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Abstract

We analyze a class of models representing heterogeneous agents with adaptively rational rules. The models reduce to

noninvertible maps of R2. We investigate particular kinds of homoclinic bifurcations, related to the noninvertibility of
the map. A first one, which leads to a strange repellor and basins of attraction with chaotic structure, is associated with

simple attractors. A second one, the homoclinic bifurcation of the saddle fixed point, also associated with the foliation

of the plane, causes the sudden transition to a chaotic attractor (with self-similar structure).

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In the recent literature, several economic models have been proposed to model economies with heterogeneous

agents, see for example [4–7,9,10,16]. Most of these heterogeneous agents models describe systems where two typical

agents are present: a first group (fundamentalists or arbitrageurs) who believe that the security price is determined by

the market fundamental values, and a second group (chartists or technical analysts) who predict the future price by

using simple technical trading rules, observing the past prices. Following this stream, we investigate the dynamic be-

haviour of a class of models representing two groups in which the fractions of agents of each group change according to

the mechanism proposed in [5]. One group represents the fundamentalists, while the other group uses the past real-

izations in a standard adaptive learning mechanism, and the dynamics are governed by a two-dimensional noninvertible

map. As the recent literature has emphasized, heterogeneity and learning may lead to market instability and compli-

cated dynamics, and we also find these aspects in our models. That is, the dynamic behaviours may be, as expected,

regular (equilibrium and stable cycles) or chaotic. Object of the present work is to investigate the main routes to

complex behaviours in the attracting sets and global bifurcations (homoclinic bifurcations) both in the attracting sets

and in their basins of attraction. The importance of the homoclinic bifurcations in understanding the dynamics in

chaotic regimes has been addressed to the attention of applied economists only recently, mainly in [5,11,12], associated

with the dynamics of invertible nonlinear systems. The model we present in this paper gives us the opportunity to extend

the application of this important analytical tool also to noninvertible maps (see also [8]). We shall see how the foliation

of the phase-space may be involved in the construction of the stable set of saddles (which are determined by taking all

the preimages of a local segment). Moreover, we shall see that such bifurcations may be associated with two kinds of

complex structures, either in the invariant sets which give the boundary of basins of attraction (thus leading to complex

structures in the basins) or in the invariant attracting set (thus leading to a chaotic attracting set, or strange attractor).

The plan of the work is as follows. In Section 2 we shall describe the model. We shall see how assuming that the

chartists use an adaptive rule in their forecasts, a two-dimensional noninvertible map, called T2, is obtained. In Section 3
we shall describe the main features of this two-dimensional map T2: its foliation and the role played by the two distinct
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inverses of the map. As we shall see, the fixed point is unique and very particular, because a whole line of points is

mapped by T2 into the fixed point. This feature denotes a particular kind of dynamics associated with the inverses
(related to sets called focal points and prefocal sets in [2,3], whose role is evidenced in Section 3.4. In Section 3.1 the

foliation of T2 is described, which helps us in the determination of the stable set W SðS�Þ of the saddle fixed point S�,

described in Section 3.2. In Section 3.3 we shall see the homoclinic bifurcation of a saddle set, made up of two cycles,

due to the existence of heteroclinic points connecting the first to the second one, and the second one to the first (also

called transverse cyclical heteroclinic connection). Associated with such homoclinic orbits there is an invariant Cantor

set (with infinitely many repelling cycles), on which the dynamics is chaotic, which constitutes a strange repellor. That is,

it is not embedded in some chaotic area or absorbing region. Instead, it belongs to the frontier of the basins of simple

attractors (two cycles of T2), thus leading to a complex structure in the basins of attraction. On the other hand, in
Section 3.4 we shall see the sudden transition to a chaotic attractor due to the homoclinic bifurcation of the saddle fixed

point S�. The relevance of the phase-space region in order to have meaningful trajectories, called feasible region, is

described in Section 3.5, where we point out that bifurcations may occur also in that region, due to the foliation of T2.

2. The heterogeneous market model

We consider a cobweb model where DðpÞ and SðpÞ are the market demand and supply functions of a nonstorable
good. At a given time t, DðpÞ depends on the current price pt whereas SðpÞ depends on the price pet expected by pro-
ducers at the time in which they decided their production. So, if the production delay is taken as the time unit, the

market clearing condition becomes Dðptþ1Þ ¼ Sðpetþ1Þ and assuming that DðpÞ is a continuous and decreasing function
(hence invertible) the law of motion of the market clearing price is ptþ1 ¼ D�1 � Sðpetþ1Þ. We consider the simplest case in
which D is a linear function, say DðptÞ ¼ A� Bpt, with A > 0 and B > 0, and for the supply function we assume that
producers maximize the net profit obtaining Sðpetþ1Þ ¼ bpetþ1 with b > 0, so that we get

ptþ1 ¼ D�1 � Sðpetþ1Þ ¼
A� bpetþ1

B

and we have to specify the formation of the expected value for the time (t þ 1), estimated on the basis of the information
set at time t, say ~PPt, i.e. petþ1 ¼ Hð~PPtÞ.
Following the approach of Adaptive Belief Systems developed in [4,7] (see also [13], to which we refer for a detailed

description of the model), we consider the equilibrium price dynamics in the cobweb model with heterogeneous beliefs

where agents can choose between two different predictors H1 and H2. The fractions nj;t (with j ¼ 1; 2) of agents using
predictor Hj in period t can change over time. The updated fraction nj;tþ1 of agents using predictor Hj in the next period

is nj;tþ1 ¼ ðexpðbUj;tþ1Þ=Ztþ1Þ for j ¼ 1; 2; where Ztþ1 ¼
P2

j¼1 expðbUj;tþ1Þ and the performance measure Uj;tþ1 for pre-

dictor Hj is given below, so that the fractions n1;tþ1 and n2;tþ1 add up to 1 and the parameter b is the intensity of choice
measuring how fast agents switch predictors. We get:

ptþ1 ¼ n1;tD�1 � S1ðH1ð~PPtÞÞ þ n2;tD�1 � S2ðH2ð~PPtÞÞ ¼ n1;t
A� bH1ð~PPtÞ

B

 !
þ n2;t

A� bH2ð~PPtÞ
B

 !

nj;tþ1 ¼
expðbUj;tþ1Þ

Ztþ1
; j ¼ 1; 2

ð1Þ

where

Uj;tþ1 ¼ ptþ1bHjð~PPtÞ �
bH 2j ð~PPtÞ
2

� Cj; j ¼ 1; 2

and Cj are positive constants. In order to close the model we introduce the predictor mechanisms H1 and H2, which
differ from the examples quoted in the literature of Adaptively Rational Equilibrium Dynamics models. We suppose that

the components of the first group are a kind of fundamentalists and believe that the prices would go back to their

fundamental value. To estimate the equilibrium price they know the demand and supply functions, and solving the

equation A� Bpt ¼ bH1ð~PPtÞ at equilibrium, that is A� Bp� ¼ bp�, they obtain the result

p� ¼ A
bþ B

ð2Þ

so that the first predictor becomes

H1ð~PPtÞ ¼ p� ð3Þ

744 I. Foroni, L. Gardini / Chaos, Solitons and Fractals 15 (2003) 743–760



The second group of producers uses a standard adaptive learning mechanism with speed of adjustment a of the form

H2ð~PPtÞ � petþ1 ¼ ð1� aÞpet þ apt ð4Þ

With our assumptions we have U1;tþ1 ¼ b
2
p�ð2ptþ1 � p�Þ � C1 and U2;tþ1 ¼ b

2
petþ1ð2ptþ1 � petþ1Þ � C2, and we always as-

sume C1 > C2 > 0 (as H2 is a less sophisticated predictor than H1). The updated fractions of agents, after observing the
realized price ptþ1 are

n1;tþ1 ¼
exp b b

2
p�ð2ptþ1 � p�Þ � C1

� �� �
Ztþ1

ð5Þ

n2;tþ1 ¼
exp b b

2
petþ1ð2ptþ1 � petþ1Þ � C2

� �� �
Ztþ1

ð6Þ

with n1;t þ n2;t ¼ 1 8t and we have

ptþ1 ¼
A
B
� n1;t

bp�

B

� 	
� n2;t

bpetþ1
B

� 	
ð7Þ

petþ2 ¼ ð1� aÞpetþ1 þ aptþ1 ð8Þ

For algebraic convenience we introduce, following [5], the difference

mtþ1 ¼ n1;tþ1 � n2;tþ1 ð9Þ

so that mtþ1 ¼ 1 when all producers choose H1 as predictor for the next period, and mtþ1 ¼ �1 in the opposite case.
Substituting (5) and (6) in (9) we get

mtþ1 ¼
expðbU1;tþ1Þ � expðbU2;tþ1Þ
expðbU1;tþ1Þ þ expðbU2;tþ1Þ

ð10Þ

so that

mtþ1 ¼ tanh
b
2
ðU1;tþ1

�
� U2;tþ1Þ

	
ð11Þ

or

mtþ1 ¼ tanh
b
2

b
2
p�ð2ptþ1


�
� p�Þ � C1 �

b
2
petþ1ð2ptþ1 � petþ1Þ þ C2

�	
ð12Þ

By the relation

n1;tþ1 ¼
1þ mtþ1

2
and n2;tþ1 ¼

1� mtþ1

2
ð13Þ

we obtain the dynamic model

ptþ1 ¼
A
B
� 1þ mt

2

bp�

B

� 	
� 1� mt

2

bpetþ1
B

� 	

mtþ1 ¼ tanh
b
2

b
2
p�ð2ptþ1 � p�Þ � C1 �

b
2
petþ1ð2ptþ1 � petþ1Þ þ C2


 �� 	
petþ2 ¼ ð1� aÞpetþ1 þ aptþ1

8>>>><
>>>>:

ð14Þ

We introduce the following change of variables

X ¼ p � p� and X e ¼ pe � p� ð15Þ

where p� is the equilibrium price estimated in (2). However, instead of writing the new system in the new coordinates Xt

and Xe
t , for the sake of simplicity of notation, we maintain the old formulation of pt and p

e
t which henceforth denote the

deviations from the equilibrium price. The new system reads as

ptþ1 ¼ � 1� mt

2

bpetþ1
B

� 	

mtþ1 ¼ tanh
b
2

� b
2
petþ1ð2ptþ1 � petþ1Þ þ C2 � C1


 �� 	
petþ2 ¼ ð1� aÞpetþ1 þ aptþ1

8>>>>><
>>>>>:

ð16Þ
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which, by substituting the first equation in the other two, can be expressed as a two-dimensional map, say T2, in the
variables ðzt;mtÞ with zt ¼ petþ1:

T2 :
ztþ1 ¼ zt 1� að Þ � a

b 1� mtð Þ
2B


 �

mtþ1 ¼ tanh
bb
4
z2t

b 1� mtð Þ
B

þ 1
� 	

þ b
2

C2 � C1ð Þ

 �

8>>><
>>>:

ð17Þ

3. The dynamics of the map T2

In this section we shall consider the dynamics of the economic model described by the map T2, in order to investigate
the structure of attracting sets and of their basins of attraction. We shall see that many particular homoclinic bifur-

cations which occur are related with the structure of the foliation of the noninvertible map. We shall first describe this in

Section 3.1. Then we shall see the structure of the stable set of the unique fixed point saddle, and the transition to

complex structure in the phase-space associated with simple attractors, due to cyclical heteroclinic orbits which play the

same role as homoclinc bifurcations of saddle cycles. A peculiar homoclinic bifurcation of the saddle fixed point is

described after, causing the sudden transition to a chaotic attractor (with fractal structure). Finally, some comments on

the feasible region in the phase-plane are necessary, in order to have suitable applications of the model.

3.1. General properties

Let us rewrite the map T2 given in (17) by using the symbol ‘‘0’’ to denote the unit time advancement operator,
obtaining

T2 :
z0 ¼ z 1� að Þ � a

b
2B
1� mð Þ


 �

m0 ¼ tanh bb
4
z2

b 1� mð Þ
B

þ 1
� 	

þ b
2
ðC2 � C1Þ


 �
8>><
>>: ð18Þ

The map is defined in the whole plane and has only one fixed point, S�, given by

S� ¼ ðz�;m�Þ ¼ 0; tanh
b
2
ðC2


�
� C1Þ

�	
ð19Þ

We notice that as the hyperbolic tangent assumes values in the interval ð�1; 1Þ the image of a point ðz;mÞ 2 R2 always

belongs to the strip of the plane with m 2 �1; 1ð Þ. Furthermore the map T2 is noninvertible, this means that even if a
point ðz;mÞ has a unique image under the application of T2, the backward iteration of T2 is not uniquely defined. Given a
point ðz0;m0Þ with m0 2 ð�1; 1Þ its rank-1 preimages are obtained by solving the algebraic systems in (18) and we get

T�1
21

z ¼ z0

2� a
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z02

ð2� aÞ2
þ 4a

bbð2� aÞ arctanhðm
0Þ � b
2
ðC2 � C1Þ


 �s

m ¼ 1þ 2B
ab

z0

z
� 1þ a

� 	
8>>><
>>>:

ð20Þ

T�1
22

z ¼ z0

2� a
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z02

ð2� aÞ2
þ 4a

bbð2� aÞ arctanhðm
0Þ � b
2
ðC2 � C1Þ


 �s

m ¼ 1þ 2B
ab

z0

z
� 1þ a

� 	
8>>><
>>>:

ð21Þ

assuming that the discriminant, say D, in the above expressions is positive. So, if D > 0, a point ðz0;m0Þ has two real
preimages given by T�1

2 ðz0;m0Þ ¼ T�1
21

ðz0;m0Þ [ T�1
22

ðz0;m0Þ. In the case D < 0 the point ðz0;m0Þ has no preimages. Fol-
lowing [19] we say that the plane is divided into two regions, called Z2 and Z0, whose points have two or zero preimages
respectively. These two regions are separated by the curve of equation D ¼ 0, that is:

m ¼ tanh
�
� bb
4að2� aÞ z

2 þ b
2
ðC2 � C1Þ

	
ð22Þ
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called critical curve LC. The points belonging to LC have two coincident rank-1 preimages located on the line LC�1
given by

LC�1 : m ¼ 1þ 2B
ab

ð23Þ

The curves LC and LC�1 are represented in Fig. 1 (LC separates the region Z0 from Z2). The curve LC�1 can also be

obtained looking for the locus of points in which the determinant of the Jacobian matrix of T2 vanishes, because
LC ¼ T2ðLC�1Þ is a set of points in which the map T2 is locally noninvertible. Following this procedure we calculate

Jðz;mÞ ¼ J11 J12
J21 J22


 �

where

J11 ¼ 1� a � ab
2B

ð1� mÞ; J12 ¼ z
ab
2B

J21 ¼ 1



� tanh2 bb

4
z2

bð1� mÞ
B

��
þ 1
	
þ b
2
ðC2 � C1Þ

��
bb
2
z

b
B
ð1



� mÞ þ 1

�

J22 ¼ 1



� tanh2 bb

4
z2

bð1� mÞ
B

��
þ 1
	
þ b
2
ðC2 � C1Þ

���
� bb2z2

4B

	

It is worth noting that det J ¼ 0 when z ¼ 0 or when m ¼ 1þ ðð2BÞ=ðabÞÞ. Nevertheless the line z ¼ 0 is not a critical
line of the usual kind, associated with the foliation of the plane. In fact, we notice that every point of the axis z ¼ 0 is
mapped by T2 into a unique point, that is the fixed point S� ¼ ð0;m�Þ:

T2ð0;mÞ ¼ ð0;m�Þ 8m 2 R ð24Þ

From this fact, following [2,3], we argue that at least one inverse of T2 must be a map with a vanishing denominator.
And this is true, as we have seen that the first of the two inverses in (20) has a denominator which vanishes at the points

ðz0;m0Þ satisfying

z0

2� a
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z02

ð1� aÞ2
þ 4a

bbð2� aÞ arctan hðm
0Þ � b
2
ðC2 � C1Þ


 �s
¼ 0 ð25Þ

that is, for

z0 < 0 and m ¼ tanh b
2
ðC2

�
� C1Þ

	
¼ m� ð26Þ

In a similarly way, T�1
22
in (21) has a denominator which vanishes for z0 > 0 and m ¼ m�.

Fig. 1. Z2 ¼ Z 0
2 [ Z 00

2 .
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To summarize, the horizontal line through the fixed point of T2, m ¼ m�, is a singular line because on its points the

denominator of at least one of the inverses vanishes. Moreover, following the definition given in [2,3], the fixed point

ð0;m�Þ is a focal point Q0 for T�1
2 with prefocal set d0

S the line z ¼ 0. This example shows an important peculiarity of
plane maps: in order to have a ‘‘well behaved’’ fixed point (both for forward and backward iterations) it is not enough

to have a point mapped into itself, it is also necessary to have it as a fixed point of at least one of the inverses. This is not

the case in our model, the fixed point being the focal point Q0 for both the two distinct inverses of T�1
2 . As m ¼ m� is a

singular line for the inverse T�1
2 , the foliation of the plane assumes a new particular structure. From the definition of T2

it follows that the points of the plane with

m > n where n ¼ 1

�
þ B

b

	
> 1 ð27Þ

are mapped into a point with m0 < 0. In particular, the line m ¼ n is mapped in m ¼ m�, that is, the singular line of the

inverse. Note the particular role played by this line in the foliation: a point ðz;m�Þ has only one real preimage on the line
m ¼ n, the other being at infinity (for this reason we have denoted it by Z1 in Fig. 1). This identifies a region of the range
of T2, denoted by Z 00

2 in Fig. 1, included between the curve LC and the line m ¼ m�. The points ðz0;m0Þ 2 Z 00
2 have two

distinct inverses, the first one is placed between m ¼ n and LC�1 (m ¼ 1þ ðð2BÞ=ðabÞÞ) the second one is located above
LC�1. The remaining region of Z2 (belonging to the strip delimited by m ¼ m� and m ¼ 1), denoted by Z 0

2, is a trapping

region because every point belonging to Z 0
2 is mapped in the same region, i.e. T2ðZ 0

2Þ 
 Z 0
2. So Z

0
2 is the region containing

the attractors and the x-limit sets of T2. We notice that in Z2 the line of equation

m ¼ g with g ¼ 1� 2B
ab

ð1� aÞ < 1

is mapped into the vertical axis z ¼ 0, which is in turn mapped in the fixed point S�. Hence the stable set of S� always

include the lines z ¼ 0 and m ¼ g. Moreover the image of m ¼ g through T2 is folded up in the point S� therefore the

segment of axis z ¼ 0 with m 2 ðm�; 1Þ is covered by a double segment of images of the points ðz;mÞ belonging to m ¼ g.
Stated in other words, every point ð0;m0Þ with m� < m0 < 1 has two distinct preimages on the line m ¼ g, symmetrical
with respect to z ¼ 0. Finally, it is simple to verify that every point ðz0;m0Þ 2 Z 0

2 has two distinct inverses that are located

one on the right, and one on the left, of the prefocal curve d0
S , z ¼ 0, and at the same time one of the preimages is located

above the line m ¼ g, and the other under the same line. These facts lead to an unusual foliation of the map T2, due to
the presence of an inverse with focal point. This particular kind of foliation allows us to explain the bifurcations of the

attractors and their basins of attraction. First of all we notice that

T2ð�z;mÞ ¼ ð�z0;m0Þ

i.e. the images of points symmetrical with respect to the vertical axis z ¼ 0 are also symmetrical with respect to the same
line. Then we can write the following:

Proposition 1. An invariant attracting set of the map T2 is symmetric with respect to z ¼ 0, or it coexists with an invariant
attracting set symmetric with respect to it, and it is placed in the region m� < m < 1.

3.2. Fixed point and its stable set

We shall investigate the dynamics of the map T2 as the switching coefficient b increases. To simplify the exposition we
fix the values of the other parameters:

C1 ¼ 15; C2 ¼ 5; a ¼ 0:8; b ¼ 1:35; B ¼ 0:5; A ¼ 15 ð28Þ

the dynamics of the model being similar for different constellations of the economic parameters. For low values of b, the
fixed point S� of T2 is stable and globally attracting. Because of the complexity of the expression of T2, it is not possible
to investigate analytically the local stability as a function of the parameters of the models. We have numerically

computed the eigenvalues of the Jacobian matrix in S� ¼ ð0;m�Þ, JðS�Þ. We already know that det JðS�Þ ¼ 0 and this
means that Jð0;m�Þ always has one eigenvalue equal to zero, which corresponds to the eigenvector along the line z ¼ 0.
We recall that every point of the vertical axis is mapped into S� after one iteration of the map T2. As b increases we have
observed that the other eigenvalue goes towards �1 and for b ’ 0:023 the system undergoes a flip bifurcation with the
consequent birth of an attracting cycle of period 2. The cycle is composed of two points fx1; x2g, symmetrically placed
with respect to z ¼ 0. In this case the use of T 22 , double iterate of T2, is more convenient to understand the dynamics of
the model and, in particular, we are interested in the structure of the stable set of S� which is now unstable (a saddle). In
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Fig. 2 we show the two points fx1; x2g that are at the same time a 2-cycle for the map T2 and two fixed points for the
iterated T 22 . We consider the basin of attraction of x1 and x2 under T

2
2 , Bðx1Þ and Bðx2Þ respectively, that is, the initial

conditions which converge to x1 or x2 under the iteration of the map T 22 . Even if the basins are symmetrical with respect
to z ¼ 0 their structures are not simple. We must determine the frontier

F ¼ oBðx1Þ ¼ oBðx2Þ

that separates the two basins. Such a frontier behaves as a repelling set for the points near it, since it acts as a watershed

for the trajectories of the map T 22 . Points belonging to F are mapped into F both under forward and backward it-

eration of T 22 : that is T2ðFÞ � F, T�1
2 ðFÞ ¼ F. This implies that if a saddle point belongs to F, then F must also

contain the whole stable manifold. We consider the local stable manifold of the saddle point S�, which is the line z ¼ 0.
This line, called x0 in Fig. 2, behaves as a repelling line, because the unstable manifold of the saddle S� has a branch

pointing toward x1 and the opposite branch going toward x2. The other parts of the frontier F can be obtained by

taking all the preimages of the local stable set, that is, we have

F ¼ W SðS�Þ ¼
[
nP 0

T�n
2 ðx0Þ

where T�n
2 represents the set of all the rank-n preimages. Fig. 2 shows the basins of attractions Bðx1Þ and Bðx2Þ in two

different colors, and F is the boundary separating the two basins. We want to stress that for T2 the 2-cycle fx1; x2g is
nearly globally attracting since only the points belonging to W SðS�Þ do not converge to it. However, in this way we have
investigated the stable set of the saddle fixed point S�, and this is important in order to understand the homoclinic

bifurcations involving the fixed point. As we shall see, the structure of the stable set of S� changes a little from that

shown in Fig. 2, as b is increased, due to global bifurcations involving the foliation of the map. In fact, as b increases the
2-cycle becomes unstable via a Neimark–Sacker–Hopf bifurcation (see [17]) which leads to the birth of two attracting

closed invariant curves around x1 and x2. The invariant curves together form a unique attracting invariant set of T2. For
the map T 22 the closed curves, say C1 and C2, represent two coexistent attracting sets and we can determine, as before,
their basins of attraction for T 22 . The frontier is still

F ¼ oBðC1Þ ¼ oBðC2Þ ¼ W SðS�Þ

The two basins depicted in Fig. 3 have now a more complex structure, generated by a global bifurcation called tangent

bifurcation between an invariant set, the basin boundary, and the critical curve LC. We notice that the regions A and A0

indicated by the arrows in Fig. 3 (due to portions of basins previously, in Fig. 2, located in the region Z0 and therefore
without preimages) are now crossing LC (see the enlargement). This means that the pieces of A and A0 crossing LC now

Fig. 2. The frontier denotes the stable set of the saddle S�, W SðS�Þ.
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belong to Z 00
2 . Their preimages give rise to new structures called holes, or islands, of a basin inside the other one (see

[18,19]). In fact, considering as an example the region A, its preimage is formed by

T�1
2 ðAÞ ¼ T�1

21
ðAÞ [ T�1

22
ðAÞ

which is a ‘‘connected island’’ (crossing LC�1) of a basin (the light grey one in Fig. 3) inside another (dark grey one in

Fig. 3). In a symmetrical way, the same mechanism works for T�1
2 ðA0Þ. As b increases, the two portions A and A0 in Z 00

2

grow up and reach the horizontal line m ¼ m� (singular line for the inverse). At the moment of the contact of A and A0

with m ¼ m�, the first component of the inverses has a contact with the line m ¼ n, the second has a contact with
Poincar�ee equator at infinity. This gives rise, increasing b when A and A0 cross m ¼ m� and enter Z

0
2, to the appearance of

other portions of the basins on the opposite side of the plane, and this can been seen in Fig. 4 (tongues evidenced by the

arrows). Clearly as b increases further these new tongues from the region Z0 will have a contact with the critical curve
LC, entering the region Z

00
2 , that is: the same mechanism described above is repeated, giving rise to the appearance of

other holes and tongues. We note that in Fig. 4 the attractors are changed, the map T2 possess two distinct (and
symmetrical) cycles of period 12. However, the two colors in Fig. 4 do not have the meaning of basins, they have been

Fig. 3. Bifurcation of the saddle set W SðS�Þ.
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used only to emphasize their frontier which is the stable set W SðS�Þ of the saddle S�, and the contact bifurcations

described above are to be interpreted, for the map T2, as global bifurcations which change the structure of the stable set
of the saddle S�.

3.3. Homoclinic bifurcations leading to strange repellors

We have seen in Fig. 4 that on the invariant set C ¼ C1 [ C2 there are quasi periodic trajectories which are dense in
the invariant set. As often occurs after a Neimark–Hopf bifurcation, as b grows up situations of quasiperiodicity are
followed by ‘‘periodic windows’’ that are opened and closed via saddle-node bifurcations. On the invariant set C two
cycles, a saddle and a node appear, and the unstable manifold of the saddle is composed by arcs of invariants curves

connecting the saddle with the node. This situation leads to the existence of a closed invariant curve made up of a

saddle-node connection (see the qualitative picture in Fig. 5). In these cases the invariant curve C continue to exist, and it
is the closure of the unstable manifold of the saddle cycle, even if the generic trajectory converges to the attracting node.

We notice that C is also an invariant attracting set. Moreover, if we consider the points which converge toward one of
the three points of the cycle for the third iterate, the stable manifolds of the saddles give the frontier of the basins of

attraction, as depicted in the qualitative Fig. 5b. In our model an unusual situation occurs, due to the symmetry of the

map T2. On the closed curve C ¼ C1 [ C2, attracting for T2, two saddle-node bifurcations occur at the same time giving
rise to two attracting 6-cycles and two 6-cycles of saddle type. These two cycles saddles and nodes are, of course,

symmetrical with respect to the vertical axis z ¼ 0. When two coexisting attractors exist, some points converge to the
first attractor and some other converge toward the second one. In Fig. 6 we show one of the two symmetrical attracting

6-cycles. The points which are coloured in dark grey go toward the cycle which is represented in the picture, the light

grey ones approach the other cycle. We recall that the stable set W SðS�Þ (a set of points of zero measure) which converge
to S� always exists and even if it is not clear in the figure, it has the same structure that we have previously seen in the

Figs. 2–4. We also notice that the invariant curve C1 [ C2 depicted in Fig. 2 still exists, but we cannot see it because we
are in a ‘‘periodic window’’. Due to the symmetry, the invariant curve has a peculiar structure being formed by both the

saddle cycles, i.e. C is an heteroclinic connection composed of the unstable manifolds of two 6-cycles of saddle type. Let
us denote by N ¼ fN1; . . . ;N6g one 6-cycle node and by S ¼ fS1; . . . ; S6g the related saddle. The symmetrical ones are
denoted by N 0 ¼ fN 0

1; . . . ;N
0
6g and S0 ¼ fS0

1; . . . ; S
0
6g. In the qualitative Fig. 7 we show the mechanism which occurs in

our case. Because of the symmetry of the map T2, it suffices to consider what happens in one half plane, z < 0, for
example. As it can be seen from Fig. 7, the stable manifolds of the saddles S and S0 form the boundary of the basins of

attractions: the dark grey points converge toward one of the attracting cycle the light grey ones go toward the sym-

metrical cycle. For sake of simplicity we denote by s the invariant set which represents the union of the two saddles (i.e.

s ¼ S [ S0) so also s is an invariant set of saddle type. Thus, what is represented in Fig. 6 is the frontier

Fig. 4. Further changes of W SðS�Þ.
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Fig. 5. Qualitative picture of a saddle-node connection in (a). Qualitative representation of basins for the iterated map, issuing from a

repelling focus in (b).

Fig. 6. Basins of attractors of two symmetric 6-cycles of the map T2.
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F ¼ oBðNÞ ¼ oBðN 0Þ ¼ W SðSÞ [ W SðS0Þ ¼ W SðsÞ ð29Þ

The basin structure is not complex (as it may seem at a first glance) the light grey and dark grey spirals in the figure,

issuing from the points x1 and x2 belonging to the unstable 2-cycle of focus type have W SðS�Þ as limit set. Moreover
some islands can appear in the basins due to the mechanisms that we have explained above. If we repeatedly enlarge the

figure, we will see that the arcs which form F ¼ W SðsÞ are smooth and we notice that there are not contacts or in-
tersections between W U ðsÞ (whose limit set includes CÞ and the boundary of the basins F ¼ W SðsÞ. Hence the saddle
cycles have no homoclinic points, and this is the usual situation occurring when we are in a periodic window, not far

from a Neimark–Hopf bifurcation. Several periodic windows are generally opened and closed, and this mechanism

creates a sequence of different regimes: regimes of quasiperiodic trajectories followed by periodic window of cycles of

different periods (see [14,17]). This also happens in our model. However here we prefer to deal with a particular global

bifurcation, of homoclinic type, associated with the 6-cycle whose basins are shown in Fig. 6. We shall see that this

bifurcation will give rise to the birth of a strange repellor and hence to the presence of ‘‘unstable chaos’’, which causes

the transition from regular basins of the 6-cycles (as shown in Fig. 6) to complex basins of the 6-cycle (as shown in Fig.

12). This ‘‘route to chaos’’ can be explained by analyzing the basins of attraction of the map T2. As we have seen in Fig.
6, the structure of the basins is quite regular, and becomes more complicated as b increases, due to qualitative bifur-
cations of contact type, for which there are ‘‘tongues’’ which come from the region Z0 and enter in Z2. Moreover, as b
increases from the value of Fig 6 the attractors undergo a flip-bifurcation that generates two attracting nodes of period

12. However, we continue to indicate the new symmetrical attractors with N and N 0 and we also remark that the in-

variant closed curve C ¼ C1 [ C2 still exists and is formed by the unstable manifolds of all the saddles. In the qualitative
picture of Fig. 8 we show the mechanism associated with the flip-bifurcation of the node of period 6. A point of the

node (say Ni) becomes a saddle (say Ni) and in the neighborhood of Ni two points of the new 12-cycle appears (Ni;1 and

Ni;2). As it occurs also before the flip bifurcation, the basin of attraction of every node is bounded by the stable

manifolds of the neighboring saddles, that we call in our qualitative picture Si and Sj, and the invariant curve C is made
up of the unstable manifolds of all the saddles, that is, C ¼ W U ðsÞ. We remark that these bifurcations do not change the
dynamics of the map T2 on the boundary F. The restriction of the map T2 to the invariant set F is regular, without
complex behaviour, as long as W SðsÞ \ W U ðsÞ ¼ ;. However a homoclinic bifurcation, associated with infinitely many
unstable periodic points, occurs because of the peculiar structure of the foliation of the map and the existence of the

tongues that we have previously described. The homoclinic bifurcation occurs at a value of b in the interval (0.24476,
0.24477). In fact, when b ¼ 0:24476 there is no intersection between the stable and the unstable manifold of the saddle
set s, whereas for b ¼ 0:24477 the intersections already occurred and an invariant chaotic set exists. In Fig. 9a we show
the basins of the two nodes of period 12 before the homoclinic bifurcation, and we notice in the enlargement of Fig. 9b

that one arc of the frontier (represented by a light grey tongue between the dark grey points) is approaching the in-

variant curve C. At the moment of the contact a homoclinic bifurcation occurs. In fact, as we can see in the enlargement
shown in Fig. 10, after the bifurcation, the light grey arc has crossed C and hence has also crossed the unstable manifold
of the saddle cycle which form C. We recall that the stable manifold of the saddles is given by the frontier of the basins

Fig. 7. Qualitative representation of the structure of the closed curve C1. The other points of the 6-cycle belong to the symmetric curve
C2.
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of attraction, so that for example the points indicated by pi and qi in Fig. 10 belongs at the same time to W U ðsÞ and
W SðsÞ and as a consequence pi and qi are homoclinic points for s. The preimages of pi and qi are infinitely many toward
the point Sj, as can be seen from Fig. 10. A similar process occurs, due to the symmetry, for the dark grey arc near the
saddle Si, so that infinitely many dark grey strips also are created inside the light grey tongues showing the self-similar
structure that is associated with the homoclinic bifurcation. We notice that this homoclinic bifurcation is also called a

Fig. 8. Qualitative picture of the flip bifurcation of the 6-cycle node.

Fig. 9. Basins of the two 12-cycles in (a), enlargement in (b).
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cyclical heteroclinic connection in the sense of Birkhoff who first showed that the same properties occur when the stable

and unstable manifold of a saddle fixed point intersect transversally, say W SðOÞ \W U ðOÞ 6¼ ; where O is a saddle, or
when there are two saddles O and O0 and W SðOÞ \W U ðO0Þ 6¼ ; giving heteroclinic points, coupled with other het-
eroclinic points due to W U ðOÞ \W SðO0Þ 6¼ ; forming an heteroclinic connection (see also [15]). In such a case, for the
saddle set o ¼ O [ O0, due to transverse intersections of W U ðoÞ \ W SðoÞ 6¼ ;, which are called homoclinic points of
nonsimple type by Birkhoff and Smith in [1], the same properties occur as for the homoclinic points of saddle fixed point

(called by Birkhoff homoclinic points of simple type). This kind of homoclinic bifurcation (or cyclical heteroclinic

connection) occurs in our model for the saddle cycles of period 6, S and S0, giving homoclinic points for the saddle set

s ¼ S [ S0. And we recall that the existence of an homoclinic orbit is sufficient to prove the presence of chaotic dynamics

because we can demonstrate that in the neighborhood of the homoclinic orbit there are infinitely many repelling cycles

and an invariant scrambled set on which the restriction of the map is chaotic in the sense of Li and Yorke (see [20–22]).

As b is further increases a reverse flip-bifurcation, or period-halving, occurs so that the points Ni;1 and Ni;2 created near

the point Ni return toward Ni and merge in it, and a stable 6-cycle survives (see the qualitative representation of the

bifurcation in Fig. 11). Thus, the attractors are again two symmetric cycles of period 6, but the homoclinic bifurcations

of s correspond to global bifurcations in the structure of the basins, due to the existence of a strange repellor. An

example is given in Fig. 12, for b ¼ 0:261, we can see that the structure of the basins of attraction of the 6-cycles N and
N 0 are very complicated with a fractal chaotic structure, and the boundary F is an invariant set for T2, on which the
restriction of the map is chaotic. This fact shows how a system may have globally a complex structure in the basins,

even in presence of simple attractors. When the structure of the basins becomes so complicated (really chaotic), it is

difficult to know if an initial condition belongs to a basin of attraction or to another one. This fact leads to a kind of

uncertainty because given an initial condition, we cannot easily foresee which attractor the system will reach, and small

Fig. 10. Transverse intersections between W SðsÞ and W U ðsÞ.

Fig. 11. Qualitative diagram representing the flip-bifurcation, also called period-doubling, followed by a period-halving.
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perturbations in the initial conditions near the frontier of the basins can produce changes in the behaviour of the system

as convergence to different sets.

As b continue to increase the 6-cycle node will merge with the saddle by saddle-node bifurcation and this ‘‘periodic
window’’ on C closes, leaving for the map T2 only one attractor, i.e. the invariant set C, on which there are quasiperiodic
orbits.

3.4. Homoclinic bifurcation leading to a chaotic attractor

As the parameters b is further increased, the two closed sets C1 and C2 constituting C increase in size and approach
the vertical axis z ¼ 0. Clearly a global bifurcation shall occur when the two components shall merge, which is the object
of the present subsection. The transition from a regular attractor to a chaotic one usually appears in a gradual way,

through a sequence of bifurcations, but in the example we are considering in our map T2, this transition instantaneously
occurs in connection with the first homoclinic bifurcation of the saddle fixed point S�. When the invariant set C is made
up of two disjoint curves, the unstable manifold of the saddle S� is given by two branches issuing symmetrically from the

point and converging toward the components C1 and C2 so that the closure of W U ðS�Þ includes C. W SðS�Þ is given by x0
(the vertical axis z ¼ 0), x�1 (the line m ¼ g), and all the preimages of x�1. But as long as C1 and C2 are disjoint we have
W SðS�Þ \ W U ðS�Þ ¼ ;, that is, no homoclinic point of S� exists. In the example we are investigating, the contact occurs

for b� ’ 0:275289. As shown in Fig. 13 the two pieces C1 and C2 have two contact points on the line z ¼ 0: the point A
and its image, the fixed point S�. We note that this contact bifurcation corresponds to the appearance of the first

homoclinic orbit of the saddle S�, so that we call it homoclinic bifurcation of S�. In fact, the point A belongs to x0 and is
mapped by the map T2 into S�, so that the forward orbit of A goes to S�, and we can see that also a sequence of

preimages of A exists, approaching S�, giving an homoclinic orbit of S�, in a situation of ‘‘tangency’’ of W SðS�Þ and
W U ðS�Þ. The two rank-1 preimages of A are the points T�1ðAÞ ¼ A�1;L [ A�1;R belonging to x�1, and among the two

preimages of A�1;L (respectively A�1;R) at least one belongs to the closed set C ¼ C1 [ C2 which is now W U ðS�Þ and so on
iteratively, sequences of preimages of A�1;L (respectively A�1;R) approach S� on both sides. Clearly for b > b� we expect

the appearance of transverse intersections between W SðS�Þ and W U ðS�Þ, and in fact these appear. For example, the
points A and B on the line x0 (z ¼ 0) in Fig. 14a are homoclinic points of S� belonging to two different homoclinic

orbits, and many other exist. When b > b� the attractor suddenly becomes a closed invariant set (see Fig. 14a) with a

chaotic structure. Let us denote with cL and cR two symmetric arcs of the attractor which cross the line m ¼ g and let us
call A�1;L, B�1;L the contact points between cL and the line m ¼ g. In a symmetric way we indicate by A�1;R, B�1;R the

intersections of the same line with cR. It is clear that

Fig. 12. Dark grey and white points belong to the basins of two symmetric 6-cycles of T2.
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T2ðA�1;LÞ ¼ T2ðA�1;RÞ ¼ A

and

T2ðB�1;LÞ ¼ T2ðB�1;RÞ ¼ B

Moreover the points to the left of z ¼ 0 are mapped into points located on the right of z ¼ 0 and viceversa, therefore
T2ðcLÞ is an arc placed on the right of z ¼ 0 (see Fig. 14a) and T2ðcRÞ is an arc on the left of z ¼ 0 both crossing through
A and B. As A and B belong to x0 and their image is S�, T 22 ðcLÞ is an arc, or loop, issuing from S� belonging to the half

plane z < 0, T 22 ðcRÞ is the symmetrical arc as shown in the enlargement in Fig. 14b. And so on, T 32 ðcLÞ is a loop issuing
from S� located in z > 0, T 32 ðcRÞ is the symmetrical arc, and the further iterations give rise to stretched loops issuing
from S� that are quite long and reach the line m ¼ g, with arcs under cL and cR. For these arcs the mechanism of the
images is also repeated. It is clear that from the fixed point S� infinitely many arcs, T n

2 ðcLÞ and T n
2 ðcRÞ for nP 2 exist and

many other arcs cross m ¼ g whose images produce infinitely many arcs issuing from S� etc., this self-similar mechanism

is repeated, creating an attractor with fractal structure which is a chaotic attractor that we can identify with the closure

of W U ðS�Þ.

3.5. Feasible region

We recall that in our model z represents the deviation of the expected value from the equilibrium price p� i.e.

zt ¼ petþ1 � p�

and from an economic point of view the model is meaningful only if

pe ¼ zþ p� > 0

that is, for

z > �p� ¼ � A
Bþ b

ð30Þ

We note however that differently from what occurs in invertible maps the line z ¼ �p� is not the only boundary which
must be taken under control in order to have the region, R say, of feasible trajectories. In fact, such a region R is a

portion of the plane bounded by the line z ¼ �p� and all its preimages of any rank, and being T2 noninvertible, this set
includes something else besides z ¼ �p�. In order to show that this set, say oR, may be involved in some bifurcation we
shall consider a different set of fixed parameter:

Fig. 13. Contact bifurcation: C1 and C2 merge in the point A and in the fixed point S�.
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C1 ¼ 40; C2 ¼ 5; a ¼ 0:6; b ¼ 1:5; B ¼ 0:3; A ¼ 15 ð31Þ

which allows us to show a contact bifurcation between the chaotic attractor and the boundary of the feasible region oR.
In Fig. 15a we show a chaotic attractor which follows the homoclinic bifurcation of S�, as described in the previous

subsection. The unfeasible trajectories are represented in grey and the boundary of that region, oR, is given by the line
z ¼ �p� and its preimages. As b increases, we see from Fig. 15b that the boundary of this region approaches the chaotic
attractor, and tongues from the region Z0 are close to Z2. Thus bifurcations in the structure of the feasible set are
expected to occur. In fact, as we can see from Fig. 15c, the contact bifurcation gives rise to islands of grey points, so that

the simply connected feasible region R (made up of the light grey points in Fig. 15) becomes a multiply connected region

(i.e. a connected region with holes). From Fig. 15c we can see that the grey region is now very close to the chaotic set in

the feasible region. A contact between the chaotic attractor and oR will denote the end for our applicative interpre-
tation, because after this contact the generic trajectory will have negative values in the expected prices in an unpre-

dictable way. We remark that this is a different kind of bifurcation, not related to the dynamic model from a

mathematical point of view, but only to its economic meaning.

Fig. 14. Chaotic attractor which follows the homoclinic bifurcation of S�.
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