generate divergent trajectories.
Furthermore, initial conditions on the right of !ÿ1

2 give x01 < 0 and those above !ÿ1
2 give x02 < 0. This

completes the proof of the Proposition 1, since the whole basin boundary @B(1) is given by the
boundary of the immediate basin and its preimages (if any).

In the situation shown in Fig. 2 (and in Fig. 3 as well) the quadrilateral OO
�1�
ÿ1O

�3�
ÿ1O

�2�
ÿ1, obtained by

!1, !2 and its rank-1 preimages, is exactly the boundary @B(1), i.e. all the points inside it generate
bounded trajectories. This is due to the fact that there are no other preimages of !1 and !2 because !ÿ1

1

and !ÿ1
2 belong to a region of the plane whose points have no preimages. This fact can be clearly seen

by the study of the critical curves of the noninvertible map (17) (see e.g. [11,18]).

2.4. Critical curves

The map (17) is a noninvertible endomorphism because if, in (17), the point (x1, x2) is computed in
terms of a given x01; x

0
2

ÿ �
a fourth degree algebraic system is obtained, that can have four, two or no

Fig. 2. For parameters' values c�3, a�10, b�0.5 (as in Fig. 1) and v�0.37 the quadrilateral OO
�1�
ÿ1O

�3�
ÿ1O

�2�
ÿ1, which is the

boundary of B(1) for this set of parameters is represented. The grey points generate unbounded trajectories, whereas a

generic point taken in the white region generates a trajectory converging to the one-dimensional attractor A (represented by

black points) embedded into the diagonal. The regions Z4, Z2 and Z0, whose points have four, two or no preimages

respectively, are bounded by the critical curves LC(a) and LC(b), as explained in Section 2.4. The branches of the critical curves

LCÿ1 and LC are represented by thin and thick lines, respectively.
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solutions. As the point (x1
0, x2

0) varies in the plane R2 the number of solutions, i.e. the number of its real
rank-one preimages, can change: pairs of real preimages appear or disappear as the point (x1

0, x2
0)

crosses the curves separating regions characterized by different number of preimages. Such curves are
characterized by the presence of two coincident (merging) preimages. This leads to the definition of the
critical curves, one of the distinguishing features of noninvertible maps. The critical curve of rank-1,
denoted by LC, is defined as the locus of points having two, or more, coincident rank-1 preimages,
located on a set called LCÿ1. LC is the two-dimensional generalization of the notion of critical value
(when it is a local minimum or maximum value) of a one-dimensional map, LCÿ1 is the generalization
of the notion of critical point (when it is a local extremum point). Arcs of LC separate the regions of the
plane characterized by a different number of real preimages (see [11,18,1]). We also recall that the
critical sets of rank k, are the images of rank k of LCÿ1 denoted by LCkÿ1 � Tk

s �LCÿ1� �
Tkÿ1

s �LC�; LC0 being LC.
Being LCÿ1 the locus of coincident rank-1 preimages of the points of LC, in any neighborhood of a

point of LCÿ1 there are at least two distinct points mapped by Ts in the same point near LC. Hence, the
map Ts is not locally invertible in the points of LCÿ1 and, since the map (17) is a continuously
differentiable map, this implies that LCÿ1 belongs to the set of points where the Jacobian determinant
of Ts vanishes, i.e.

LCÿ1 � fx 2 R2j det DTs � 0g

Fig. 3. The absorbing area S bounded by segments of critical curves of rank 1, 2, 3, 4, denoted by LC, LC1, LC2, and LC3,

respectively (each of these segments of critical curves is formed by two branches, being images of increasing rank of the two

branches of LCÿ1 shown in the figure).
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and LC is the rank-1 image of LCÿ1 under T, i.e. LC � Ts�LCÿ1� (see [11,18]). From (23), the condition
det DTs � 0 becomes

x2
1 � x2

2 � 4x1x2 ÿ �x1 ÿ �x2 � � � 0

with

� � 5� 5bv2�aÿ c�
4b2v2

and � � �1� bv2�aÿ c��2
4b2v2

This is the equation of an hyperbola in the plane (x1,x2), hence LCÿ1 is formed by two branches,

denoted by LC
�a�
ÿ1 and LC

�b�
ÿ1 in Fig. 2. This implies that also LC is the union of two branches, denoted by

LC�a� � Ts�LC
�a�
ÿ1� and LC�b� � Ts�LC

�b�
ÿ1�. Each branch of the critical curve LC separates the phase

plane of T into regions whose points have the same number of distinct rank-1 preimages. In the case of
the map (10) LC(b) separates the region Z0, whose points have no preimages, from the region Z2, whose
points have two distinct rank-1 preimages, and LC(a) separates the region Z2 from Z4, whose points have
four distinct preimages. Notice that LC

�b�
ÿ1 intersects the diagonal � in the critical point of the restriction

f, i.e. LC
�b�
ÿ1 \� � �1� v�aÿ c��=6bv; �1� v�aÿ c��=6bv� � and consequently LC�b� intersects � in

the point where the restriction f attains its maximum value.
As far as the segments !ÿ1

1 and !ÿ1
2 entirely belong to the region Z0, as in the situation shown in

Fig. 2, no other portions of @B(1) are obtained by higher rank preimages of !1 and !2. This implies
that according to (30), @B(1) has the simple structure of the quadrilateral shown in the Fig. 2, Fig. 3,
Fig. 4(a). But the situation radically changes if some portions of !ÿ1

1 or !ÿ1
2 enter Z2 as some parameter

is changed, as we shall see in Section 4.

3. Intermittency and attracting area

For v(aÿc)2(0,2), the fixed point E* is asymptotically stable and its basin of attraction is the region
D inside the quadrilateral OO

�1�
ÿ1O

�3�
ÿ1O

�2�
ÿ1. For v�aÿ c� > 2E� is a saddle, with local unstable set along

� and local stable set transverse to it (tangent to the orthogonal direction). As recalled in Section 2, if
v(aÿc)2[2,3] the attractor A of f � Tsj�, which may be a cycle, a cycle of chaotic intervals or a weak
attractor given by a Cantor set, belongs to the attracting set I��C1C� �. I� is also a one-dimensional
trapping set for the two-dimensional map Ts if all the cycles inside it are transversally attracting. In fact,
in this case all the trajectories starting inside a two-dimensional neighborhood U of I� synchronize and
their ! -limit set is the attractor A�I�. Moreover, if no other bounded attracting sets exist outside �
then all the trajectories starting in the basin D of bounded trajectories, defined as the complementary
set of the closure of B(1)

D � C�B�1�� �35�
synchronize and converge to A. In the simple cases shown in Figs. 2, 3 and 4a the set D is the region
inside the quadrilateral OO

�1�
ÿ1O

�3�
ÿ1O

�2�
ÿ1:

As v increases, a local bifurcation value vb is reached at which a k-cycle located on � becomes
transversally unstable. For example, with the parameters a, b, c used in Fig. 1, Fig. 2 and Fig. 3
vb'0.37563 and k�2, i.e. as v increases beyond vb a 2-cycle located on � becomes transversally
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Fig. 4. For parameters' values c�3, a�10, b�0.5 (as in the previous figures) and v�0.4046 a typical trajectory starting in the

white region is shown both in the phase space (a) and versus time (b). From the graph versus time the intermittent behavior can

be clearly seen, and the figure in the phase space shows that the intermittency is bounded inside the absorbing area S.
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unstable with �
�2�
? < ÿ1. For v < vb, just before the bifurcation, this 2-cycle is a saddle, repelling along

� and transversally attracting, with ÿ1 < �
�2�
? < 0. At v�vb, it becomes a repelling node via a flip

bifurcation, at which a saddle cycle of period 4 is created out of �, with periodic points located
symmetrically with respect to the diagonal. For v>vb the invariant interval I is no longer an
asymptotically stable attracting set for the map Ts. In fact, if we consider a sufficiently small
neighborhood U of I we have that the local unstable set of the transversally unstable k-cycle intersects
@U and a set of points of positive Lebesgue-measure exists in U whose trajectories exit U in a finite
number of iterations. This implies that no neighborhood V�U exists such that the definition of
Lyapunov stability holds. In this case it is possible to prove that around the local transverse unstable set
of the 2-cycle open sets of points exist, called `tongues' in [13] or `wedges'in [2], such that the
trajectories starting from points of these `tongues' exit U after a finite number of iterations. Similar
`tongues' also exist in correspondence of the infinite preimages, along �, of the points of the 2-cycle.
Thus, for v>vb, two question arise:

� what is the fate of the trajectories that, even starting very close to I�, exit the neighborhood U ?;
� what is the asymptotic behavior of the generic trajectory starting inside the basin of bounded

trajectories D ?.

Some answers to these questions can be obtained from a study of the global properties of the map Ts,
and for a noninvertible map these properties can be characterized by the use of critical curves. In fact,
even if for v>vb the invariant interval I� ceases to be a topological attracting set of Ts, a two
dimensional attracting set S is created around I, whose boundary @S is formed by a finite number of arcs
of critical curves LCk; k � 1; . . . ;m. This is an invariant set of Ts, i.e. Ts�S� � S, such that every
trajectory starting inside D enters S after a finite number of iterations, and its boundary can be obtained
following the procedure described in [18], ch. 4: if 
 � S \ LCÿ1 then, for a suitable integer m

@S �
[m
k�1

Tk�
� �36�

An example is shown in Fig. 3, where m�4. We remark that S includes the invariant interval I�,
being S \� � I�, and all the trajectories starting inside a neighborhood of I inside S cannot go out of
S. Loosely speaking @S behaves as a bounded vessel for the trajectories starting from the `tongues'
located around the local unstable sets of the transversally repelling cycles.

For v>vb other k-cycles of f, with k�2, belonging to �, become transversally unstable. This can occur

either through a flip bifurcation if �
�k�
? < 0 (as in the case of the 2-cycle considered above) or a fold

bifurcation if �
�k�
? > 0.

If Ts has no attractors outside of � then the generic trajectory starting inside D synchronizes after a
few bursts away from � and eventually is attracted by A�I�, whereas if Ts has attractors outside of �
then trajectories starting arbitrarily close to I� may exist that converge to them. However, such
attractors must necessarily be inside S.

Interesting phenomena, well studied in the recent literature, occur when the parameters values are
such that A is a chaotic interval or a cycle of chaotic intervals, i.e. chaotic synchronization takes place.
For example, at v � v0 � ��0 ÿ 1�=�aÿ c�, with �0 � 3:678573510428 . . .2, f is chaotic on A�I� and

2For the logistic map (20) �0 is the parameters' value of the first homoclinic bifurcation of the fixed point, at which two

invariant intervals merge to give a unique chaotic interval, as recalled in Section 2.2.
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has absolutely continuous invariant measure on I�. The repelling 2-cycle is contained in A, and the
infinitely many preimages of such a cycle are dense in A. Moreover, the fact that L? < 0 at v � v0 (see
Fig. 1) ensures that A is an attractor in the weak Milnor sense. This means that A attracts a set of
points of positive measure in any neighborhood U��A�, where

U��A� � f�x1; x2�jk�x1 ÿ x; x2 ÿ x�k < � 8 x 2Ag �37�
Furthermore, in this case Ll<0 implies (see [2]) that A is an essential attractor for Ts, i.e.

lim
�!0

��B�A� \ U��A��
��U��A�� � 1

where � is a Lebesgue measure on R2. In simpler words, most initial conditions close to A are attracted
to A, but in any neighborhood of A there exists a dense set that is locally repelled in a direction
transverse to �. In this situation, according to the fate of the locally repelled trajectories, determined by
the global dynamics of the system, two different cases can be distinguished, assuming that the
absorbing area S exists and L? < 0:

� case I. The locally repelled trajectories eventually return to A (i.e. synchronize) after a transient
phase in which they make several excursions (bursts) away of � (but necessarily inside S). If L? is
negative but sufficiently close to zero then this transient may be very long, and the phenomenon
called on±off intermittency is obtained. An upper bound to the amplitude of such bursts is
determined by @S (an intermittent trajectory is shown in Fig. 4, in phase space (4a) and versus time
(4b)).
� case II. The locally repelled trajectories belong to the basin of some other attractor outside of �. In

this case, the basin of A is riddled with the basin of the other attractor (according to [2], B(A) is
called `riddled basin' if it has positive measure but every point of B(A) is such that any neighborhood
of it contains points whose trajectory converge to another attractor).

We remark that as far as the absorbing area S exists, the dynamics are in any case confined inside S.
This is the role of the global properties of the map Ts. Loosely speaking we can say that the local
unstable manifolds of the transversally repelling cycles of � are folded back by the folding action of

the critical curves.
We also remark that Case II has not been observed by the numerical explorations performed with

our map (17), but we cannot exclude it, and examples of its occurrence are given in the literature
([10,15]).

The importance of the invariant area S is even more evident if a small parameters' mismatch

v2 � v1 � " and=or c2 � c1 � �
where the constants " and � are small in comparison with the values of the respective parameters, is
introduced. If (v1, c1)6�(v2, c2) then the diagonal � is no longer invariant because the symmetry
property of the map is lost. The destruction of the invariant set A � � implies that every trajectory
starting inside the basin of S fills up the two-dimensional attracting set S. For example, in the Fig. 5(a)
and (b) two trajectories are represented, both starting from the basin of S, one obtained in the symmetric
case (9) of identical players, with v1�v2�0.4035 and c1�c2�3, and the other obtained after the
introduction of a very small difference between the marginal costs, namely c1�3 and c2�3.00001.
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Fig. 5. Effect of a symmetry-breaking caused by a small parameters' mismatch. In Fig. (a), obtained with identical parameters

characterizing the two players, v1�v2�0.404 and c1�c2�3, the !-limit set of a generic trajectory starting from the white

region is the one-dimensional Milnor attractor along the diagonal on which synchronized trajectories take place. In Fig. (b),

obtained with v1�v2�0.404, c1�3 and c2�3.00001, the !-limit set of a generic trajectory starting from the white region covers

the whole two-dimensional attractor S, inside which the trajectory shows an intermittent behavior.
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For the set of parameters used in Fig. 5(a) the Milnor attractor A on the diagonal is not a topological
attractor since v>vb, but it is an essential attractor because L? � ÿ0:115. Despite of the very small
difference between the parameters of the two producers, the asymptotic behavior is very different, since
the trajectory of Fig. 5(a) synchronizes after a transient of 500 iterations (not shown in the figure),
whereas the trajectory of Fig. 5(b) continue to move erratically, with intermittent bursts away from the
diagonal, but always inside the absorbing area S. Indeed, it can be noticed that inside the large chaotic
area the points near the diagonal � are more frequently visited than those far from it. Such transition
from the asymptotic synchronization to the continual sequence of intermittent bursts, due to a
parameters' mismatch (no matter how small) has been observed by many authors (see [21,24,25]) and is
called hard bubbling transition in [24]. However, in these papers no results are given about bounds to
the amplitude of the bursts.

The study of the effects of small asymmetries is of noticeable interest in the modeling of
real economic systems since small heterogeneities between the economic agents are always present
(see [6]).

If a chaotic attractor A exists on � with L?>0 then almost every initial condition is locally repelled
away from A, even if there exists a subset of infinitely many points of A that are locally attracting in
the transverse direction (in our example this is certainly true for the fixed point E*, whose transverse
eigenvalue is given in (26), together with all its preimages belonging to �). In this case, the generic
trajectory starting inside the set D, even very close to �, fills up the invariant area S, showing an
intermittent behavior, and S is the only attractor that can be numerically seen.

4. Global bifurcations

In this section, we examine some global bifurcations, typical of noninvertible maps, related to
contacts of the critical curves with the boundary of B(1). Such contact bifurcations, occurring far
from the invariant submanifold � where synchronized dynamics take place, can have an influence on
the destiny of the locally repelled trajectories. This puts in evidence the role of the global dynamical
properties in the questions addressed in Section 3.

4.1. Bifurcation changing B(1) from connected to non connected

As the parameter v is increased the branch of rank-1 critical curve LC(b), which separates Z0

from Z2, moves upwards and a value of v exists, say vH, at which it has a contact (or tangency)
with !ÿ1

1 and !ÿ1
2 (the contacts with the two sides !ÿ1

1 and !ÿ1
2 of @B(1) occur simultaneously

because of the symmetry, with respect to the diagonal �, both of LC and @B(1)). For example, with
the same values of the parameters a,b,c as those used to obtained the Figs. 1±4, such contact occurs
at v�vH'0.4047476. This contact marks the occurrence of a global bifurcation that causes the
transformation of B(1) from connected to non connected, according to the following proposition.

Proposition 2. At v�vH the basin B(1) is transformed from connected to non connected, and for

vH < v < �3=aÿ c�B�1� is given by the region out of the quadrilateral OO
�1�
ÿ1O

�3�
ÿ1O

�2�
ÿ1 and an infinite

sequence of non connected regions (or holes) inside the quadrilateral.
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This is a well known bifurcation (see e.g. [17,18] ch. 5, [1] ch.5). For v>vH, just after the contact
bifurcation, two portions of B(1), say H0 and K0 (bounded by LC(b) and segments of !ÿ1

1 and !ÿ1
2 ,

respectively) enter inside Z2 (see Fig. 6)3

Hence for v>vH the expression (30) giving the boundary @B(1), does not contain only rank-1
preimages of !1 and !2, but also preimages of higher rank. In fact, the points belonging to H0, as well
as those belonging to K0, have two distinct preimages, located at opposite sides with respect to the line
LC
�b�
ÿ1, with the exception of the points of the curve LC�b� inside B(1) whose preimages, according

with the definition of LC, merge on LC
�b�
ÿ1. Since H0 and K0 are part of B(1) also their preimages

belong to B(1) and form holes (or lakes, following [17]) which, for vH < v < �3=aÿ c�, are non
connected portions of B(1) inside the quadrilateral OO

�1�
ÿ1O

�3�
ÿ1O

�2�
ÿ1. In fact, only at v � vf � 3=aÿ cH0

and K0, as well as their rank-1 preimages Hÿ1 and Kÿ1, have a contact with the coordinate axes (as will
be explained in Section 4.2). The two main holes Hÿ1 and Kÿ1 lie entirely inside the regions Z2 and Z4,
hence each of them has further preimages, which are smaller holes of B(1) bounded by preimages of
rank 2 of !1 and !2. Even these lie inside Z2 and Z4, so each of them has further preimages, and so on.
These preimages are infinitely many because from the property Ts OO

�1�
ÿ1O

�3�
ÿ1O

�2�
ÿ1

� �
� OO

�1�
ÿ1O

�3�
ÿ1O

�2�
ÿ1

Fig. 6. Some preimages of the portions of !1 and !2 of the invariant axes. The regions H0 and K0 denote the portions of the

immediate basin of infinity included inside the region Z2. Their rank-1 preimages are the main holes, denoted by Hÿ1 and Kÿ1,

bounded by preimages of rank-1 of !ÿ1
1 and !ÿ1

2 , respectively. Preimages of rank-2 of !ÿ1
1 and !ÿ1

2 are also shown in the

figure. Other infinitely many holes, bounded by preimages of higher rank, exist, but are not represented in the figure.

3The value of the parameter v is used in Fig. 6 is much greater than the bifurcation value vH in order to make the figure more

readable, since for values of v just after the bifurcration the holes are very small.
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follows that at least an infinite sequence of preimages of the main holes Hÿ1 and Kÿ1 must exist inside
the quadrilateral (see e.g. [18], ch. 4).

Thus, after the bifurcation value vH infinitely many disjoint portions of B(1) appear inside the
quadrilateral OO

�1�
ÿ1O

�3�
ÿ1O

�2�
ÿ1, and the boundary @B(1) is given by the quadrilateral OO

�1�
ÿ1O

�3�
ÿ1O

�2�
ÿ1 and

the infinite sequence of boundaries of the holes, given by the infinitely many preimages of any rank of
the portions of !ÿ1

1 and !ÿ1
2 included in H0 and K0. It can be observed that holes inside the region Z4

also exist. These have four distinct preimages, pairwise located at opposite sides with respect to LC
�a�
ÿ1

and LC
�b�
ÿ1. Some other holes, like the main holes Hÿ1 and Kÿ1 of Fig. 6, belong to both the regions Z2

and Z4 and include a segment of LC(a) inside, hence they have preimages merging along LC
�a�
ÿ1:

The invariant area S, bounded by portions of critical curves according to (36), is not destroyed by this
contact bifurcation. This is due to the fact that the portions of LC that are involved in the contact with
@B(1) do not belong to the boundary of the absorbing area. The infinitely many holes, being given by
sequences of preimages, accumulate on repelling sets of the map Ts. For example, in the situation
shown in Fig. 7, they accumulate on the repelling cycles located on the invariant coordinate axes and on
other repelling cycles existing inside D, out of the absorbing area S. We remark that the holes do not
enter inside the area S because the points of LC in which the contact with @B(1) occurs do not belong
to the portions of LC bounding S, given, according to (36) by T(
), where 
 � LCÿ1 \ S.

As v is further increased LC continues to move upwards, the portions H0 and K0 grow up and
consequently the holes become larger. This fact causes a sort of loss of predictability, since a greater

Fig. 7. This figure is obtained just after the basin bifurcation due to the contact between LC�b� and the segments !ÿ1
1 and !ÿ1

2 .

The infinitely many holes created at the contact bifurcation accumulate on the repelling cycles located on the invariant

coordinate axes and on other repelling cycles existing out of the absorbing area S.
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uncertainty is obtained with respect to the asymptotic evolution of games starting from an initial
strategy taken in regions out of S with many holes.

4.2. Contact bifurcation that destroys S

The invariant area S is destroyed when some holes have a contact with its boundary @S. Such a
contact must necessarily occur as the parameter v, and/or the difference (aÿc) are increased. In fact for
v(aÿc)�3 the main holes Hÿ1 and Kÿ1, as well as their preimages of any rank, are tangent to the
diagonal �, as we shall see in next subsection. However, the destruction of S occurs before this, when a
portion of @B(1) has a contact with @S. When this happens also the preimages of such portion of
@B(1) have contacts with @S hence, after the bifurcation, infinitely many holes enter S. Of course, this
implies that S is no longer invariant after this bifurcation.

Let us denote by vc the value of the parameter v at which @S has the first contact with @B(1). For the
set of parameters a, b, c given above we have vc' 0.4051 and the bifurcation is due to a contact
between the portion of LC3 bounding the upper part of S and the sides !ÿ1

1 and !ÿ1
2 of @B(1).

For vH < v < vc, infinitely many holes exist inside the quadrilateral OO
�1�
ÿ1O

�3�
ÿ1O

�2�
ÿ1, but a large region

exists, occupied by the invariant area S, without holes inside. For v>vc, the region inside the
quadrilateral OO

�1�
ÿ1O

�3�
ÿ1O

�2�
ÿ1 becomes almost filled up with holes of B(1), and the set D, defined in

(35), whose points generate bounded trajectories, assumes a very complex structure, called `fat fractal'
in [20], characterized by the presence of infinitely many holes distributed all over it.

In our example, this contact bifurcation marks the passage from case (I) to case (II) described in
Section 3, i.e. between the phenomenon of intermittency and that of riddled (apparently riddled on the
basis of numerical computations) basins.

If we consider a value v 2 �vc; 3=aÿ c� at which a chaotic attractor A of Tsj�, with absolutely
continuous invariant measure, exists inside I�, and we know that infinitely many of such values can be
found, then at v � v the basin B(A) may be riddled with B(1) provided that L?<0 (see [2]). In Fig. 1
it can be noticed that in the range vc; 3=aÿ c� � intervals can be identified where L?<0 (see the
enlargement in Fig. 8(a)). With the value v�0.411, where L?<0, B(A) has been numerically
represented in Fig. 8(b). For this set of parameters the attractor A is a one-piece chaotic attractor inside
I�. For each initial condition taken over a grid on the portion of phase plane represented in the figure a
trajectory of the map Ts has been generated and a grey dot is painted if the trajectory reaches the
immediate basin of infinity (i.e. the region outside the quadrilateral OO

�1�
ÿ1O

�3�
ÿ1O

�2�
ÿ1�, whereas a white

point is painted if after 106 iterations the inequality jx1 ÿ x2j < 10ÿ7 is satisfied. At a first look to
Fig. 8(b) the structure of B(A), represented by the distribution of white points, looks rather
complicated, similar to that of a riddled basin. The appearance of the Fig. 8(b) remains the same even if
a longer transient is discarded before the test for synchronization is performed, and similar structures
are seen if enlargements are considered. The figures obtained suggests that B(A) is given by the
complementary of the closure of all the infinitely many holes of B(1) inside the quadrilateral
OO

�1�
ÿ1O

�3�
ÿ1O

�2�
ÿ1:

Instead, if values of v 2 vc; 3=aÿ c� � are taken such that L?>0 then almost all the trajectory are
repelled from � and then diverge, i.e. completely grey figures are obtained following the numerical
procedure used to obtain Fig. 8(b). In these cases, if a chaotic attractor A of Tsj� exists, it is a chaotic
saddle for the two-dimensional map Tsj�, i.e. �(B(A))�0 (see [4]). We notice, however, that a subset
of zero measure of points that are attracted to � exist since there are cycles (that may also be infinitely
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Fig. 8. (a) Expanded version of Fig. 1 with v ranging from 0.410 to 0.415, in order to show a more detailed structure of the

Lyapunov exponent L?. (b) For c�3, a�10, b�0.5 (as in Fig. 8(a)) and v�0.411, the numerically obtained basins are shown.

For each initial condition, taken over a grid on the portion of phase plane represented in the figure, a trajectory of the map Ts

has been generated and a grey dot is painted if the phase point reaches the immediate basin of infinity (i.e. the region outside

the quadrilateral OO
�1�
ÿ1O

�3�
ÿ1O

�2�
ÿ1), whereas a white point is painted if after 106 iterations the inequality jx1 ÿ x2j < 10ÿ7 is

satisfied.
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many) transversally attracting. For example the fixed point E* is transversally attracting in the whole
range of parameters for which bounded attractors exist on �.

4.3. Final bifurcation

When v � vf � 3=aÿ c, the restriction Tsj� is conjugated to the standard logistic map z0 � �z�1ÿ z�
with ��4. Hence, for v>vc the generic trajectory starting from a point of the invariant diagonal is
divergent. This corresponds also to a global bifurcation for the two-dimensional map. Such bifurcation
is called % final bifurcation in [18,1], where it is defined as the bifurcation given by the contact
between a bounded attractor and the boundary of the basin of infinity, causing the destruction of the
attractor. In this sense also the contact bifurcation described in Section 4.2 is a final bifurcation at
which the invariant area S (which is an attracting set in the usual topological sense) is destroyed.
However, another attractor even if in the weak Milnor sense nested inside it survives. Instead at v�vf

every bounded attractor also in the weak Milnor sense, disappears
Also this global bifurcation can be characterized by the critical curves. In fact, for v(aÿc)�3 the

critical curve LC�b� passes through O
�1�
ÿ1; O

�3�
ÿ1 and O

�2�
ÿ1 so that H0 has a contact with the x2 axis and the

diagonal �, in the points O
�2�
ÿ1 and O

�3�
ÿ1, respectively, and K0 has a contact with the x1 axis and the

diagonal � in the points O
�2�
ÿ1 and O

�3�
ÿ1. Hence their rank-1 preimages, the main holes the Hÿ1 and

Kÿ1, have a contact with the same invariant lines in the preimages of O
�1�
ÿ1, O

�3�
ÿ1 and O

�2�
ÿ1, that in this

case are the critical values, located in the critical points of the restrictions f1, f and f2, given by Cx �

Fig. 9. This is the analogue of Fig. 6, obtained with the same parameters c, a and b, but with v�3/(aÿc), at which the final

bifurcation occurs.
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��1�v�aÿc��=4bv; 0�, C���1�v�aÿc��=6bv; �1�v�aÿc��=6bv� and Cy � �0; �1� v�aÿ c��=4bv�,
respectively. Since these three points belong to invariant manifolds, each of them must have at least one
of their preimages on the same invariant manifold, so that also the rank-1 preimages of the main holes
are tangent to the coordinate axes and to the diagonal. By reasoning inductively it is easy to realize that
infinitely many preimages of any rank of the main holes are tangent to these invariant manifolds, the
tangency points being the infinite preimages of the critical points of the restrictions f1, f and f2 on the
respective invariant manifolds. Some of these preimages, up to rank 3, are shown in Fig. 9. For this
value of v(aÿc), corresponding to the case � �4 of the standard logistic map (20), the attractor A�I�

is a chaotic interval with an absolutely continuous invariant measure (the logistic map at � �4 is
conjugate to the tent map) and as can be seen in Fig. 1, the transverse natural Lyapunov exponent L? is
positive. Hence, A is a chaotic saddle but even if �(B(A))�0, a dense subset of transversally
attracting points embedded into A exists, including the fixed point E* and all its preimages on �. In
fact, from (26) we can see that �E�

? � 0 if v � 3=aÿ c.
We observe that this fact may cause noticeable numerical effects, which may lead to an erroneous

interpretation of numerical experiments. In fact it may happen that the attractor A�� is numerically
seen even if �(B(A)) �0, due to the finite representation of `real' numbers in computers.

In order to clarify this numerical effect we recall a well known `numerical paradox'. Suppose, for a
one-dimensional map that an invariant set attracts all (and only) the rational numbers then its basin of
attraction has one-dimensional Lebesgue measure equal to zero, but in a numerical experiment it seems
to attract every trajectory, since only a subset of rational numbers can be represented by a computer.

5. Conclusions

In this paper, we have studied phenomena of synchronization, intermittency and the complex
structure of the basins of attraction for a two-dimensional noninvertible map with an invariant one-
dimensional submanifold where synchronized dynamics takes place.

The map describes the time evolution of an economic duopoly system. We have argued that
symmetric maps with invariant submanifolds of lower dimensionality naturally arise in the modeling of
discrete time dynamic games with identical players. However, these symmetric maps are quite different
from those, usually studied in the literature, where there exists a parameter that affects the dynamics
transverse to the invariant manifold but does not influence the dynamics on the invariant manifold, i.e. a
normal parameter, following the terminology of [4]. In our model each parameter influences both.

The main local and global bifurcations are studied as v(aÿc) increases, where v is the speed of
adjustment and (aÿc) is the difference between maximum unitary price and unitary production cost.

The main results of the paper concern the global behavior of the map out of the invariant manifold
where synchronization occurs. Such global behavior is characterized by the properties of the critical
curves of the noninvertible map.

Portions of critical curves of increasing rank bound an invariant asymptotically attracting two-
dimensional set that includes the one-dimensional Milnor attractor to which the synchronized
trajectories converge. Such a two-dimensional trapping region gives an upper bound to the
intermittency phenomena and becomes the only attractor when the Milnor attractor is transformed
into a chaotic saddle. We show that the folding action of the critical curves places an upper bound on
how the trajectories starting near the invariant submanifold can get away from it. In other words, the
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study of the critical curves leads to an estimate of the amplitude of the `bursts' transverse to �, i.e. of
the maximum difference between the non-synchronized production decisions.

Global bifurcations, that change the structure of the basins of attraction and cause the destruction of
the bounded attracting sets, are characterized as contact bifurcations due to tangencies between critical
curves and basin boundaries. The effects of such global bifurcations are evidenced both for the changes
induced in the basins structure and for the different cases, usually described in the literature, that
characterize the possible behaviors of the locally repelled trajectories starting close to the invariant
manifold which contains a Milnor attractor which is not asymptotically stable. In fact, trajectories
locally repelled by transversally repelling cycles embedded inside the invariant submanifold can be
reinjected toward it or can go to another attractor (the infinity in our example) depending on the global
properties of the map. The occurrence of contact bifurcations marks the switch from the former to the
latter case.

From the point of view of the economic duopoly game, whose dynamic evolution is modeled by the
two-dimensional symmetric map (17), the question addressed is that of the asymptotic behavior of two
identical producers that enter the economy with different initial productions x1;0 6� x2;0. It is plain that
identical producers starting with identical initial productions x1;0 � x2;0 will continue to produce the
same quantities for each time t�0, i.e. they are synchronized. This implies that their common behavior
can be described by the simpler one-dimensional map given by the restriction of the two-dimensional
model to the invariant diagonal. But what happens if two identical producers start with different initial
productions?. Do the endogenous dynamics of the economic system act so that the initial difference is
gradually eliminated and synchronization of the productions is reached in the long run, or will the
initial difference be enhanced until the duopoly is destroyed (i.e. one producer exits the market)? The
results given in this paper show that an answer is not trivial. Asymptotic synchronization occurs for
some sets of parameters, so that the simpler one-dimensional map can be used to describe the long-run
evolution of the system, but global bifurcations can occur at which intermittent behavior appear, and
other bifurcations can give a very complex structure of the basin of attraction of the synchronized
dynamics. In this case unbounded trajectories can be obtained (which mean the destruction of the
duopoly) even for games starting with quasi identical initial productions.
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