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Summary. In this paper a particular discrete-time macroeconomic model is considered,

where the savings are proportional to income and the investment demand depends on

the difference between the current income and its exogenously assumed equilibrium

level, through a nonlinear S-shaped increasing function. The model proposed can be

seen as a particular case of a general class of business cycle models, known as Kaldor-

type models, which are characterized by the fact that the investment demand also

depends on the capital stock (and this assumption is usually considered the main re-

quirement for the occurrence of oscillating behaviour of income and capital). The

resulting model is described by a dynamical system in income and capital whose time

evolution is given by the iteration a two-dimensional map of triangular type: this

means that one of the components of the map, namely the one driving the income

evolution, is an independent one-dimensional map. Due to the particular triangular

structure of the system, the asymptotic dynamic behaviour and the bifurcations can

be completely described starting from the properties of the associated one-dimensional

map. The dynamic behaviors of the model are explored under different ranges of the

main parameters, such as the firms’ speed of adjustment to the excess demand and
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the propensity to save. Although our exercise shows that the basic dynamic scenario

is given by a situation of bi-stability, i.e. coexistence of two stable steady states, the

existence of more complex dynamics is proved, for sufficiently high values of the ad-

justment parameter. The effects of the switching to the regime of noninvertibility of

the map on the basins’ structure are considered, together with the bifurcations which

modify the structure. Moreover, some bifurcations which change the qualitative prop-

erties of the attracting sets are analyzed, in particular a global (homoclinic) bifurcation

which causes the transition from a situation of bi-stability to a regime characterized

by wide chaotic oscillations of income and capital around their exogenously assumed

equilibrium levels, i.e. a typical situation of irregular business cycles.

1 Introduction

Since the early attempts, made in the years 1930s-1940s, to describe and understand the busi-

ness cycle, that is, the presence of self-sustained oscillations of the main economic variables

(income, capital, inflation rate, ...), several economists became aware that the complexity of

these phenomena could only be explained by the use of nonlinear models.

One of the first, and simplest, nonlinear models of the business cycle was proposed

by Kaldor [8], who assumed nonlinear investment and savings functions, and explained the

economic fluctuations as a consequence of the long term “shifting” of the investment demand

curve caused by changes in the capital stock (see also [6]). This kind of dependence of the

investment demand on the capital stock, together with the nonlinearity of the investment

function or the savings function, has generally been considered, in the literature on Kaldor’s

model, as the basic structural requirement for the existence of self-sustaining cycles (see [2],

[6]).

Our starting point is a particular discrete-time Kaldor-type model, proposed in [18] and

investigated in its general dynamic behaviour in [5], where the savings are assumed propor-

tional to the income and the investment demand depends both on the income, through a

nonlinear S-shaped increasing function, and on the capital stock, through a linear decreas-

ing function. Such model, which can ultimately be reduced to a two-dimensional dynamical

system in income and capital, is able to generate endogenous fluctuations for certain ranges

of the parameters.

In the present paper, we wonder what happens if the main Kaldorian assumption, i.

e. the dependence of the investment demand from the capital stock, is neglected. As we

shall see, in this case we get a discrete-time dynamical system described by the iteration of

a map of the plane of triangular type. Its analysis constitutes a pedagogical tour through

the properties of triangular maps, i.e. two-dimensional maps which have the peculiarity



Roberto Dieci, Gian-Italo Bischi & Laura Gardini 369

that one of their components is decoupled from the other, so that it is an independent

one-dimensional map. As shown in [7], the particular structure of such maps implies that

the asymptotic dynamics, as well as the bifurcations, can be deduced from the associated

one-dimensional map.

We show that, for economically meaningful values of the parameters, the model has

three steady states, and we study the influence of the main parameters, like the propensity

to save and the firms’ speed of adjustment to the excess demand, on the local stability of

the equilibria. The basic dynamic scenario of the model is given by a situation of bistability,

where two stable steady states coexist: one characterized by a low level of income and

capital (poverty steady state) and one by a high level of the dynamic variables (wealth

steady state), each with its own basin of attraction. In the presence of bistability, the

question of the delimitation of the basins of the coexisting attracting sets naturally arises.

The triangular map considered, whose iteration gives the time evolution of the model, is

invertible or noninvertible according to the values range of the parameters, and we show

how the dynamic behaviour of the system is deeply influenced by the switching to the

regime of noninvertibility of the map. This leads to an increasing complexity not only in

the nature of the attracting sets but also in the structure of their basins of attraction. In

fact, although in the literature on nonlinear dynamical systems applied to economic models

the term complexity is generally related to the structure of the attractors, in this paper we

also stress the presence of a different kind of complexity, related to the structure of the

basins. This kind of complexity has been rather neglected in the literature, mainly because

it requires an analysis of the global properties (i.e. not based on the linear approximation) of

the dynamical systems and the global bifurcations that change the qualitative structure of

the basins are usually detected through geometrical and numerical methods. Here we show

how the fact that the map driving the dynamics may be noninvertible for certain ranges of

the parameters plays an important role in the creation of complex topological structures of

the basins.

Finally, a particular global bifurcation is analyzed, which marks the switching from a

situation of bi-stability, where the phase-plane is shared between the basins of two coexisting

attracting sets (steady states, periodic orbits or even chaotic attractors) to a regime of more

complex asymptotic dynamics, characterized by chaotic oscillatory behaviour. This proves

that endogenously driven oscillations can also be obtained without what is considered the

main kaldorian assumption, i.e. the dependence of investment on capital stock.

The paper is organized as follows. In section 2 we describe the model and discuss the

underlying assumptions. In section 3 we analyze the main properties of the two-dimensional

map driving the dynamics, such as its triangular structure, its symmetry, the existence of

fixed points and the conditions for their local stability, the conditions for the invertibility
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or non invertibility of the map. In section 4 we discuss the role of noninvertibility in the

creation of complex topological structures of the basins of the attracting sets. In section 5 we

analyze the local and global bifurcations causing the transition to more and more complex

asymptotic dynamics. Some concluding remarks are contained in section 6.

2 The Model

The model we consider is a particular case of a Kaldor-type business cycle model proposed

in [18] and investigated in its general dynamic behaviour in [5]. The model studied in [18]

and [5] starts from a well known discrete-time version of the Kaldor model (see e.g. [3], [11],

[12]):
{

Yt+1 − Yt = α(It − St) (a)
Kt+1 = (1 − δ)Kt + It (b)

(1)

where the dynamic variables Yt and Kt represent, respectively, the income (or output) value

and the capital stock in period t, α (α > 0) represents an adjustment parameter measuring

the firm’s reaction to the spread between demand and supply, the parameter δ (0 < δ < 1)

represents the capital stock’s depreciation rate, It = It(Yt,Kt) is the investment demand in

period t and St = St(Yt) represents savings in period t.

In the seminal paper by Kaldor [8], as well as in many other papers which formulated

the same model in terms of dynamical systems (see, for instance, [2], [3]) the business

cycle is represented by endogenously driven oscillations of income and capital, which are

substantially explained by the following mechanism:

(i) at least one of the functions I or S are nonlinear (in particular, sigmoid-shaped);

(ii) I is a decreasing function of K.

Let us discuss the role of assumptions (i) and (ii). As it is well known (see, for instance, [6]),

under the simple assumption that the investment demand It is independent from the capital

stock Kt, i.e. ∂It/∂Kt = 0, and that both It and St are linear increasing functions of Yt,

with dS/dY > ∂I/∂Y , the system is globally asymptotically stable, while by introducing

nonlinearities into the investment demand curve, for example by assuming that It is a

sigmoid-shaped function of Yt, we may have a situation of bi-stability: Figs. 1a and 1b

qualitatively represent the income adjustment process in case of disequilibria (captured by

eq. (1a)), in the linear and nonlinear cases.

The essential dynamic feature that enables the model to display cyclical behaviour

is assumption (ii), which causes the long term shifting of the investment function as a

consequence of changes in the capital stock, as qualitatively described by Kaldor in [8]. By

assuming that the investment demand curve shifts downwards (resp. upwards) when the
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income, and consequently the capital stock, increases (resp. decreases), cyclic movements of

the level of income and capital may occur, as qualitatively shown in Fig. 2 (for an economic

justification of these assumptions, see again [6], pp.122-129).
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Figure 1: Effect of the introduction of nonlinearities into the investment function.
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Figure 2: “Shifting” of the investment function causing endogenous oscillations in income
and capital.

In particular, in the form proposed in [18] savings are assumed, as usual, proportional

to income:

St = σYt , (2)
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where the coefficient σ , 0 < σ < 1, represents the propensity to save. On the other hand,

investment demand is assumed to be an increasing and sigmoid-shaped function of income

and a linear decreasing function of capital stock:

It = σµ + γ
(σµ

δ
− Kt

)

+ arctan(Yt − µ) , (3)

where γ is a positive parameter, µ (µ > 0) is the exogenously assumed equilibrium level of

income and therefore σµ represents the equilibrium level of savings (and also of investment

demand), while σµ/δ is the equilibrium capital stock. As usual in Kaldor business cycle

models, one or three steady states may exist: in this latter case, besides the exogenously

assumed equilibrium P = (µ, σµ/δ), two more steady states exist, a “wealth” equilibrium

Q, characterized by high equilibrium levels of income and capital, and a “poverty” equilib-

rium R, with low levels of income and capital. As shown in [5], a large variety of dynamic

behaviours can occur: in particular the model is able to generate regular endogenous oscil-

lations around the equilibrium P .

In the present paper we are interested in what happens if we neglect assumption (ii),

by assuming that the investment demand curve is not affected by changes in the capital

stock, i.e. ∂I/∂K = 0. This assumption is usually described in the literature as leading to

a simple situation of bi-stability. However, as we shall see, complex dynamic phenomena

are possible also in this case, and the complexity is related, on one hand, to the asymptotic

dynamics, i.e. to the nature of the attracting sets, and, on the other hand, to the structure

of their basins of attraction.

By setting γ = 0 in eq. (3) and substituting into the system (1), the model ultimately

reduces to the following two-dimensional dynamical system in income and capital:

{

Yt+1 = Yt + ασµ + α arctan(Yt − µ) − ασYt (a)
Kt+1 = σµ + arctan(Yt − µ) + (1 − δ)Kt (b)

(4)

The study of the dynamical properties of the system (4) allows us to explore the long-run

behaviour of income and capital stock, starting from a given initial condition.

3 Some General Properties

As described at the end of the previous section, the time evolution of income and capital is

obtained by the iteration of a two-dimensional nonlinear map T : (Yt,Kt) → (Yt+1,Kt+1)

given by:

T :

{

Y ′ = (1 − ασ)Y + ασµ + α arctan(Y − µ) (a)
K ′ = (1 − δ)K + σµ + arctan(Y − µ) (b)

, (5)



374 Routes to Complexity in a Macroeconomic Model ...

where the symbol ′ denotes the unit time advancement operator, that is, if the right-hand

side variables are income and capital at time t,then the left-hand ones represent income and

capital at time t + 1.

We shall now describe some properties of the map T , that is, the triangular structure of

the map, the particular structure of the second component (5b), the existence of fixed points

and their local stability analysis, some symmetry properties and the role of non invertibility

of the map. In order to analyze these properties, we briefly recall the meaning of some

terms, which will be used in the following.

Let A be a subset of the plane. We say that A is a trapping set of T (or T is trapping

on A) if T (A) ⊆ A (that is if A is mapped into itself by T ); T is invariant on A (or A is

invariant by T ) if T (A) = A, i.e. if A is trapping and for any y ∈ A there exists x ∈ A such

that T (x) = y. A p-cycle of T is a periodic orbit of T of least period p, p ≥ 1. A p-periodic

point of T is a point belonging to some p-cycle of T .

In the following, by DT (Y,K) we shall denote the jacobian matrix of the map T , by

Tn, n ≥ 1, the n-th iterated of the map T and by DTn(Y,K) the jacobian matrix of the

map Tn.

3.1 The triangular structure of the map

We can observe that the first component of the map T does not depend on K: the map is

therefore a triangular map, characterized by the following structure:

T :

{

Y ′ = F (Y ) (a)
K ′ = G(Y,K) (b)

. (6)

This means that the dynamics of the income Y are only affected by income itself, being

Yt+1 = F (Yt), whereas the time evolution of the capital stock is also influenced by the

income, being Kt+1 = G(Yt,Kt). By using the terminology of the engineering systems (see

e.g. [19]) we may say that the one-dimensional system (6a) is the “driving system” and the

capital stock is “driven” by the income dynamics1. As a consequence, the dynamics of the

map T is deeply influenced by the dynamics of the one-dimensional map Y ′ = F (Y ). In

particular, many of its bifurcations are associated to those of the one-dimensional map Y ′ =

F (Y ) and all the cycles of T stem from cycles of F . Moreover, since the jacobian matrix of

the map T , given by:

DT (Y,K) =

[

1 + α
1+(Y −µ)2 − ασ 0

1
1+(Y −µ)2 1 − δ

]

, (7)

1In the physical and engineering literature triangular maps are often referred to as skew products.
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is lower triangular, it can’t have complex eigenvalues and thus the occurrence of regular

oscillations, similar to those usually observed in Kaldor-type models, is ruled out.

Let us briefly recall some useful properties of two-dimensional triangular maps (for a

wider discussion see [9], [10], [7]).

Property 1 The eigenvalues of DT (Y,K) are always real, given by z1 = F ′(Y ) and

z2 = GK(Y,K). Any fixed point of T is therefore either a node or a saddle.

Property 2 The eigenvalues of DTn(Y,K), for any integer n ≥ 1, are real. Any cycle

of T is therefore either a node or a saddle. If Cp = {(Yi,Ki), i = 1, 2, ..., p} is a p-cycle of T ,

the eigenvalues of the cycle (i.e. the eigenvalues of the jacobian matrix of T p in any point

of the cycle) are given by: z1 =
∏p

i=1 F ′(Yi) and z2 =
∏p

i=1 GK(Yi,Ki).

Property 3 Let Cp = {(Yi,Ki), i = 1, 2, ..., p} be a p-cycle of T ; then {(Y1, Y2, ..., Yp} is

a periodic orbit of the one-dimensional map F of least period r where r is such that rm = p

for some integer m ≥ 1.

Property 4 Let (Yi,Ki), i = 1, 2, ..., p, be a point of a p-cycle of T and (Yi,K) a point

on the vertical line Y = Yi; then there exists some integer m ≥ 1 such that T r(Yi,K), where

r = p/m, is trapping on the line Y = Yi and may be considered a one-dimensional map of

the state variable K.

In particular Property 4 implies that:

I1) no point on the vertical line Y = Yi can belong to the stable set of some other cycle

of T with periodic points all outside that line;

I2) any p-periodic point of T must belong to trapping (for some T r, with rm = p, m ≥ 1)

vertical lines Y = Yi, where Yi is a r-periodic point of the one-dimensional map F ;

I3) if Cr = {(Y1, Y2, ..., Yr} is an r-cycle of the map F and a p-cycle Cp of T exists, on the

vertical lines Y = Yi, i = 1, 2, ..., r, of period p = rm for some integer m ≥ 1, then the

eigenvalue z1 of the p-cycle Cp is related to that of the r-cycle Cr of F (let’s denote it

by τ) as follows: z1 = τm;

I4) if a p-cycle Cp of the two-dimensional triangular map T is a saddle with |z1| =

|
∏p

i=1 F ′(Yi)| > 1 and |z2| = |
∏p

i=1 GK(Yi,Ki)| < 1, then the points of the local

stable set of Cp belong to the vertical lines through the periodic points.

Property 5 If Cr = {(Y1, Y2, ..., Yr} is an r-cycle of the map F , then the restriction of

the map T r to any of the vertical lines Y = Yi, i = 1, 2, ..., r, is trapping on that line. If the

r-cycle of F is attracting (resp. repelling) then the vertical lines Y = Yi, i = 1, 2, ..., r, are

attracting (resp. repelling) for T r.
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As far as the bifurcations of the map T are concerned, it is easy to see from the above

properties that any bifurcation of the one-dimensional map F gives a bifurcation of T .

In particular, a fold bifurcation of F creates a couple of cyclical trapping lines of T (one

repelling and one attracting). At a flip bifurcation of a cycle of F , trapping cyclical vertical

lines from attracting (for T ) become repelling and new cyclical attracting lines are created.

Finally, it is well known that if the two-dimensional map T is an endomorphism, with F

and G continuously differentiable, the locus LC−1 of T is generally given by detDT (Y,K)=

0. Therefore, for a triangular map the following property holds.

Property 6

The locus LC−1 of the phase plane is made up of curves LC−1,ak
and LC−1,b such that:

(i) LC−1,ak
are vertical lines of equation Y =c−1,ak

, where c−1,ak
satisfy F ′(c−1,ak

)= 0;

(ii) LC−1,b is the locus GK(Y,K) = 0.

The critical curves LCi,ak
= T i+1(LC−1,ak

), for i ≥ 0, belong to vertical lines x = ci,ak

where ci,ak
= F i+1(c−1,ak

) are critical points of F (Y ).

3.2 The structure of the second component of the map

It can be noticed that the second component of the map (5) is separable with respect to the

variables Y and K and linear in K, i.e. it has the following structure:

K ′ = (1 − δ)K + I(Y ) , (8)

where I(Y ) = σµ+arctan(Y −µ) is the investment demand function. This implies that also

the second component of r-th iterated of the map T r, r > 1, has the same structure. More

precisely, it is easy to prove by induction that the map T r (r ≥ 1) has the following form:

T r :

{

Y ′ = F r(Y ) (a)
K ′ = (1 − δ)rK +

∑r
s=1(1 − δ)r−sI(F s−1(Y )) (b)

. (9)

From the analytical expression (9) of the map T r we can easily conclude that the fixed

points and the cycles of the map (5) can only be stable nodes or saddles. This is due to the

fact that one of the eigenvalues of the Jacobian matrix of the map T r is constant and equal

to (1 − δ)r < 1.

Moreover the triangular structure, together with the linear structure of the second

component, enables us to formulate the following

Proposition 1 The stable manifold W s of a saddle cycle of T is made up of the lines of

equation Y = Yi, where Yi, i = 1, 2, ..., r, are the periodic points of the corresponding cycle
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of the one-dimensional map F , and of the lines of equation Y = Y−j, where Y−j, j = 1, 2, ...,

are the preimages of any rank of the periodic points.

Proof. Since T is a triangular map we know (from the implication I4 of Property 4)

that the points of the local stable set of a saddle cycle belong to the vertical lines through

the periodic points. We can conversely easily show that, for our particular map, any point

on these vertical lines belongs to the stable set. In fact, let (Y ∗,K∗) be a point belonging

to a saddle cycle for the map T , where Y ∗ is a r-periodic point of the map F . Since Y ∗ is a

fixed point of the one-dimensional map F r(Y ), i.e. F r(Y ∗) = Y ∗, we can see from (9) that

a point (Y ∗,K) is mapped, after r iterations into the point (Y ∗,K ′) of the same vertical

line Y = Y ∗, where:

K ′ = (1 − δ)rK +

r
∑

s=1

(1 − δ)r−sI(F s−1(Y ∗)) . (10)

This means that the trajectory obtained by iterating the map T r (which is constrained

to move on the trapping vertical line Y = Y ∗ due to Property 4) is driven by the one-

dimensional linear map (10), having the only fixed point:

K∗ =

∑r
s=1(1 − δ)r−sI(F s−1(Y ∗))

1 − (1 − δ)r
,

globally stable. The speed of the dynamics of the map T r on the vertical line Y = Y ∗ is

affected by the depreciation rate δ, 0 < δ < 1: the higher is δ the faster is the convergence

to the fixed point.

Finally, the points with coordinates (Y ∗
−j , •), where Y ∗

−j is a preimage of rank-j of Y ∗ are

mapped, after j iterations, into a point (Y ∗, •) on the vertical line Y = Y ∗. This completes

the proof. ¤

3.3 Fixed points

The equilibrium points (or steady states) of the map T are the solutions of the algebraic

system:
{

σµ + arctan(Y − µ) − σY = 0
σµ + arctan(Y − µ) − δK = 0

,

obtained by setting Y ′ = Y and K ′ = K in (5). The system can be rewritten as:
{

K = σ
δ
Y (a)

σ(Y − µ) = arctan(Y − µ) (b)
. (11)

It is trivial to realize that the steady states are independent from the firms’ adjustment

parameter α. The first equation says that the fixed points belong to the line K = σ
δ
Y in the
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phase-plane, and from the second equation we have that the Y -values (which are the fixed

points of the one-dimensional map F ) can be obtained as intersections of the two curves of

equation f(Y ) = σ(Y − µ) and g(Y ) = arctan(Y − µ). It follows that if σ ≥ 1, the system

(11) admits the point P = (µ, µσ
δ
) as unique solution, while in the case 0 < σ < 1 three

solutions exist, the point P and the points Q and R , which are symmetric with respect to

P . Of course, since σ represents the propensity to save and the case 0 < σ < 1 includes the

interval of values of interest for us, the case of three fixed points is the only one economically

meaningful. The explicit coordinates of the fixed points Q and R cannot be written. We

can numerically compute them as (YQ, σ
δ
YQ) and (YR, σ

δ
YR), where YQ and YR are obtained

from the second equation in (11) and YR = 2µ − YQ due to the symmetry property, as

described in the next section.

3.4 Symmetry property

It is worth noting that the map T is symmetric with respect to the fixed point P = (µ, µσ
δ
).

This means that symmetric points are mapped into symmetric points (with respect to P ).

Denote by F (Y ) and G(Y,K) the two components of the map T :

F (Y ) = (1 − ασ)Y + ασµ + α arctan(Y − µ) ,
G(Y,K) = (1 − δ)K + σµ + arctan(Y − µ)

and observe that the symmetric of the point (Y,K) with respect to P is the point (2µ −

Y, 2σµ
δ
−K). The above property, which can easily be verified, can be formalized as follows:

F (2µ − Y ) = 2µ − F (Y )
G(2µ − Y, 2σµ

δ
− K) = 2σµ

δ
− G(Y,K) ,

or better, by denoting with S(Y,K) = (2µ− Y, 2σµ
δ
−K) the symmetry with respect to the

fixed point P = (µ, µσ
δ
):

S(T (Y,K)) = T (S(Y,K)) ∀(Y,K) .

This implies that a cycle of T is either symmetric with respect to P or admits a sym-

metric cycle, as stated by the following

Proposition 2 Let C= {(Y1,K1), ..., (Yp,Kp)} be a cycle of T of period p ≥ 1. Then

- either S(C)=C

- or S(C)=C′ 6=C

where C′ = {S(Y1,K1), ..., S(Yp,Kp)} is another different cycle of T , of the same period

p, with periodic points which are symmetric with respect to P of the periodic points in C.
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3.5 Local stability analysis of the fixed points

Let us now turn to the local stability of the fixed points P = (µ, µσ
δ
), Q = (YQ, σ

δ
YQ) and

R = (YR, σ
δ
YR). The local stability analysis of a fixed point can be generally carried out by

studying the localization of the eigenvalues of the Jacobian matrix in the complex plane, and

it is well known that a sufficient condition for the local stability is that both the eigenvalues

are inside the unit circle in the complex plane. The triangular structure of the map T

simplifies our analysis, since the Jacobian matrix (7) of T has real eigenvalues, located on

the main diagonal, given by: z1(Y ) = 1 + α
1+(Y −µ)2 − ασ, z2 = 1 − δ, with 0 < z2 < 1.

The first eigenvalue of the fixed point P = (µ, µσ
δ
), is: z1(P ) = 1 + α(1 − σ). Since

z1(P ) > 1 for the ranges of interest of the parameters, we can conclude that the fixed point

P is always a saddle. The results about the nature of the fixed points Q and R and their local

stability analysis (it’s enough to consider only one of them, since the symmetry property

implies DT (Q) = DT (R)) are summarized by the following proposition which defines the

stability region in the parameters space Ω =
{

(α, σ) ∈ R
2|α > 0, 0 < σ < 1

}

.

Proposition 3 The equilibria Q and R are stable nodes for each (α, σ) in the region Ωs(Q)

defined as:

Ωs(Q) = {(α, σ) ∈ Ω|α < αf (σ)} ,

where: αf (σ) = 2/
{

σ − [1 + (YQ − µ)2]−1
}

> 2. Outside this region, Q and R are saddles.

Proof. Let us consider the fixed point Q. We can rewrite the first eigenvalue as:

z1(Q) = z1(R) = 1 − α[σ − u(YQ)] ,

where: u(Y ) = [1 + (Y − µ)2]−1.

We already know that the fixed points of the map T are either stable nodes or saddles.

Since 0 < z2 < 1, Q is stable iff |z1(Q)| < 1, i.e.:
{

σ > u(YQ) (a)
σ < 2/α + u(YQ) (b)

. (12)

Recalling condition (11b), we notice that for a fixed µ the equation:

σ(YQ − µ) − arctan(YQ − µ) = 0 (YQ > µ, 0 < σ < 1) (13)

implicitly defines the income equilibrium level YQ as a (differentiable) function of the pa-

rameter σ. By denoting with h(σ, YQ) the left-hand side of (13), from the implicit function

theorem we have:
dYQ

dσ
= −

hσ(σ, YQ)

hYQ
(σ, YQ)

= −
YQ − µ

σ − u(YQ)
.
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Since it can be proved through simple geometrical considerations that the income equilibrium

value YQ is a strictly decreasing function of σ, it follows that σ − u(YQ) > 0 and therefore

condition (12a) is always satisfied.

Condition (12b) can be rewritten as:

α <
2

σ − u(YQ)
= αf (σ) .

Since 0 < u(YQ) = [1 + (YQ − µ)2]−1 < 1 and condition (12a) holds, it follows that

0 < σ − u(YQ) < 1 which implies: αf (σ) > 2. Of course, for α > αf (σ), the fixed point Q

is a saddle. ¤

It is worth noting that the only way the fixed point Q (and thus R) can lose stability

is through a bifurcation with z1(Q) = −1, i.e. a flip (or period doubling) bifurcation, where

the stable fixed point becomes unstable (a saddle in our case) giving rise to a stable cycle

of period two. The determination of the flip-bifurcation curve of the fixed points Q and R,

in the parameters’ plane Ω, can only be done through numerical evaluation of the quantity

αf (σ) = 2/[σ − u(YQ)].

This curve and the region of local stability of Q and R in the parameters space Ω are

represented in Fig. 3.

3.6 Invertibility conditions

For some regions of the parameters’ space the map T is a noninvertible map of the plane. This

means that while starting from some initial values for income and capital stock, say (Y0,K0),

the iteration of (5) uniquely defines the trajectory (Yt ,Kt) = T t(Y0,K0), t = 1, 2, ..., the

backward iteration of (5) is not uniquely defined. In fact, a point (Y ′,K ′) of the plane can

have several rank-1 preimages.

As we already pointed out, many of the properties of the map at study are related to

those of the one-dimensional map:

Y ′ = F (Y ) = (1 − ασ)Y + ασµ + α arctan(Y − µ) .

It can be immediately proved that the two-dimensional map T is invertible if and only if

the one-dimensional map F is. It is worth noting that this property is not simply due to

the triangular structure of the map T but also to the fact that the second component of T ,

i.e. the function:

G(Y,K) = (1 − δ)K + σµ + arctan(Y − µ) ,

is linear in K.
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Turning to the conditions under which the one-dimensional map F (Y ) is invertible, it

is easy to show that a point Y ′ has a unique preimage if and only if ασ ≤ 1, while in the

opposite case, ασ > 1, a point may have one, two, or three different preimages. In fact, in the

noninvertibility case ασ > 1, F is a bimodal map with a local minimum point, critical point

of rank-0 denoted by c−1,m, and a local maximum point, critical point of rank-0 denoted by

c−1,M , where:

c−1,m = µ −

√

α

ασ − 1
− 1 ; c−1,M = µ +

√

α

ασ − 1
− 1 . (14)

The critical points of rank-1 are given by their images:

cm = F (c−1,m) ; cM = F (c−1,M ) .

Thus the points Y with Y < cm or Y > cM have a unique preimage, the points satisfying

cm < Y < cM have three distinct preimages, each of the points Y = cm and Y = cM has two

preimages which merge in a critical point together with a second distinct preimage, called

extra-preimage.

If we consider again the two-dimensional map T , we can immediately see that if Y is a

point with three (resp. one, two) preimages for the one-dimensional map F , then the whole

vertical line for this point has three (resp. one, two) preimages for the two-dimensional map

T . Thus, following the notation used in [15], we have that the map T is, for ασ > 1, of the

so-called type Z1 − Z3 − Z1, which means that the phase plane is subdivided in different

regions Zj (j = 1, 3) each point of which has j distinct rank-1 preimages. The critical curves

of rank-1, denoted by LC, generally bound such Zj regions, and are defined as the locus of

points having at least two merging rank-1 preimages; for the map T , LC is thus given by

the two vertical lines:

Y = cm , Y = cM .

The locus of merging rank-1 preimages, which constitutes the critical curve of rank-0, de-

noted by LC−1, is made up of the two lines:

Y = c−1,m , Y = c−1,M .
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The region of noninvertibility of the map in the space Ω of the parameters α and σ is

represented in Fig. 3.

Figure 3: Region of local stability of the equilibria and region of noninvertibility of the
map in the parameters’ plane.

Remark In this section we have obtained the equations of LC and LC−1 starting

from the critical points of the one-dimensional map F , i.e. we have substantially applied

Property 6, which holds for any two-dimensional triangular map.

4 Some Effects of Noninvertibility

In this section we stress that the fact that the map driving the dynamics may be noninvertible

plays an important role in the creation of complex topological structures of the basins of

attraction. In order to illustrate the effects of the switching to the noninvertibility regime,

we shall make use of the analytical properties of the one-dimensional map F driving the

income evolution. We will show how the dynamic behaviours of the two dimensional map T

can be completely described starting from those of the associated one dimensional map. It

is worth noting that this result is not a consequence of the triangular structure only, but of

the joint effect of the triangular structure and the linearity, with respect to K, of the second

component of T .
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Figure 4: Situation of bi-stability with a simple basins’ structure occurring when the map
driving the system is invertible.

In our numerical explorations we shall fix the exogenous equilibrium level of the income

at the value µ = 100, and the depreciation rate of capital at the value δ = 0.2. This latter

assumption is without loss of generality, because the stability property of the equilibrium

points and of the cycles of the map doesn’t depend on δ and the same qualitative dynamics
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as those commented in this section can be obtained with a different value of δ, 0 < δ < 1.

In the space Ω of the parameters α and σ we shall follow the particular path obtained

by assuming the propensity to save σ as fixed at the value σ = 0.25 and increasing the

adjustment parameter α.

In Fig. 4a, obtained with α = 3, we show the basins of attraction B(Q) and B(R) of

the two stable nodes Q and R, separated by the stable manifold of the saddle P , which,

as we know from Proposition 1, is the vertical line of equation Y = µ. Fig. 4b shows how

this situation of bi-stability is related to the shape of the one-dimensional map F : here it

is evident that the initial conditions Y0, with Y0 < µ, originate trajectories converging to

YR, while the initial conditions Y0, with Y0 > µ, originate trajectories converging to YQ.

This means that an economic system with a low (resp. high) initial level of income will

maintain these characteristics over time and will converge to the “poverty” steady state

(resp. “wealth” steady state).

The simple structure of the basins shown in Fig. 4a changes as soon as the map enters

the regime of noninvertibility, i.e. for α > 1/σ = 4.The basins of the two fixed points Q and

R become non connected and structured in vertical strips and the stable manifold of the

saddle P , which separates the basins of Q and R, is now made up of several vertical lines

(see Fig 5a). In fact, in the regimes in which the one-dimensional map F is noninvertible,

the fixed point P of the map T has three different preimages, P itself and two more points

symmetric with respect to P , say P−1,1 and P−1,2 (as well as µ, µ−1,1, µ−1,2 are the preimages

of the fixed point µ of the one-dimensional map F : see Fig. 5b). Then by Proposition 1 the

stable manifold of the saddle point P is made up of the vertical lines of equation Y = µ,

Y = µ−1,1, Y = µ−1,2 and of the lines of equation Y = µ−n,1and Y = µ−n,2, n = 2, 3, ...,

where µ−n,1 and µ−n,2 are the preimages of rank-n of µ (some of which are represented in

Fig. 5b). The basins of the equilibria Q and R in Fig. 5a are then made up of infinitely

many disjoint vertical strips as well as in Fig. 5b the basin of each equilibrium is given by

infinitely many disjoint intervals.

From an economic point of view, the new structure of the basins created by the switching

to the noninvertibility regime means that also economies with a high (low) initial level of

income may become poor (rich) in the long run, and that this situation may be reversed

many times during the transient dynamics.

The noninvertibility of F , i.e. the existence of two local extrema, also causes the

appearance of diverging trajectories, due to the appearance of a repelling 2-cycle {s∗1, s
∗
2}

separating the basin of infinity from the basins of the attracting fixed points. Precisely,

we notice that by increasing the speed of adjustment α for a fixed value of the propensity

to save σ, two new repelling fixed points of the map F 2 = F ◦ F (and thus a repelling

2-cycle {s∗1, s
∗
2} of the map F ) are created when α crosses the curve αc(σ) = 2/σ, which is
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located in the noninvertibility region of the space Ω of the parameters α and σ. To realize

this, it is enough to observe that limY →∓∞
d

dY
(F 2(Y )) = (1 − ασ)2 and that as soon as

this slope becomes greater than one, i.e. for α > 2/σ, two new intersections of F 2 with

the line ϕ(Y ) = Y are created, as it is also evident from the comparison of Fig. 5b (where

α = 7.25 < 8 = 2/σ) with Fig. 6a (where α = 9 > 2/σ).
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Figure 5: Effects of the noninvertibility on the structure of the basins of the coexisting
equilibria.
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We can see from Fig. 6a that the points Y0 ∈ [s∗1, s
∗
2] have bounded trajectories, while

the points Y0 /∈ [s∗1, s
∗
2] have diverging trajectories. It is also evident that when α is further

increased the points of the 2-cycle (and therefore the basin of infinity) approach the fixed

points P , Q and R.
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Figure 6: Appearance of divergent trajectories and increasing complexity in the topological
structure of the basins.
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Fig. 6b and its enlargement show that the vertical strips constituting the basins of Q

and R accumulate on the vertical lines Y = s∗1 and Y = s∗2. This is substantially due to the

fact that, being these vertical lines repelling sets for the forward iteration of T (see Property

5 of triangular maps in section 3.1), they behave as attracting sets for the iteration of the

inverses of T (see, for instance, [1]). From an economic perspective, we could say that such

a situation causes a loss of predictability about the long run evolution of the system: if

the initial state is near the line Y = s∗1 or Y = s∗2, a slight change in the initial state may

give a completely different long run evolution of the economy (the “wealth” equilibrium, the

“poverty” equilibrium or even divergent behaviour) if the change causes a crossing of some

basin boundary.

5 Local and Global Bifurcations Changing the Struc-

ture of the Attracting Sets

In this section we describe the local and global bifurcations which increase the complexity of

the asymptotic dynamic behaviour of the system. Again, we shall see that the bifurcations

and the dynamic behaviours of the two dimensional map T can be completely described on

the basis of those of the one-dimensional map F driving the income evolution, thanks to the

triangular structure of T .

To illustrate these bifurcations, we shall fix the parameters µ and δ at the same values of

the previous section (µ = 100, δ = 0.2) and we shall follow, in the space Ω of the parameters

α and σ, a particular bifurcation-route obtained by fixing the adjustment parameter α at a

sufficiently high value, say α = 8.5, and increasing the propensity to save σ.

Let us start with σ = 0.25. In this case the equilibrium points Q and R are stable and the

structure of their basins is very similar to the one described Fig. 6b. We already know from

the local stability analysis carried out in section 3.5 that the equilibria Q and R are stable

for α[σ − u(YQ)] < 2, where u(YQ) = [1 + (YQ − µ)2]−1 (and where the equilibrium value of

income YQ is a function of σ, implicitly defined by eq. (13)). Numerical computations show

that, when α = 8.5 and σ is increased, the fixed points lose stability for σ = σf ' 0.2733:

here a flip bifurcation occurs, where the stable nodes Q and R become saddles and two

symmetric stable cycles of period two appear. Fig. 7a represents these cycles, together with

their basins of attraction, for σ = 0.3. We point out that such a local bifurcation simply

replaces each stable steady state with an attracting 2-cycle, without modifying the basins

of the coexisting attractors (which are given by the vertical strips represented in Fig. 7a:

more precisely, each set of vertical strips is the closure of the basin of the corresponding

cycle). What happens by increasing further σ can be easily understood by observing the

bifurcation diagram of the map F represented in Fig. 7b. This diagram shows that F
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undergoes a typical sequence of flip bifurcations leading to chaotic dynamics.
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Figure 7: Period-doubling bifurcation of the equilibria (a) and transition to complex dy-
namics due to a flip-bifurcation sequence (b).
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Figs. 8 and 9 show the changes in the structure of the attractors sharing the phase

plane when σ is increased (for high values of α). In Fig. 8a we observe two symmetric

chaotic attractors, each one made up of two pieces, which increase in size as σ increases and

then merge giving rise to two disjoint one-piece chaotic attractors (Fig. 8b). By increasing

further σ, the attracting sets of Fig. 8b in turn merge into the attractor shown in Fig. 9a,

whose shape is symmetric with respect to the saddle P .
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Figure 8: Coexistence of two symmetric chaotic attractors.
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As it is evident from the bifurcation diagram in Fig. 8b, in this chaotic regime also

periodic windows exist, that is intervals of the parameter σ in which the attracting sets are

periodic orbits, but the existence of chaos is revealed by the transient part of the trajectories

(Fig. 9b).
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Figure 9: Attracting sets existing after the homoclinic bifurcation of the saddle P : chaotic
attractor (a) and periodic orbit with a chaotic transient (b).
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The merging of the two attractors into the unique attractor represented in Fig. 9a is

due to an homoclinic bifurcation of the saddle P . Let’s consider Fig. 10a (where c1,m and

c1,M denote the images of cm and cM , respectively). Before the homoclinic bifurcation value

σh ' 0.4135 (Fig. 10a) the intervals J1 = [cm, c1,m] and J2 = [c1,M , cM ] are invariant.

We remark that, as it is also evident from the bifurcation diagram of Fig. 7b, the map

F undergoes, for each of the two disjoint invariant intervals J1and J2, the same sequence

of bifurcations which characterize the well known logistic map f(x) = ax(1 − x) when

the parameter a ranges between the values 3 and 4 (see, for instance, [14], [4]). After the

homoclinic bifurcation we have a big qualitative change in the trajectories of the system:

the intervals J1 and J2 are no longer invariant intervals, but so is their union J = J1∪J2 or,

better, the interval [cm, cM ] (Fig. 10b). Comparing again the dynamics of F with those of

the one-dimensional logistic map, we can notice that the described homoclinic bifurcation is

equivalent to the one occurring in the logistic map when the parameter a crosses the value 4.

The difference arises from the fact that, in the case of the logistic map, after this bifurcation

the points located in a neighborhood of the critical point, as well as their preimages of any

rank, belong to the basin of infinity, so that the generic trajectory becomes divergent, while

here the trajectories which escape remain bounded and span the whole invariant interval

J = [cm, cM ].

We remark also that the existence of an homoclinic orbit, as already pointed out by

Poincaré a century ago, implies very complicated dynamics (for an extensive mathematical

treatment, see [16]): in fact, it implies the existence of an invariant Cantor set on which

the restriction of the map is chaotic in the sense of Li and Yorke. Sometimes, it indicates

the existence of the so called “invisible chaos”: for example, chaotic trajectories certainly

exist in the situation shown in Fig. 9b, even if the generic numerically observed trajectory

converges to a cycle of period-6.

The homoclinic bifurcation of the saddle P described above, produces a remarkable

qualitative change in the asymptotic behaviour of the system, marking the switching from

a regime of bi-stability (where the attractors may be fixed points, cycles or even chaotic

attractors) to a more complex regime characterized by oscillations, although not regular

but chaotic, around the saddle point P . This can be seen from Figs. 11a and 11b, which

represent the versus time trajectories of the income Y before and after the bifurcation

(σ = 0.375 and σ = 0.425, respectively). More precisely, from Fig. 11b two different kinds

of fluctuations can be observed: short-term chaotic oscillations around the “wealth” steady

state YQ, or the “poverty” steady state YR, and long-term wider oscillations from “wealth”

to “poverty” and vice-versa. This kind of dynamic behaviour is well known in the literature

on chaotic dynamical systems, being very similar to the one observed on the well known

Lorenz Attractor (see, for instance, [13], [17] ch.12).
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Figure 10: Loss of the invariancy property of the intervals J1 and J2 due to the homoclinic
bifurcation of the saddle P .
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Figure 11: Representation of the income as a function of time, before (a) and after the
homoclinic bifurcation (b).

We stress that this kind of oscillations, which are observed in particular regions of the

parameters space Ω characterized by high values of the adjustment parameter α, occur even
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if we have assumed that the investment demand is independent from the capital stock, i.e.

we have ruled out the possibility of cyclical “shifting” of the investment demand function.

Remark The peculiar shape of the attractors shown in Figs. 8b (and its enlargement)

and 9a is typical of the so-called mixed absorbing areas. An absorbing area of mixed type

is defined as a bounded region A of the phase-plane such that a neighborhood U ⊃ A

exists whose points enter A after a finite number of iterations and never escape, and whose

boundary is given by the union of critical curve segments (segments of the critical curve LC

and its images) and portions of unstable sets of saddles (see [15], Ch. 4). This is the case,

for instance, of the area containing the chaotic attractor represented in the enlargement of

Fig. 8b: here the lateral borders are given by segments the critical lines LC and LC1 of

equation Y = cM and Y = c1,M , respectively, while the area is upper bounded by a portion

of the unstable manifold Wu(Q) of the saddle fixed point Q and lower bounded by portions

of the unstable sets of some saddle cycles. This feature determines the “fuzzy” shape of the

borders of the attractor observed in the enlargement. Similar reasons explain the shape of

the chaotic attractor shown in Fig. 9a.

6 Conclusions

In the present paper, starting from a discrete-time Kaldor-type business cycle model, pro-

posed in [18] and described by a two-dimensional dynamical system in income and capital,

we have focused on a particular case obtained by neglecting the dependence of the investment

demand from the capital stock. This latter feature has generally been considered as the basic

structural requirement for the occurrence of cyclical behaviour of income and capital (see,

for instance, [6], [2]). The resulting model has the peculiarity that both the savings and the

investment demands only depend on the income level (in particular the investment demand

is a sigmoid-shaped increasing function of income): this implies that the dynamics of the

system is driven by a two-dimensional map of triangular type, since one of its components,

namely the one driving the income evolution, is an independent one-dimensional map. Due

to the particular triangular structure of the system, we have been able to fully understand

the asymptotic dynamic behaviour and the bifurcations, starting from the properties of the

associated one-dimensional map.

We have explored the dynamics of the model under different regimes of the main pa-

rameters, as the propensity to save and the firms’ speed of adjustment to the excess demand.

Our exercise has shown that the basic dynamic scenario is given by a situation of bistability,

i.e. coexistence of two attracting sets (which may be fixed points or periodic orbits or even

chaotic attractors, for sufficiently high values of the adjustment parameter): one charac-

terized by poverty (low levels of income and capital) and one by wealth (high levels of the
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dynamic variables), each with its own basin of attraction. We have focused on the question,

which naturally arises in the presence of bistability, of the delimitation of the basins of the

coexisting attractors, and we have shown that for particular ranges of the parameters the

basins may be non-connected sets. Besides the bistability situation, our analysis has shown

that different dynamic scenarios are possible, characterized by complex chaotic dynamics,

for high values of the adjustment parameter. To summarize we have shown the existence of

two different routes to complexity.

(a) Qualitative changes in the asymptotic behaviour of the system, i.e. in the nature of

the attracting sets. The main change consists in the transition from a regime of

bistability to a situation characterized by wide chaotic fluctuations of income and

capital around their exogenously assumed equilibrium levels (a typical business-cycle

situation). This change is related to the occurrence of a global (homoclinic) bifurcation

and the resulting dynamical behaviour proves that endogenously driven oscillations can

also be observed without what is considered the main Kaldorian assumption, i.e. the

dependence of investment demand on the capital stock.

(b) Qualitative changes of the topological structure of the basins, which change from con-

nected to non connected, related to the property of noninvertibility of the map. This

kind of complexity leads to an interesting economic interpretation. We may say that, in

the case of connected basins, the initial situation of the economy (wealth or poverty) is

maintained over time, whereas in the presence of non connected basins such a situation

may be reversed many times (and even reversed in the long run). Thus, noninvert-

ibility gives more uncertainty about the fate of the system in the long run, whereas

invertibility traps the long-run evolution, so that things seem to be determined since

the beginning of the process.
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