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a b s t r a c t

Several recent contributions formalize and analyze binary choices games with externalities as
those described by Schelling. Nevertheless, in the real world choices are not always binary,
and players have often to decide among more than two alternatives. These kinds of inter-
actions are examined in game theory where, starting from the well known rock-paper-scis-
sor game, several other kinds of strategic interactions involving more than two choices are
examined. In this paper we investigate how the dynamics evolve introducing one more
option in binary choice games with externalities. The dynamics we obtain are always in
a stable regime, that is, the structurally stable dynamics are only attracting cycles, but of
any possible positive integer as period. We show that, depending on the structure of the
game, the dynamics can be quite different from those existing when considering binary
choices. The bifurcation structure, due to border collisions, is explained, showing the exis-
tence of so-called big-bang bifurcation points.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of repeated choices has been studied from
different perspectives, especially in economics. For exam-
ple in [8] the first chapter is devoted to the theory of indi-
vidual decision making. According to these Authors ‘‘The
starting point for any individual decision problem is a set
of possible (mutually exclusive) alternatives from which the
individual must choose’’. In many texts (see e.g. [13]), for
the sake of simplicity, the analysis is limited to choices be-
tween two alternatives such as consumption goods. In an
important contribution appeared in the Journal of Conflict
Resolution, Schelling [10] analyzes situations in which the
consequences of the choices of an actor are affected by
other actors’ actions, that is, the population of agents that
form the social system as a whole. In particular, he consid-
ers agents who are asked to choose between two alterna-
tives and each player’s payoff depends on the number of

agents who choose either one action or the other. These
kinds of interaction are called binary choices games with
externalities.

Recently, after providing a mathematical formalization,
the analysis provided in [2] extends Schelling’s contribu-
tion introducing a dynamic adjustment process. The
dynamics was analyzed thoroughly in [3] where the ana-
lytic expressions of the border collision bifurcation curves
are given. Furthermore, [4] extends such analysis consider-
ing the case in which the payoff functions have two inter-
sections as in some examples provided in Schelling [10]. In
this case the one-dimensional map consists of three linear
partitions separated by two discontinuity points.

Nevertheless, in the real world the choice set does not
always consist of two alternatives. This is well known in
economics, for example [9] when surveying quantal choice
analysis provides a classical illustration. The example is the
following: ‘‘. . . suppose subjects are offered a choice of a
bicycle or a pony. . .. Suppose the choice is now expanded
to include a second bicycle which differs from the first only
in color and trim.’’ Examples considering more than two
choices are not limited to quantal choice analysis; game
theory also examines situations in which players have at
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least three available alternatives. In [5], several examples
are provided, from pricing games with price matching to
sport examples. Furthermore, even for simple games such
as the well known rock-paper-scissor, externalities effects
arise when they are played as stage games in random
matching supergames [7]. Finally, it is also possible to ob-
tain an example similar to those provided in [10] when
considering the dilemma of commuting by car or public
transportation examined in [12], and introducing a third
choice: commuting by bicycle.

In this paper we investigate how introducing one more
option in binary choices games with externalities affects
the complexity of the dynamics. We will show that,
depending on the structure of the game in terms of the
payoff, the dynamics can be more complex than the one
when considering binary choices.

The choice of linear payoff functions will lead to two-
dimensional maps defined by linear pieces. Thus the
dynamics shown via several examples is the one typical
of piecewise linear maps with one or two discontinuity sets.
In these maps the bifurcations are different from those
occurring in smooth systems, and are due to the collision
of some cycle with the border in which the definitions
change. The effect of such a border collision bifurcation is
not an easy task to investigate, especially in two-dimen-
sional piecewise linear maps. It is indeed an open research
field, in which only a few results have been published, and
mainly for continuous piecewise smooth maps. For discon-
tinuous maps, as it is in our model, the existing results are
almost negligible. However, the examples considered in
this work allows us to investigate the bifurcations via a
one-dimensional discontinuous map. In such a case we
are able to understand and classify the bifurcations occur-
ring in the map (making use of recent results in [6,1,11]).

Our results show how considering binary choices to
simplify the problem formulation may lead to miss the
complex dynamics of the system under analysis, although
the structurally stable attracting set always consists in
some k-cycle, k P 1, as divergent dynamics or chaotic behav-
iors cannot occur.

The structure of the paper is the following. The model is
presented in Section 2. The analysis proceeds from the case
of only stable equilibria (Section 3), through the examina-
tion of the coexistence of a stable equilibrium and cycles
(Section 4). The cases shown here can be considered as
reflecting the result of two choices plus one. Differently,
in Section 5 we shall illustrate a case in which the three
different choices are cyclically changing, which occurs
when there are no stable equilibria. Section 6 is devoted
to the conclusions and open problems.

2. The model

We consider a repeated game where a continuum of
players chooses actions from a set A = {L,M,R}. Each player
updates its choice at each time t = 0,1,2, . . . . The set of
players is normalized to the interval [0,1]. We introduce
the following notation:

� xL
t 2 ½0;1� denotes the fraction of players choosing

action L at time t,

� xM
t 2 ½0;1� denotes the fraction of players choosing

action M at time t,
� xR

t 2 ½0;1� denotes the fraction of players choosing
action R at time t.

Since we are considering ternary choices, when at any
time t a fraction xL

t of the population chooses action L
and a fraction xR

t chooses action R, then a fraction
xM

t ¼ 1� xL
t � xR

t chooses action M. We rule out the option
of not choosing any action. As it holds xL

t þ xM
t þ xR

t ¼ 1 it
is possible to represent the state of the system on D2, the
standard 2-simplex with vertices P�Lð1;0;0Þ; P

�
Mð0;1;0Þ;

P�Rð0;0;1Þ, as in Fig. 1(a).
Assuming xM

t ¼ 1� xL
t � xR

t it is possible to consider only
two independent coordinates xL

t ; x
R
t

� �
and in the following

we will omit xM (given as complement value).
Thus our phase space (the set of feasible vectors

xt ¼ xL
t ; x

R
t

� �
) is a triangle D2 in the plane which has to be

considered as the projection (bijective) of the standard 2-
simplex D2:

D2 ¼ xt ¼ xL
t ; xR

t

� �
2 R2 : 0 6 xL

t þ xR
t 6 1

� �
:

Therefore the vertices of D2 become the vertices of D2:

P�L ¼ ð1;0Þ; P�M ¼ ð0;0Þ; P�R ¼ ð0;1Þ; ð1Þ

respectively, as depicted in Fig. 1(b).
Obviously:

� if xt ¼ xL
t ; x

R
t

� �
¼ ð0;0Þ then the whole population

chooses action M,
� if xt ¼ xL

t ; x
R
t

� �
¼ ð0;1Þ then the whole population

chooses action R,
� if xt ¼ xL

t ; x
R
t

� �
¼ ð1;0Þ then the whole population

chooses action L.

They can be named unanimity vertices since in each of
them the whole population is choosing the same action.

The payoff functions are common knowledge and are
assumed to be linear functions depending on the vector
x = (xL,xR); they are:

� L : D2 ! R is the payoff associated to action L:

LðxÞ ¼ aLxL þ bLxR þ cL; ð2Þ

Fig. 1. In (a) standard 2-simplex D2 (shaded area) and in (b) its projection
D2 on the horizontal plane (shaded area).
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� M : D2 ! R is the payoff associated to action M:

MðxÞ ¼ aMxL þ bMxR þ cM; ð3Þ

� R : D2 ! R is the payoff associated to action R:

RðxÞ ¼ aRxL þ bRxR þ cR: ð4Þ

We assume that each pair of payoff functions are not
identically the same. Then defining:

T1ðxÞ¼ LðxÞ�MðxÞ¼ ðaL�aMÞxLþðbL�bMÞxRþðcL�cMÞ;

T2ðxÞ¼ LðxÞ�RðxÞ¼ ðaL�aRÞxLþðbL�bRÞxRþðcL�cRÞ;

T3ðxÞ¼RðxÞ�MðxÞ¼ ðaR�aMÞxLþðbR�bMÞxRþðcR�cMÞ:
ð5Þ

We are interested in the following regions:

RL ¼ x 2 D2 : T1ðxÞ > 0 and T2ðxÞ > 0
n o

;

RM ¼ x 2 D2 : T1ðxÞ < 0 and T3ðxÞ < 0
n o

;

RR ¼ x 2 D2 : T2ðxÞ < 0 and T3ðxÞ > 0
n o

:

ð6Þ

We assume that not all these sets are empty, in which case
the regions are convex, as intersection of convex sets. In
the region RL we have that action L dominates both M
and R; in RM action M dominates the other payoffs L and
R; and in RR it is R that dominates L and M. As usual, the
set of feasible vectors xt ¼ xL

t ; x
R
t

� �
are such that

xL
t þ xR

t 6 1 for all t.
The agents are homogeneous and maximize their next

period utility. At time t + 1 vector xt becomes common
knowledge, and each agent can observe payoffs L(xt),
M(xt) and R(xt). We assume that if at time t a fraction xL

t

chooses action L and a fraction xR
t chooses action R and

the payoffs are such that R(xt) > L(xt) and R(xt) > M(xt), then
a fraction of the xL

t agents who chose action L and a fraction
of the 1� xL

t � xR
t agents who chose action M will both

switch to action R at next time period t + 1. This is the same
for all actions which give the larger payoff. In other words,
at any time t all the agents decide their future action for
time t + 1 comparing payoffs L(xt), M(xt) and R(xt) accord-
ing to the following rule:

xtþ1 ¼ FðxtÞ ð7Þ

with xt ¼ xL
t ; x

R
t

� �
2 R2, F: D2 ? D2 and the map:

xL
tþ1; x

R
tþ1

� �
¼ FL xtð Þ; FR xtð Þð Þ ð8Þ

is defined as follows:

� if xt 2 RL then:

FL xtð Þ ¼ xL
t þ dLg k L xtð Þ �M xtð Þð Þð Þ 1� xL

t � xR
t

� �
þ dLg k L xtð Þ � R xtð Þð Þð ÞxR

t ;

FR xtð Þ ¼ xR
t � dLg k L xtð Þ � R xtð Þð Þð ÞxR

t ;

(

� if xt 2 RM then:

FL xtð Þ ¼ xL
t � dMg k M xtð Þ � L xtð Þð Þð ÞxL

t ;

FR xtð Þ ¼ xR
t � dMg k M xtð Þ � R xtð Þð Þð ÞxR

t ;

(

� if xt 2 RR then:

FL xtð Þ ¼ xL
t � dRg k R xtð Þ � L xtð Þð Þð ÞxL

t ;

FR xtð Þ ¼ xR
t þ dRg k R xtð Þ � L xtð Þð Þð ÞxL

t þ dRg k R xtð Þ �M xtð Þð Þð Þ 1� xL
t � xR

t

� �
:

(

The function g : Rþ ! ½0;1� is continuous and increasing,
with g(0) = 0 and limz?+1g(z) = 1; it models the impulsivity
of agents (see [3]), as the parameter k 2 Rþ represents the
agents’ speed of reaction as a consequence of the compar-
ison between the payoffs.

The parameters dL, dM, and dR, assumed belonging to the
range [0,1], represent how many agents may switch to ac-
tion L, M, and R respectively. When two or more of these
parameters are equal, there are no differences in the pro-
pensity to switch to any of the actions involved.

An interesting limiting case is obtained as k goes to
infinity, as considered in [3]. This is equivalent to consider
g(�) = 1. Therefore, the switching rate to a different action
just depends on the sign of the difference between the pay-
offs, no matter to what extent (impulsive agents). In this
case the dynamical system becomes xtþ1 ¼ FðxtÞ as follows:

F : xtþ1 ¼

xL
tþ1 ¼ ð1� dLÞxL

t þ dL

xR
tþ1 ¼ ð1� dLÞxR

t

(
if xt 2 RL;

xL
tþ1 ¼ ð1� dMÞxL

t

xR
tþ1 ¼ ð1� dMÞxR

t

(
if xt 2 RM;

xL
tþ1 ¼ ð1� dRÞxL

t

xR
tþ1 ¼ ð1� dRÞxR

t þ dR

(
if xt 2 RR:

8>>>>>>>>>><
>>>>>>>>>>:

ð9Þ

We can see that in the map in (9), each of the expressions
defining xL

tþ1 and xR
tþ1 is a linear function only of the same

state variable, and not of the other one. However, depend-
ing on the payoff values, the state variable may change the
region to which it belongs to, and this leads to a change in
the dynamics. That is, the function which is applied to the
state variables changes as a consequence of the change of
the region.

The peculiarity of this two-dimensional map F is that
the conditions on the parameters determining the slopes
of the linear functions, and thus the eigenvalues of the
map in the linear pieces, lead to all contractions. A point
x 2 Rr has the Jacobian matrix:

JðxL; xRÞ ¼
1� dr 0

0 1� dr

� �
;

whose eigenvalues are real and both equal to (1 � dr), so
that they belong to the range (0,1], except for dr = 0, in
which case the eigenvalues are both equal to 1.

Under such conditions we can only have stable cycles,1

as all the eigenvalues of the components are positive and
less then one, or at most equal to 1, any possible k � periodic
cycle (k P 1) has eigenvalues which are necessarily also po-
sitive and smaller than or equal to one.2 Thus no chaotic
behavior can occur, neither divergence (as the map is de-
fined from D2 onto D2). We have so proved the following:

1 Except for particular structurally unstable parameter values at which
quasiperiodic trajectories exist.

2 We recall that the eigenvalues of a cycle are given by the eigenvalues of
the product of the Jacobian matrices in the periodic points.

296 A. Dal Forno et al. / Chaos, Solitons & Fractals 45 (2012) 294–305



Author's personal copy

Proposition 1. The map F in (9) can only have regular
dynamics: either k � cycles for any k P 1 or quasiperiodic
trajectories.

In the next sections we shall see several examples.
There, the particular structure of the map often leads to
one-dimensional maps by which it is possible to analyze
the dynamic behaviors and bifurcations which may occur.
Also, it may happen that, depending on the structure of the
regions, we can have one of the two state variables inde-
pendent from the other. An example is given in Section 5.

3. Analysis of stable fixed points

When in any of the three vertices, P�r;r 2 fL;M;Rg, the
correspondent payoff dominates the others, then such a
vertex may be a stable fixed point. P�r is a real fixed point
if it belongs to the proper region Rr, otherwise is called vir-
tual. In fact, if P�r 2 Rr then, given the definition of the map
in (9), it attracts all the points in its region. In other words,
a unanimity vertex is locally stable iff it belongs to the re-
lated dominance region, as proved in the following
proposition.

Proposition 2. A vertex P�r of D2 is a stable fixed point if
P�r 2 Rr, where r 2 {L,M,R}, and explicitly:

P�L 2 RL if aL þ cLð Þ > max aM þ cM; aR þ cRð Þ;
P�M 2 RM if cM > max cL; cRð Þ;
P�R 2 RR if bR þ cRð Þ > max bL þ cL; bM þ cMð Þ:

Proof. Given the definition of the map in (9) it is immedi-
ate to observe that a unanimity vertex P�r which belongs to
the related region is a fixed point, as xt ¼ P�r implies
xtþ1 ¼ P�r, and it attracts all the points in its region. In fact,
since the eigenvalues are both equal to (1 � dr) and in the
range [0,1], a point xt 2 Rr implies xt+1 2 Rr. As a conse-
quence, for 0 < dr 6 1, P�r is an attracting fixed point with
monotonic convergence, and from the structure of the map
the trajectories belong to straight lines issuing from the
fixed point. While for dr = 0 every point of the region Rr
is fixed, and the fixed points are so-called stable but not
attracting.

Then we can see the conditions leading a point P�r to
belong to the related region Rr. For the vertex P�L we have:

T1 P�L
� �

¼ aL � aM þ cL � cM > 0;
T2 P�L
� �

¼ aL � aR þ cL � cR > 0;

(
ð10Þ

for the vertex P�M we have:

T1 P�M
� �

¼ cL � cM < 0;
T3 P�M
� �

¼ cR � cM < 0;

(
ð11Þ

for the vertex P�R we have:

T2 P�R
� �

¼ bL � bR þ cL � cR < 0;
T3 P�R
� �

¼ bR � bM þ cR � cM > 0;

(
ð12Þ

which ends the proof. h

This proposition allows us to generalize some of the re-
sults discussed in [10, p. 403]. In fact, with Proposition 2
we have sufficient conditions for respectively all-Right,
all-Middle and all-Left equilibria. This is the analogous of
Schelling’s case in binary choices of coexistence of all-Right
and all-Left equilibria. In the following example we illus-
trate a case in ternary choices which leads to coexistence
of three stable equilibria.

Example 1. Consider the following payoff functions:

LðxÞ ¼ xL; MðxÞ ¼ �xL � xR þ 1; RðxÞ ¼ xR; ð13Þ

then we have:

T1ðxÞ ¼ LðxÞ �MðxÞ ¼ 2xL þ xR � 1;

T2ðxÞ ¼ LðxÞ � RðxÞ ¼ xL � xR;

T3ðxÞ ¼ RðxÞ �MðxÞ ¼ xL þ 2xR � 1:

In this case the map to be studied is (9) with the following
regions:

RL ¼ x 2 D2 : 1� 2xL < xR < xL
n o

;

RM ¼ x 2 D2 : xR < min 1� 2xL;
1
2
� xL

2

� �� 	
;

RR ¼ x 2 D2 : xR > max xL;
1
2
� xL

2

� �� 	
:

ð14Þ

The conditions given in Proposition 2 hold, therefore we
have three stable equilibria whose basins of attraction are
illustrated in Fig. 2. In Fig. 2(a) we show (at dL = 0.3,
dM = 0.2, and dR = 0.7) the three different regions which also
correspond to the basins of attraction with three stable
equilibria. In Fig. 2(b) three trajectories are shown, which
are converging to the three stable equilibria at the vertices.

As mentioned above, Example 1 generalizes to three
equilibria the case of coexistence of all-Right and all-Left
equilibria in [10]. In our example we have the coexistence
of the three unanimity equilibria which are equivalent in
terms of payoff. Yet it is not difficult to have other situa-
tions with the coexistence of three equilibria which are
not equivalent in terms of payoffs. For example, consider-
ing the payoff functions L(x) = xL, M(x) = �xL � xR + 1 and
R(x) = 2xR, we still have the coexistence of three unanimity
equilibria, where the all-Right one provides a higher payoff
and therefore is preferred. Still if either everybody chooses
Left or everybody chooses Middle, nobody is motivated to
choose otherwise, unless enough others do so to have the
population entering the region where Right dominates.

As a consequence of Proposition 2 we have that,
depending on the shape and number of regions covering
D2, we can have all the possibilities: either all three equi-
libria belong to D2, or only two, or only one, or no fixed
points belong to D2.

In the examples of this section we have seen cases in
which all three equilibria coexist. Clearly also the case of
only two regions in D2 and coexistence of two stable fixed
points can occur. However, this case is less interesting, as
the same as those of a binary choice.

A more relevant case is the coexistence of a stable fixed
point with a stable cycle, that we shall see in the next
section.

A. Dal Forno et al. / Chaos, Solitons & Fractals 45 (2012) 294–305 297
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4. Coexistence of stable equilibria and k � cycles, k > 1

In this section we shall illustrate a few examples in
which we always have bistability. This occurs whenever
we have one fixed point belonging to its proper region,
while something else occurs when the vector xt ¼ xL

t ; x
R
t

� �
belongs to one of the other two regions, thus leading to
bistability. In general, we can have coexistence with any
single stable equilibria, when:

P�r 2 Rr holds for only one r 2 fL;M;Rg;

and the other two regions have a non empty intersection
with D2 and are without fixed point (that is, the relative
equilibrium points must be outside each of these two re-
gions). This implies (due to the structure of the map) that
periodic orbits (i.e. k-cycles of any period k) exist in the
other two regions without fixed points. To clarify this situ-
ation let us consider the following example.

Example 2. Consider the payoff functions defined as:

LðxÞ ¼ xL; MðxÞ ¼ xR; RðxÞ ¼ �xL � xR þ a ð15Þ

with a P 1. Then we have:

T1ðxÞ ¼ LðxÞ �MðxÞ ¼ xL � xR;

T2ðxÞ ¼ LðxÞ � RðxÞ ¼ 2xL þ xR � a;
T3ðxÞ ¼ RðxÞ �MðxÞ ¼ �xL � 2xR þ a:

In this case the map to be studied is (9) and for a = 1.5
we have the following regions:

RL ¼ x 2 D2 : xL 2 1
2
;1


 �
;

3
2
�2xL < xR < xL

� 	
;

RM ¼ x 2 D2 : xL 2 0;
1
2


 �
; xR >

3
4
� xL

2

� 	
;

RR ¼ x 2 D2 : xL 2 0;
3
4


 �
; xR <min

3
2
� 2xL;

3
4
� xL

2

� �� 	
:

ð16Þ

The regions RL, RM, and RR are represented in Fig. 3(a) at
dL = 0.75, dM = 0.5, and dR = 0.3. One can immediately see
that the fixed point P�L belongs to its region, and thus it is

an attracting fixed point, while the other fixed points P�R
and P�M are not in the proper regions, thus they are virtual
(i.e. in this case they are not fixed points of the map). Thus,
what is the dynamics of the vector xt ¼ xL

t ; x
R
t

� �
when it be-

longs to the other two regions? From the definition of the
map we can see that if we consider an initial condition in
the region RM the state variable xL

t will decrease, as
xL

tþ1 ¼ ð1� dMÞxL
t . Similarly if we consider an initial condi-

tion in the region RR the state variable xL
t will decrease, as

xL
tþ1 ¼ ð1� dRÞxL

t . It follows that the asymptotic behavior
necessarily leads to xL = 0. This means that the dynamics
will necessarily converge to some attracting set belonging
to the vertical line of the state space, where only xR varies,
and it necessarily follows the asymptotic behavior of the
one-dimensional map defined by the dynamics of this var-
iable in the related regions, that is:

f : xL
tþ1 ¼

fMðxR
t Þ ¼ ð1� dMÞxR

t if 3
4 < xR

t < 1;
fRðxR

t Þ ¼ ð1� dRÞxR
t þ dR if 0 6 xR

t <
3
4 :

(

ð17Þ
At the parameter values of Fig. 3(a) the trajectories con-
verge to a 4-cycle, and the shape of the one-dimensional
map f is as shown in Fig. 3(b).

This means that independently on the values of the
parameters dL, dM and dR, the qualitative behavior can be
described as follows: the stable fixed point P�L (whose basin
of attraction is the related region RL) coexists with an
attracting k-cycle belonging to the line of equation xL = 0
(whose basin of attraction is the region RR [ RM). The peri-
od k can be any positive integer, and several different cy-
cles also exist with the same period but different periodic
points, i.e. having a different number of periodic points
on the right and left side of the discontinuity between
the two branches fM and fR.

In this case, at any fixed value of dL we have a one-
dimensional piecewise linear map with one discontinuity
point, depending on two parameters dM and dR which give
the slopes of the two linear pieces. This map has been
already investigate in [3]. Due to the fact that the slopes
are less than 1 in modulus, we have that no unstable cycle
can exist (and thus no chaos at all). The asymptotic dynam-
ics can only converge to a cycle (periodic orbit of any period

Fig. 2. In (a) the three regions of Example 1, which are also basins of attraction of the three stable equilibria, at dL = 0.3, dM = 0.2, and dR = 0.7. In (b) three
different converging trajectories.
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k > 1), or be quasiperiodic in the absorbing interval
bounded by the two offsets at the discontinuity point:
I = [fM(d), fR(d)] where d = 0.75 in the example of Fig. 3.

The change in the period of the attracting cycle can only
occur via border collision bifurcations (BCB), and the bifur-
cation curves can be detected analytically. It is proved that
two different cycles cannot coexist, and the periodicity re-
gions follow the so-called period adding structure. This
means that between two periodicity regions of cycles of
period p and q also the regions of an attracting cycle of per-
iod (p + q) exists, and it is also possible to obtain the ana-
lytical expression of the border collision bifurcation
curves that bound the periodicity tongues in the parame-
ters plane, of any level of complexity (as is called the orga-
nization used to get all the infinitely many cycles). For
more details we refer to [6,1].

An example for our map is shown in Fig. 4(a). Notice
that it represents both the bifurcation diagram of the
one-dimensional map f in (17) and the bifurcation diagram
of the two-dimensional map of Example 2 in (15). The cy-
cle of f coexists with the stable fixed point for F. An exam-
ple of the periodic orbits existing in the vertical line xL = 0
as a function of only one parameter dR is shown in the
bifurcation diagram of Fig. 4(b), keeping fixed the other
parameters at dL = 0.75, dM = 0.5, and following the vertical
path shown in Fig. 4(a). We can see that the attracting set
is a periodic orbit (structurally stable, which means that it
is attracting for parameter values always in an interval)
and the periods change quickly as a function of the param-
eter tending to zero (so that one slope tends to 1).

Another example, with a different constant in the func-
tion in (15), is shown considering the value a = 1. Then we
have the following regions:

RL ¼ fx 2 D2 : 1� 2xL < xR < xLg;

RM ¼ x 2 D2 : xR > max xL;
1
2
� xL

2

� �� 	
;

RR ¼ x 2 D2 : xR < min 1� 2xL;
1
2
� xL

2

� �� 	
:

ð18Þ

The regions RL, RM, and RR are represented in Fig. 5(a) at
dL = 0.75, dM = 0.5, and dR = 0.3. Clearly also here the fixed
point P�L belongs to its region.

In this case the asymptotic dynamics on the vertical line
where only xR varies, follow the asymptotic behavior of the
one-dimensional map defined by the dynamics of this var-
iable in the related regions, that is:

f : xR
tþ1 ¼

fMðxR
t Þ ¼ ð1� dMÞxR

t if 1
2 < xR

t < 1;
fRðxR

t Þ ¼ ð1� dRÞxR
t þ dR if 0 6 xR

t <
1
2 :

(

ð19Þ

With respect to the previous case, the asymptotic dynam-
ics are determined by the same map with a different posi-
tion of the discontinuity point. But except for a change of
variable the two cases have the same results, that is the
two maps given in (17) and in (19) are topologically conju-
gated. Also the border collision bifurcations curves are re-
lated via an homeomorphism. For example, at dL = 0.75
fixed, a two-dimensional bifurcation diagram as a function
of dM and dR is shown in Fig. 5(b). The attractor at dM = 0.5
and dR = 0.3 is a 5-cycle, as shown in Fig. 5(a).

The cycles observed in this family of examples are sim-
ilar to the oscillatory behavior observed in [2], and, as al-
ready remarked, the two-dimensional bifurcation
diagrams (and related dynamics) of this family are identi-
cal to those considered in [3]. The difference is that, while
in the previous papers the model was for binary choices,
here we are considering ternary choices, and the observed
cycles are coexisting with an attracting fixed point P�L . Thus
Example 2 shows that when considering more than two
choices there may be coexistence of the stable equilibria
and the cyclic behavior studied in the discrete time math-
ematical formalization by Schelling [10]. It is possible to
link this example to the illustration provided in [9]. In fact,
assume that agents may use either ponies or bicycle as a
means of transportation. We add the further alternative
to choose between two different colors of bicycles. Those
whose previous choose was ponies keep having the same
preference, but those who preferred bicycles may now
want to distinguish themselves choosing at each period
the less common color. Then, if the number of agents riding
ponies is large enough, everybody will ride ponies as all
roads will become not viable by bicycles. On the other
hand, if the number of agents riding bicycle is large enough
everybody will do so, with the color switching dynamics.

Fig. 3. In (a) regions associated with Example 2 in (15) at a = 1.5, dL = 0.75, dM = 0.5, and dR = 0.3. The attracting set is a cycle of period 4. In (b) the map f
given in (17) at the same parameters as in (a), showing the attracting 4-cycle.
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4.1. Coexistence with non connected basins

A different example of coexistence, in which the basins
are disconnected, is given as follows:

Example 3. Assume that the payoff functions are:

LðxÞ ¼ �xL þ xR; MðxÞ ¼ a; RðxÞ ¼ xL � xR ð20Þ

with a 2 (0,1). Then we have:

T1ðxÞ ¼ LðxÞ �MðxÞ ¼ �xL þ xR � a;
T2ðxÞ ¼ LðxÞ � RðxÞ ¼ �2xL þ 2xR;

T3ðxÞ ¼ RðxÞ �MðxÞ ¼ xL � xR � a;

and the map to be studied is (9) with the following regions:

RL ¼ x 2 D2 : xR > xL þ a
n o

;

RM ¼ x 2 D2 : xL � a < xR < xL þ a
n o

;

RR ¼ x 2 D2 : xR < xL � a
n o

:

ð21Þ

The extension of the regions depends on the value of a.
In particular, region RM is a strip (centered on the line
xL = xR) whose width depends on a. The other regions RL

and RR are on opposite sides of the strip RM and the fixed
points do not belong to the related regions. The case shown
in Fig. 6(a) is with a = 0.03.

It is clear that, given the structure of the map, if we take
an initial condition in the region RM the trajectory will con-
verge to the stable fixed point P�M , and thus its basin of
attraction includes for sure this region. But as before we
are interested also in the dynamics occurring for points
in the other two regions. An example is shown in
Fig. 6(b), at dL = 0.6, dM = 0.5, and dR = 0.25: any initial con-
dition in the white region of D2 leads to an attracting 3-cy-
cle belonging to the diagonal (of equation xR = �xL + 1).
However not all the points of RR [ RL are converging to this
3-cycle. In Fig. 6(b) we show in green other strips of points
whose trajectory is convergent to the stable fixed point P�M .

This is an important property of the map which can be
explained. In fact, from the structure of our map in (9) we

Fig. 4. In (a) two-dimensional bifurcation diagram in the (dM, dR) plane for Example 2 in (15) and for the map f given in (17) at a = 1.5, dL = 0.75. Different
colors correspond to periodicity regions of cycles with different periods. In (b) the one-dimensional bifurcation diagram of xR as a function of dR along the
vertical path shown in (a), at dM = 0.5.

Fig. 5. In (a) regions associated with Example 2 in (15) at a = 1, dL = 0.75, dM = 0.5, and dR = 0.3. The attracting set is a cycle of period 5. In (b) two-
dimensional bifurcation diagram in the (dM,dR) plane for Example 2 in (15) and for the map f given in (19) at a = 1, dL = 0.75.
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see that we can consider the dynamics of the state
variable:

z ¼ xR � xL ð22Þ

which becomes governed by the one-dimensional map Z
given by

Z : ztþ1 ¼
fLðztÞ ¼ ð1� dLÞzt � dL if a < zt 6 1;
fMðztÞ ¼ ð1� dMÞzt if � a < zt < a;
fRðztÞ ¼ ð1� dRÞzt þ dR if � 1 6 zt < �a:

8><
>:

ð23Þ

The dynamics of this one-dimensional map may represent
the asymptotic behaviors of the two-dimensional map of
Example 3 in (20). The asymptotic state of (23) in the re-
gions where the functions fL and fR are defined is, when
existing, an attracting k � cycle which coexists with the
stable fixed point in z = 0. This k � cycle corresponds to
an attracting cycle of the two-dimensional map, existing
on the diagonal, and coexisting with the stable fixed point
P�M . The one-dimensional map (23) also gives the basin of
attraction of the fixed point and (by complement) the basin
of the other cycle. The parameters used in the example
shown in Fig. 6(b), at dL = 0.6, dM = 0.5, and dR = 0.25, are
used in Fig. 7 to illustrate the stable 3-cycle, coexisting
with the stable fixed point in z = 0 (corresponding to P�MÞ.
The basin of the fixed point in the origin is obtained by tak-
ing all the existing preimages of the segment (�a,a), which
in this case are three more segments (in green in Fig. 7),
and represent the intersection with the diagonal
xR = �xL + 1 of the basin of P�M in D2.

In this case the dynamics of the map Z (23), and thus the
dynamics of Example 3 in (20), lead to a different kind of
bistability, with respect to those of Example 2. A difference
is clearly due to the structure of the basin, which here is
necessarily disconnected. However, the main difference is
due to the structure of the one-dimensional map repre-
senting the bifurcations: with two discontinuity points
here, with only one discontinuity in Example 2. While in
Example 2 all the cycles necessarily exist in some periodic-
ity region (and the regions follows the period adding
scheme), in the present case, the middle branch of the

map Z (23) implies that several k � cycles now cannot ex-
ist. The appearance/disappearance of the existing cycle is
always due to a border collision with one of the disconti-
nuity points (z = �a and z = a), but all the preimages of this
middle branch lead to the destruction of many k � cycles.
Two examples of the bifurcation diagrams occurring in this
family are shown in Fig. 8. They have been numerically
computed for the two-dimensional Example 3 in (20) at
two different values of a and it is clearly identical to the
bifurcation diagram numerically computed for the map Z
in (23). As we can see, increasing the parameter a the basin
of attraction of the fixed point in the origin also increases,
leading to the disappearance via border collision bifurca-
tion of more and more cycles. The two-dimensional bifur-
cation diagram in Fig. 8(b) shows the disappearance of
many periodicity regions, and the destruction of the adding

Fig. 6. In (a) regions associated with Example 3 at a = 0.03, dL = 0.6, dM = 0.5, and dR = 0.25. The attracting set is a cycle of period 3 shown in (b), where it is
also shown, in color, the basin of attraction of the stable fixed point P�M .

Fig. 7. One-dimensional map (23) at the parameters used in Fig. 6. The
attracting sets are a 3-cycle and the origin. In green the basin of attraction
of the origin. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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structure. When a is big enough all the other cycles disap-
pear, leading to a unique stable fixed point in the origin.

So, even if Example 3 is apparently quite similar to
Example 2 in terms of coexistence of stable fixed point
and cycles, there are some important differences. In fact,
in the latter we can observe the transition from the cyclic
behavior which characterizes binary choices with over-
shooting [2] to the stable fixed point in [10]. Example 3
shows that there are situations in which the two behaviors
observed for binary choices coexist but not as in Example 2
where we could decompose a 3-choice problem as a 2-
choice plus one more. In the next section we show how
considering ternary choices the behavior can be radically
different from what has been observed for binary choices.

5. The case of no stable equilibria

In this section we shall see how new kinds of dynamics
can occur in the ternary choices, when the parameters of
the model are such that no stable equilibria exist. In order
to investigate this case, in which no fixed point belongs to
the related dominance region, i.e. P�a R Ra for any a, we
consider the following example.

Example 4. Let the payoff functions be given by

LðxÞ ¼ xR; MðxÞ ¼ �1
2

xR þ 4
5
; RðxÞ ¼ �xR þ 1; ð24Þ

then we have:

T1ðxÞ ¼ LðxÞ �MðxÞ ¼ 3
2

xR � 4
5
;

T2ðxÞ ¼ LðxÞ � RðxÞ ¼ 2xR � 1;

T3ðxÞ ¼ RðxÞ �MðxÞ ¼ �1
2

xR þ 1
5
;

ð25Þ

and the map to be studied is (9) with the following regions:

RL ¼ x 2 D2 :
8

15
< xR

6 1
� 	

;

RM ¼ x 2 D2 :
2
5
< xR <

8
15

� 	
;

RR ¼ x 2 D2 : 0 6 xR <
2
5

� 	
:

ð26Þ

From the definition of the regions, it is immediately evi-
dent that now the state variable xR is decoupled from xL. So
all the bifurcations of the system can be investigated via
the one-dimensional map xR

tþ1 ¼ f ðxR
t Þ given by

f : xR
tþ1 ¼

fLðxR
t Þ ¼ ð1� dLÞxR

t if 8
15 < xR

t 6 1;
fMðxR

t Þ ¼ ð1� dMÞxR
t if 2

5 < xR
t <

8
15 ;

fRðxR
t Þ ¼ ð1� dRÞxR

t þ dR if 6 xR
t <

2
5 ;

8><
>:

ð27Þ

and the values of the other variable depend on the follow-
ing function h:

h : xL
tþ1 ¼

hLðxL
t Þ ¼ ð1� dLÞxL

t þ dL if 8
15 < xR

t 6 1;
hMðxL

t Þ ¼ 1� dMð ÞxL
t if 2

5 < xR
t <

8
15 ;

hRðxL
t Þ ¼ 1� dRð ÞxL

t if 0 6 xR
t <

2
5 :

8><
>:

ð28Þ

The dynamic behavior of the state variable xR depends on a
discontinuous map with three branches, each one repre-
senting a region of D2, and the existing cycles may have
periodic points on three partitions. This example differs
from the one-dimensional map that we have seen in the
previous section, also with three partitions. In fact, while
for the map in (23) the branch in the middle has a stable
fixed point, in the one here considered there are no fixed
points. This makes a great difference in the dynamic
behavior.

As we already know, the peculiarity of the one-dimen-
sional map f in (27) is that the conditions on the parame-
ters determining the slopes of the linear pieces lead to all
contractions for the single functions fi. Under such condi-
tions we can only have stable cycles as persistent attrac-
tors (i.e. structurally stable) or quasiperiodic trajectories
(at structurally unstable parameter constellations), be-
cause all the slopes are positive and less than one, so that
any possible k � periodic cycle has an eigenvalue which is
necessarily positive and smaller than one3. Thus, as already
remarked, no chaotic behavior can occur. This kind of

Fig. 8. Two-dimensional bifurcation diagram in the (dL,dR)-plane for the map of Example 3 in (20) and for the map f given in (23) at a = 0.01 in (a),a = 0.03 in
(b), and dL = 0.75. The initial condition is (xL,xR) = (0.45,0.55). The yellow points represent convergence to the origin. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

3 We recall that the eigenvalue of a cycle is the product of the slopes of
the function in the periodic points.
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one-dimensional maps, with two discontinuity points, has
been recently considered in [11], and in our model we shall
find results similar to those described in the cited paper (with
periodicity regions following particular adding structures).

The existing cycles may have periodic points either
belonging to all the three partitions (leading to truly new

ternary choices), or to only two partitions. A few attracting
sets of the two-dimensional map (9) in this specific case
(24) can be seen in Fig. 9. In Fig. 9(a) we show a stable cycle
of period 20 at dL = 0.75, dM = 0.2, dR = 0.23, having periodic
points in the three partitions. In Fig. 9(b), after a small var-
iation of dR, at dR = 0.229, a stable cycle of period 5 exists,

Fig. 9. Stable cycles in the phase plane (xL,xR). In (a) a period 20 stable cycle. In (b) a period 5 stable cycle.

Fig. 10. One-dimensional map f. In (a) and (b) at the same parameter values as in Fig. 9(a) and (b), respectively.

Fig. 11. Two-dimensional bifurcation diagram in the (dL,dR)-plane for Example 4 in (24) and for the map f given in (27) at dL = 0.5 in (a) and dL = 0.75 in (b).
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with periodic points only in two partitions. The bifurcation
occurring from Fig. 9(a) to b is a border collision bifurca-
tion due to the merging of a periodic point of the 20-cycle
with the border xR ¼ 8

15 where the map changes its
definition.

The example shown in Fig. 9 shows that, after the bifur-
cation leading from the attracting set of Fig. 9(a) to that of
Fig. 9(b), we have not only an attracting cycle of different
period, but also with asymptotic points on the line xL

t ¼ 0.
That is, while in the 20-cycle we have periodic points leading
to vectors xR

t ; x
L
t ; x

M
t

� �
with three non zero components and

xM
t ¼ 1� xR

t � xL
t , in the 5-cycle the states are: ðxR

t ; x
M
t ;0Þ,

with xM
t ¼ 1� xR

t (and we return in a 2-choice case).
As mentioned above, this kind of bifurcation is due to

the fact that the 20-cycle shown in Fig. 9(a) has periodic
points in all the three regions, while after a small perturba-
tion of the parameter dR (leading to a border collision) the
5-cycle shown in Fig. 9(b) has periodic points only in

two regions: RM and RR. The reason why of this dynamic
behavior can be immediately understood making use of
the one-dimensional map f given in (27). In Fig. 10 we
show its graph at the same parameters’ values as those
of Fig. 9. We see that the maximum value is taken from
the offset of the function fRðxR

t Þ in the discontinuity point
xR ¼ 2

5, as in fact the asymptotic dynamics occur in the
absorbing interval given by I ¼ fL

8
15

� �
; fR

2
5

� �� 

, which in-

cludes all the three regions. However a periodic point is
very close to the second discontinuity point, that is, very
close to its border collision bifurcation. This bifurcation
has already occurred when the parameters are as those
in Fig. 9(b), and the map becomes as in Fig. 10(b). The 5-
cycle belongs now to an absorbing interval given by
I ¼ fM

2
5

� �
; fR

2
5

� �� 

, which includes only one discontinuity

point and involves only two regions (RM and RR).
The kind of bifurcation diagrams which characterize our

map can be observed in Fig. 11: when fixing dL = 0.5 and
dL = 0.75 we can draw a two-dimensional bifurcation dia-
gram in the parameter plane (dM,dR). The two-dimensional
bifurcation diagrams shown in Fig. 11 are exactly the same
for the one-dimensional map f and for the two-dimen-
sional map since, as remarked above, the state variable xR

is independent from the other, xL, and all the bifurcations
are due to border collision bifurcations involving also f.
Thus we can partially reduce the dimensionality of the
map to study, at least regarding the bifurcations, which
must necessarily occur in the xR variable.

As already remarked, for the one-dimensional map f in
(27) the asymptotic behavior is necessarily a stable cycle,
or (more rarely) a quasiperiodic trajectory, and the changes
in the periods can only occur via border collision, i.e. a peri-
odic point which is merging, or colliding, with a disconti-
nuity point, or borderof the definition of the map.
However, due to the existence of two discontinuity points,
regions of coexistence of two attracting cycles are possible,
which indeed occur in the overlapping of periodicity re-
gions which are also visible in Fig. 11.

In fact, as remarked in [11], another peculiarity of dis-
continuous maps with increasing branches and two dis-
continuities is the possibility of at most two coexisting
cycles (this is due to the fact that each cycle must be

Fig. 12. Two coexisting cycles of period 2 at dL = 0.5, dM = 0.45, dR = 0.3. In (a) two periodic points are xR = 0.2683 and xR = 0.4878. In (b) two periodic points
are xR = 0.2857 and xR = 0.5714.

Fig. 13. One-dimensional bifurcation diagram of xR as a function of dR

along the vertical path shown in Fig. 11(a).
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associated with a discontinuity point). In the same paper it
was also evidenced the existence of particular points,
called big-bang bifurcation points, which are associated
with the intersection of two bifurcation curves. Such points
are peculiar because infinitely many border collision bifur-
cation curves are issuing from them. And in the case of
increasing branches (as we have) each big-bang bifurcation
point is the issuing point of bifurcation curves which fol-
low the period adding scheme. This means that for parame-
ters in any neighborhood of a big-bang bifurcation point
we can have a stable cycle of any period. For example,
the point P⁄ in Fig. 11(a) occurs at the intersection of two
BCB curves, one associated with a 2-cycle having periodic
points in the branches fM and fR (see Fig. 12(a)) and the
other associated with a 2-cycle having periodic points in
the branches fL and fR, as shown in Fig. 12(b). This is one
more relevant difference with respect to the case of binary
choices.

To appreciate the different periods that the attracting
cycles can have, in Fig. 13 a bifurcation diagram of the var-
iable xR as a function of dR is shown, at fixed dM = 0.45 and
dL = 0.5 along the vertical path shown in Fig. 11(a).

This last example shows how considering ternary
choices may lead to behaviors that are radically different
from those observed for binary choices. In fact, here we
can have cyclic behaviors in which all the three states are
changing, and also coexistence of two such cycles may oc-
cur. The bifurcation diagrams in this case (a map with two
discontinuity points) is very much different from those
occurring when only one discontinuity exists -a few exam-
ples of which have been shown in Section 4.

This means that, when considering the dynamics, the
simplifying choice of two alternatives may be too reduc-
tive. It is not only the elimination of one alternative per
se rather, and more important, it careless ignores the
underlying complexity.

6. Conclusion

In this paper we have investigated the dynamics of re-
peated games with three choices, described by two-dimen-
sional models in discrete time, evidencing the differences
with respect to models with binary choices. Our analysis
has raised interesting findings at least from two different
perspectives. The first one involves the applied aspect of
the problems and the second one is in terms of bifurcation
structures which can be observed.

We have found dynamics that, in some cases, are the
analog of those described in the literature about binary
choices. In fact, we have shown both situations with the
coexistence of unanimity equilibria as described in [10]
and also situations with cyclic behaviors as those analyzed
in [3]. Furthermore, by introducing a third alternative we
can have the coexistence of these two situations. Then
we have investigated the case of pure three choices which
can be considered as the juxtaposition of two choices to
additional one. Further analysis has shown dynamics

which are different from those observed for binary choices.
The complexity of our Examples 3 and 4 leads to the ex-
pected result that ternary choices cannot be simply consid-
ered as a binary choice plus one.

As it concerns the dynamics, the analysis of the illus-
trated examples has evidenced bifurcation structures
which were impossible to observe in binary choices. While
on one hand we could find also for the ternary choice mod-
el the same border collision bifurcation structure (adding
scheme) which was analyzed in [3], on the other hand in
the last example we have found more complicated bifurca-
tion diagrams, with the existence of big-bang bifurcation
points leading to new border collision bifurcation struc-
tures. This is something that cannot be found in binary
choice models. In particular, we have also described re-
gions in the parameter space associated with overlapping
periodicity regions, leading to bistability between two cy-
cles of different periods, none of which is a fixed point.

In future research we will further the analysis along two
main avenues. On one hand, it is interesting to analyze the
mathematical properties of piecewise linear maps; on the
other hand, it would be quite interesting to relax the
assumption of impulsive agents introducing other kinds
of behavior.
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