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Abstract

Rational expectations models have increasingly been replaced by models with various forms of learning. This
paper studies the global dynamics of a model of renewable resource markets due to Hommes and Rosser [Macroecon
Dyn. 5 (2001) 180] under adaptive and statistical learning systems. The statistical learning system is seen to generate
greater complexity of the structures of the basins of attraction, especially at higher discount rates. An element of
particular interest is that bifurcations generating lobes in the basins arise from particular focal points, associated
with prefocal sets at infinity on the Poincaré equator in the statistical learning model.
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1. Introduction

During the 1970s and 1980s, the rational expectations assumption was considered superior to the
previously used adaptive expectations assumgfibnBut more recently it has come to be realized by
many of the original advocates of rational expectations that it is more realistic to assume that agents
do not initially possess rational expectations but can only move towards that condition through learning
[2,3]. Others besides Sargent have come to emphasize that agents are boundedly rational and must lear
about market dynamics from experience using various updating mechddisnis

Boundedly rational learning mechanisms have been shown to allow agents to converge on rational
equilibria (RE). However, it is well known that there may be multiple such REs and Evans and Honkapo-
hja [8] show that different learning mechanisms can lead to convergence to different equilibria due to
their different transient dynamics. These transient dynamics depend on the global properties of dynamic
processes. This becomes especially important when different equilibria differ in their relative optimality.
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This paper re-examines a model of renewable resource market dynamics initially studied by Hommes
and Rosse[9]. They considered a simple adaptive learning mechanism and showed how agents could
learn to believe in a chaotic consistent expectations equilibrium, even with noise and with a smooth
underlying model. Following previous work by Bischi and Gardit®], this paper will compare the
adaptive learning mechanism with a fading memory learning mechanism proposed by{11jcasd
labeled as statistical that has also been studigd i\nalysis of the transient dynamics and of the global
dynamics follows methods used[t2—14] which have focused on the structure of the basins of attraction
and their boundaries. The statistical learning model exhibits a phenomenon only previously observed in
an economics model ifL5], namely that of lobes in basins of attraction arising from bifurcations at
particular focal points, associated with prefocal sets at infinity on the Poincaré equator (whose definition
will be given inSection 3.

These results extend earlier ones on learning dynamics in non-linear models in which convergence ha:s
been to non-RE attractors or cycles or various forms of complex dynde22] They also extend
earlier results on models that have regular RE attractors but have complex structures in their basins of
attraction, implying potential economic instabili33—-25]

Such structures are significant for the model considered by Hommes and jssspecially when
this is applied to the problem of fisheries, which was its main inspiration despite its more general possible
application to all renewable resource markets. These complexities of basin structure imply that even in the
absence of chaos or other complex dynamics, small perturbations of control parameters can lead to sudde
jumps from one basin of attraction to another. In afishery one could suddenly go from a “good” equilibrium
with many fish and low prices to a “bad” equilibrium with few fish and high prices, an outcome resembling
that generated by some catastrophe theoretic models of fishery cR&EE Such phenomena suggest
that extra care must be taken in the control of parameters in such situations or that efforts may be neede:
to change the nature of the learning processes if they tend to generate such outcomes. In the difficul
world of actual fisheries such efforts are much easier to recommend than they are to implement.

The plan of the work is as follows. IBection 2we shall describe the models, one assuming adaptive ex-
pectations$ection 2.}, recalling the related dynamic behavior as a function of the rate of discHyahg
a new one assuming a statistical learning with fading menteegtjon 2.2, obtaining a two-dimensional
map. Really, we obtain two formulations of this second model. A first one, calledyapwhich we see
that the new model behaves as a standard adaptive one in which the adjustment pasansetplaced
by a time-dependent speed of adjustme@nt. However, this mathematical formulation is quite difficult
to study, as described Bection 4 The second is an equivalent, and easier to study, model obtained by a
change of coordinate, called m&p, whose dynamics are studied3ection 3The asymptotic behaviors,
and thus the attracting sets, of the more sophisticated model are already known, while their basins of
attractions, that is, the complete knowledge of which points converge towards different attracting sets,
are to be determined. This is describediection 3.1and we shall see that the learning process has a
destabilizing effect with respect to the standard adaptive process. This is mathematically described by &
mechanism of formations of particular structures, called “lobes”, of one basin inside another basin. These
results reformulated in the case of the mofiglare very interesting from a mathematical point of view,
as shown irSection 4 because we can explain bifurcations which otherwise are very difficult to under-
stand, as the bifurcations generating lobes are due to contacts at infinity of arcs issuing from particular
focal points, associated with prefocal sets on the Poincaré equator. However, this model becomes mor:
sensitive to parameter changes, that is, a small shock in the state of the system (at any time) may cause
drastic (and worst) change in the asymptotic behavior, as we notice in the concli&satist 5.
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2. Themodels

In a cobweb model representing the price dynamics of a perishable-good market, it is assumed that at a
given timer the demand function of the consumers depends on the currentpricehereas the supply
function depends on the prigg, , expected by producers at the previous tirimewhich they decided their
production. So, if the production delay is taken as the unit time, the market clearing condition becomes
D(pi+1) = S(pf,1)- The model of Hommes and Rosser describef@]nand recalled irAppendix A
draws from essentially textbook models of fishery dynamics. The harvesting model is due to Gordon
[28] and has costs defined by a linear function of effort and harvest defined by a linear function of effort
times the stock of fish. The stock of fish (measured by biomass) depends on a biological growth model
due to Schaefej29] of a simple logistic form. Bioeconomic optimization follows an optimal control
formulation due to Clark30] and is based on sustained yield outcomes with fishers maximizing present
value of future harvests.

Given the present value calculation the discount rate used becomes a crucial parameter. As the discount
rate rises from zero the supply curve implied by the bioeconomic optimization begins to bend backwards
allowing for the possibility of multiple equilibria, an idea first suggested by C¢Bgk An infinite
discount rate implies a maximum backward bend of the supply curve and coincides with the open access
fishery case initially studied by Gord¢a8]. We note that it is not unreasonable to think of the discount
rate as a possible control parameter as it may be influenced by market real interest rates.

Hommes and Rosser show this supply curve to be

Sa(l?;e+1) = f(x§(P?+1)) (1)
where f(x) is a logistic function representing the natural growth rate of the populatiendenotes the
size of the resource population at time

fx) = 1x (1 - %)

the positive constamtrepresents thiatrinsic growth ratewhile the positive constakts the environmental
carrying capacityor saturation level, and solving an optimal control problem, assuming that the fishers’
objective is the maximization of the total discounted net revenues derived from the exploitation of the
resource, the following explicit solution (optimal population level) is obtained Apgpendix A):

*()—]i 1+L_§+ 1+L_§ 2+@
NP = g pagk r pagk r pakr

whereé > 0 denotes theate of discountq is the catchability coefficien{q reflects a combination of
technological and biological conditions that relate fishing effort to the harvest of the fishy, ted
constanimarginal costof fishing effortE. By using the usual linear demand function

D(p) =A—-Bp 2)
we can express the law of motion for the market clearing price in the following form
_ A — Ss(priy)
Prr=F(ply),  F(pfy) =D o S(pfyy) = —— (3)

B
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To close the model we must introduce the learning mechanism used by the fishers to foresee the future
price. In the next sections, we introduce the adaptive learning and the statistical learn{8Yydad

then we shall study the dynamics of the models we will obtain in the two different cases. That chaotic
dynamics can happen in fisheries with backward-bending supply curves was first noted by Conklin and
Kolberg[32], although their model differs somewhat from this one.

2.1. Adaptive expectations

Let us consider first the case in which the producers use a standard adaptive estimation of the expecte
prices, that is, fox € (0, 1):

P = L —a)p] +ap, 4
then the map governing the expected price dynamics becomes:
A — S5(pp)
i =A—-)p;+ aT‘SP’ = g(py) (5)

and it is clear that the sequence of realized prices is obtained from the sequence of expected prices b
p:r = F(p7). Thus, the model reduces to a one-dimensional map which, for the sake of simplicity, we
rewrite in the following form by using = p® and the symbol™ to denote the unit time advancement
operator (i.e. iz is the value of the variable at timehenz’ is the value at time + 1):

A — 85(2)

7 = ga(2), 8.(2)=1A—-w)z+ o (6)

whose dynamics can be easily investigated. Hommes and R&%sdrserved regimes of bistability of

RE, with a backward bending supply curve and reasonable parameter values. Let us briefly recall here
the possible dynamics, by using a set of parameter constellations quite close to those used in Homme
and Rossef9] (which reflect values based on empirical studies used in the work of (38tland the

original study of backward-bending supply curves by CdBé$), that is

A=5241 r=005 ¢=5000 o=0.5 k=400000 ¢g=0.000014 B=0.28
()

assuming’ to be the control-parameter. It is clear that all the dynamics depend on the “shape” of the
functiong, (z) (seeFig. 1).

Let us first notice that we shall restrict our analysis to the positive halfzlined. The complete graph
of the functiong,(z) includes a branch in the negative semi-axis, as showignl However, we can
restrict our analysis to the interval,]@ oo[ without loss of generality because this intervatregpping,
that is, mapped into itself, being, (]O, +oco[) C]O, +o0o[. This means that any initial condition (i.c.
henceforth) withy > 0 will have a trajectory completely in the half-lire> 0.

Itis worth noticing thag, (z) is unimodal. A unique local minimum valueexists at = g,(c_1), where
z = c¢_1 is the point of local minimum, i.e. critical point of the functi@a(z). Following the notation
in [33] (see alsqd34]), we can say that the map has a “rank-1" critical point,ahat is a point having
two coincident (omerging rank-1 pre-images (at 1). As g, (z) has no horizontal asymptotes, the local
minimum value: separates points of theaxis having a different number of pre-images. Points belonging
to the regionZ; =] — oo, ¢[ (seeFig. 1) have only one rank-1 pre-image whereas those belonging to
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Fig. 1. Complete graph of the function given(8) with the parameters given {{7) ands = 0.12.

Z3 =]c, +oo[ have three distinct pre-images. However, when we look for the rank-1pre-images of a point
7/ > 0, we are only interested in the positive pre-images, which are thus either two distinct ones or none.
That is, for anyz’ > ¢ there are two distinct positive rank-1 pre-imageg’oh the positive half-line,

while for 0 < 7’ < ¢ there are zero positive rank-1 pre-images. This structutieeofoliationof the real

axis will be used to determine the pre-images of points and thus the basin boundaries.

At low values of§ the mapg,(z) has only one fixed poinfRE;, with a low value of equilibrium
price and high fish-quantities, that is, a “good equilibrium” (&g 2). But, as we may expect, ds
increases, local and global bifurcations may occurs At §g (o >~ 0.033), RE; becomes unstable via
a flip-bifurcation and then a cascade (or Feigenbaum sequence) of period-doubling bifurcations occurs:
Vn, a stable 2-cycle becomes unstable and gives rise to an attractih@cle. So, as increases, the
low-level attracting set, say, becomes more and more complex, and chaotic dynamics occuli¢s&e
However, such asymptotic states must always belong to a known interval, which is the inteeygl [
wherec, = g,(c) is the image of the critical value.

Increasings, another equilibrium may appear with a high value of equilibrium price and low fish-
guantities, that is, an adverse equilibrium, coexisting (and in competition) with dynamics occurring at
low values.

In Fig. 4, we can see that the graph gf is close to the main diagonal and wh&n- §; ~ 0.1 the
graph ofg,(z) intersects the bisectrix in two more points, causing the appearance of two new equilibria,
one unstableS*, and a stable one, called REas shown irFig. 5. For§ < §;, the good attractor
is globally stable, while foB > 81, a new pair of equilibria appear, one of which persists to be stable
for § greater thas,. Clearly, the new “bad” equilibrium is in competition with the low-attractgrand
only for suitable initial conditions the dynamics will convergeAoThus, it is important to know the
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Fig. 2. One rational equilibriums(= 0.01).

basins of attraction of the two coexistent attractors. These basins are easily determined, once we know
the pre-images of points in the dynamic process.

Foré > 6, the stable set of the unstable equilibrithbelongs to the frontier of the two basins of
attraction. Let; = s* be thez-coordinate of the unstable RE, then the two rank-1 pre-images are given
by two points,s* ; ands*, and as long as we hayg; < c¢ (as it occurs in our cases) this point is without

20000
ga
10000 |
8-cycl
‘/'
0
0 10000 20000

z=p*

Fig. 3. Graph near the tangent bifurcatién= 0.1).
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Fig. 4. Three rational equilibriad(= 0.12)

further pre-images, so we can state (considering the basins only in the halfslir® that the basin of
attraction ofRE; is given by the union of two intervals:

B(RE;) =]0, s* ,[U]s*, +o0.

20000[ |
RE

299
10000 |

chaotic

attractor

-

0L7S
0o 10000 20000

z=p°®

Fig. 5. Low level chaotic attractos (= 0.5).
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The complementary set is the basin of the absorbing interyal][which includes a different attracting
SetA:

B([c, c,]) =]s* 4, 5[

The basin of attraction of the attractare [c, c,] is the interval }* ,, s*[ without at most a denumerable

set of points, for example, whehis a cycle we have to exclude from the interwl,], s*[ the point RE

and the points belonging to repelling cycles, as well as their pre-images of any rank. Thus, we can end
the analysis of this one-dimensional model with the following proposition:

Proposition 1. For anyé > §; there exists a low-levéigood' attractor A, coexisting withRE; and in
competition with itand the interesting dynamics occur for. in the interval]s* ;, s*[, the basinB(A)
being the interva]s* ;, s*[ except at most a denumerable set of points
2.2. Statistical learning with fading memory

The second learning mechanism we are interested in, called statistical by some futlthid] is

obtained by assuming that at any timagents compute the expected price for the next timiel) as a
weighted arithmetic mean of past realized prices

t

e _

Pry1 = E aik Pk
k=0

and weights
t
ax>0, k=0,...,t and Zatk=1-
k=0

With this assumption the discrete dynamical systerBirbecomes a recurrence “with memory of the
past”

t
Pt+1 = F(P;e+1), p?+1 = Zatkpk- 8)
k=0

It is natural to assume (see, €[85]) that recent prices are given higher weights than older ones. Thus,
following [12,14,36] we shall assume weights which are exponentially decreasing as the terms of a
geometric progression with memory ragce (0, 1):

SR
) Wt = pt7 .
Wi k=0

With these geometric weights, the expected prices are given by

dik =

! t—k

o
eSS P €)
k=0
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or, equivalently,

W, -1 1
Pia= T,pf + tht (20)
which, by defining
1
- = 11
o W, ( )
may be rewritten as
P?+1 =(1- at)P;e + o p;. (12)

It shows that the expected prices are revised at each time period, in response to the forecasting error
of the previous period, in a way similar to the mechanism of adaptive expectations propgged in
with the difference that the adjustment parametet (0, 1), a constant there, is now replaced by a
time-dependent speed of adjustment given by a decreasing sequgneéh «, < (0, 1) for eachr, and
such thaty, — (1 — p) ast — +o0. It is clear that by properly tuning the memory ragipdifferent
degrees of memory can be obtained: for small values tife memory of past prices vanishes very quickly
and the limiting cas@ — 0 reduces to static expectations. The other limiting vatue; 1, describes
the case in which all the previous prices are equally considered to compute the expected one. In order
to compare this mechanism with the adaptive on@jnwe shall considesx = 1 — p, i.e.p = 1 — «,
because we shall see that in this case the two different models are governed by the same one-dimensiona
“limiting map” given in (6).

If we replacep, in (12) with its expression given irf3), we obtain anon-autonomousirst-order
difference equation (known in the literatureMann iteration(see, e.g[13,36)):

p;e+1 =1~ Olt)PE + Ot,F(pte). (13)

In general, the study of the basins of attraction for the attractors of the recuE3jde not an easy
task, since its limit sets are not invariant sets. However, taking into account that the partial sums of the
geometric weights can be defined recursively as

W,=1+pW,_1 fortr=1,2,...; Wy=1
or
oz,:L forr=1,2,...; ag=1
a—1+p

a two-dimensionahutonomousystem forr > 1 can be obtained frorf13):

p?+1 =1~ Otz)p? + atF(pte)
T, : o1 with i.c. (p$, @o) = (po, 1). (14)
oy = ——
' -1+ p
The mapT7, is equivalent to(13) because the projection on thé& axis of any trajectory o{14) (i.e.
any sequence op; values from that map) is also a solution @f3) associated with the same i.c.
(pﬁ, ag) = (po, 1). Thus, the study of the non-autonomous recurrgd&® is reduced to the study of
the two-dimensional magl4) with initial conditions only on the liney = 1. To rewrite the map as an
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iterative process, we introduge= p® as in the previous section and obtain the following two-dimensional
map:

/ P o
7= pi+ F(p)
oa—+p a+p L e
T, : o with i.c. (zo, 1) = (p7, 1) = (po, 1) (15)
o =
o+ p

and following[10], we also write the equivalent forms with different weights:

1 1
Pry1 = (1— W) p;+ WtF(P;e)

Tw : with i.c. (p3, Wo) = (po, 1) (16)
Wi=1+pW; 1
or
w
7= 4 F(2) o .
Tw 1+pW 1+ pW with i.c. (z0, 1) = (p$, 1) = (po, 1). (17)
W =1+ pW

Clearly, in the maps written above, we have to substif() and F(z) with the expression derived for
the fishery model as describedSection 2that is

_ A — S[s(Z)

F(z) 3

(18)

We remark again that even if the maps written above are two-dimensional, we are interested only in initial
conditions belonging to the line = 1 or W = 1, called thdine of initial conditions However, as we

shall see, the basins of attractiomustbe studied with two-dimensional techniques even if the attracting
sets only depend on the one-dimensidimaiting map

81-p(2) = pz+ (1 — p)F(2) (19)

whose dynamics are completely known, and have been commented on the previous section (by writing
o = (1—p)). Tosee this, itis enough to consider the second equation of the two-dimensional maps, which
are independent fromand describe two monotone sequences: one decreasiagohconverging ta* =

(1 - p), the other increasing iW and converging t&v* = 1/(1 — p) (being partial sums of a geometric
series of ratigo). The reason why we have maintained the double notation for the model with fading
memory, by using the adjustment parametera,as W, is the following. Although the model written

in (12) and(15) with «; seems more suitable for an economic interpretation of the state, the dynamical
properties (basins and their bifurcations) of that mathematical formulation are much more difficult to
study. With the help of the second formulation(it0) and(17) with W,, this difficulty is overcome and

we can have a complete understanding of the fate associated with any given initial condition. This study
will be done in the next section, in comparisons with the standard adaptive model, whdetion 4 we

shall return to the other formulation and describe the dynamical difference in using the model. with
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3. Basinsof themap Ty

In this section, we shall consider the dynamic model with statistical learning which reduces to the
map Ty given in(17). The stability of the attractors of the model, all belonging to the lihe= W*
(W* =1/(1— p)), as noticed in the previous section, and their basins of attraction, can be studied on the
basis of the following proposition stated[h2].

Proposition 2. Let A be a k-cyclek > 1, of the mapg1_,(z), 0 < p < 1.Then

(i) if Ais attracting for the limiting mag1-,(z), then the sefd = A x {W*} is an attracting cycle of
the mapTy, and F(A) is an attracting cycle of the model with statistical learring
(i) the basin of attractiorB of the attractorF(A) of the model with statistical learning is given by the
intersection of the two-dimensional bagiof the cycle A of the mapy, with the line of initial
conditionsW = 1;
(iii) any invariant set of the map, must belong tdv = W* (line of w-limit setg and is transversally
attracting

We recall that the cage= 1 (cycle of period 1) corresponds to a fixed paihof g(z), andF(z*) = z* is

a RE, since the fixed points gfz) are also fixed points af(z). FromProposition 1we can deduce that

the attractors of the recurren¢E3), and their stability properties, are the same as those of the limiting
map(19) and, moreover, we have the procedure to obtain the basins of attraction and their boundaries.
This is particularly important when we have two coexisting attractors. In this case, the basin of attraction
B of an attractor of the recurren¢#3) is given by the intersection of the bad#of the corresponding
attractor ofTy with the line of initial conditions:

B=BN (W =1).

To summarize, in the cases of multistability the knowledge of the exact structure of the basins of attraction
is crucial. Such a knowledge cannot be obtained from the limiting gap(z), because the initial
conditions are to be taken on the lile = 1 whereas;_, only governs the asymptotic dynamics on

the line ofw-limit sets W = W*. This means that only a global analysis of the two-dimensional map
Tw allows us to follow the whole trajectory from the line of initial conditions to that ofdhkémit sets,

thus taking into account the role of the short-run behavior, in which the dynamics are not governed by
the limiting mapgi—,. Even if the trajectories of the mafy starting from the line of initial conditions

are entirely included in the strip of phase plapeW) with W € (1, W*), we shall study the properties

of the mapTy in the whole phase plane, because, in order to understand the properties of the basins, a
global study of the action of the inverses is necessary. In fact, we first have to determine the basins of
attraction of the two-dimensional mdj, and this is obtained by considering the pre-images of a suitable
neighborhood of the attracting sets located on the line-biit sets. We recall that a closed invariant

setA C {W = W*}is called asymptotically stable (or attracting) if a neighborhdodf A exists such
that 7Ty (U) € U andTy, (z, W) — A asn — +oo for eachx € U. Then, the basin of attraction df (a

stable equilibrium or a more complex attracting set) is the open set of points which generate trajectories
converging toA:

B(A) = {(z, W) : T}y (z, W) — Aast — +00}.
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B(A) may be obtained by taking all the pre-images of the points in the neighbothhood
B(A) = U2, Ty, (U),

where, inthe case of a non-invertible m@R,’ (x) denotes the set of all the pre-images of rankn, i.e. the
set of all the points that are mapped intaftern applications offy, . So, the study of the two-dimensional
basins involves the inverses of. In this case, we have that the properties and the qualitative changes o
its basins are strongly influenced by the presence of the denominator which can vanish along the line
W = —1/p and, in particular, by the points at which the first componerfphas the form 90. Some
general properties of two-dimensional maps with a vanishing denominator have been st{@ife8dh
and this particular class of triangular maps have been studi@8jnin these papers, itis proved that the
presence of points where a component of the map assumes the fOrmalledfocal points may have
important consequences on the structure of the basins and their global bifurcations, because fans of basi
boundaries arise from them giving peculiar finger-shaped structures taies!

The rational mafdy we are interested in is not defined on the whole plane, because the denominator
of its first component vanishes for points belongings to thelihe- —1/p, called thesingular lineof,
and briefly denoted by,. So, to have a well defined two-dimensional recurrence the singular line and
all its pre-images of any rank must be excluded from the set of definiti@i oBy inverting the second
component of'y, we obtainW = (W’ — 1) /p from which we deduce that the points mappediyonto
the singular lines, are those belonging to the lide! of equationW = —(1 + p)/p?, which is below
8. In a similar way, we can also argue that the points which are mapped onto the singular line after
iterations ofTy, are those on the lin&™ of equationW = —(1 — p"+1)/(p"*! — p"*+2), and these lines
are all belows;, beings; Y belows, " for alln > 1. Thus, the pre-images of any rankspbelong to a
sequence of lines located in the half pla#ie< —1/p (out of interest for the application) and the domain
of definition of Ty is given byE = R? \ U 5"

Summarizing, the trajectories with initial conditions on the lille= 1 are entirely included in the
region of the phase plare, W) with W € (1, W*). The properties of the map, which are of interest
in the economic context must be studied in the regior (—1/p, W*), because the basins’ bifurcations
start in that region (associated with thiagular line) Let us recall the following definition.

Definition. A point Q = (x¢, yo) is a focal point of a maffy if at least one component @fy assumes
the form 0 in Q and there exist smooth simple angs), with y(0) = Q, such that lim_ oTw (y(1))
is finite. The set of all such finite values, obtained by taking different aigghroughQ, is called the
prefocal seby,.

Roughly speaking, a prefocal curve is a set of points for which at least one inverse exists that maps (or
focalizes) the whole set into a single point, calfedal point

For maps with a vanishing denominator, new kinds of contact bifurcations have been recently evidenced
in [37,39] These bifurcations involve theingular ling thefocal pointsand theprefocal setin particular,
contacts between basin boundaries and prefocal curves may cause the creation of new kinds of structure
of the basin boundaries denotedlabes The existence of lobes, issuing from the focal points, has
important consequences on the structure of the basins of attraction of the model with learning whenever
they intersect the line of initial conditior® = 1. This occurrence causes the creation of one dimensional
basins with complicated topological structure, such as basins formed by many disjoint intervals, also with
a chaotic structure.
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As only the first equation ofy, has a denominator, which vanishes on the singularWine —1/p,
the focal points ofly, must necessarily belong to this line. On this line the numerator vanishes only for
z such thatF(z) = z, that is, for every fixed point of the functiofi which are also fixed points of the
limiting mapg1—,. So, a focal point is always expressed(by, —1/p), wherez* is a fixed point ofF(z).
This implies that the focal points of the ma@p are related to the existence of RE, since on all the points
(z*, W*), wherez* is a fixed point ofF(z), the first component dfy has the form @0.

In order to evidence the role offacal pointand the relategirefocal setin the dynamical behavior
of the mapT, we briefly describe here some geometric property (for more details we refer,89).
The mapTy may be non-invertible, the number of distinct inverseg'pfdepends on the structure of
the functionF(z). In general, ifF(z) hasN distinct fixed points, i.eN distinct RE (and thugy also has
N fixed points) then the prefocal line must belong to a redfan whose points hav&y distinct rank-1
pre-images. The following proposition is proved 89].

Proposition 3. If F(x) hasN fixed points satisfying”’ (x*) # 1then

(i) Tw hasN focal pointsQ; = (z}, —1/p) all associated with the same prefocal lifig of equation
W =0;
(i) the prefocal line offy, belongs to a regior¥ y whereTy, hasN distinct inverses
(iii) for each focal poinD; the mapTly defines a one-to-one correspondence between the glgian
arc y in Q; and the pointu, 0) in which the imagd (y) crosses the prefocal curdg given by

F'(zH) -1
m— (u,0): u:z?‘—l—L
om
; (20)
_ F'(zj) -1
,0) >m: m=—"——
,O(I/l—Z,-)

From the properties of the prefocal set, we can easily deduce the behavior of the rank-1 pre-images of a
smooth areg) which intersects the prefocal lidg at one pointu, 0). Taking the arg in the regionZ v (see
the qualitative sketch ifig. 6), then theN distinct rank-1 pre-images of say7, 1(r;) i=1...,N,
are arcs that intersect the singular line in the focal pofis= (x*, —1/p), with slopem, as glven in
(20): m;(u) = (F'(x}) — 1)/ (p(u — x7)).
Some consequences of this correspondence, important for the characterization of the basin boundaries
and their bifurcations, are deduced by considering a smooth erersecting the prefocal line in two
points, say(u1, 0) and(u,, 0), as showrFig. 7, then each rank-1 pre-image mfsayT‘;l_l(n), has a loop
with knot in the focal poin®2; = (x}, —1/p), and we have the following:

Proposition 4. Letn be an arc which crosses the prefocal line in two paqisgs/(11, 0) and(u», 0), and
let7 ! be an inverse ofy which applies to all the points of. Then each pre- imagg - 1(;7) intersects
the smgular line at a focal poin@; = (z}, —1/p) forming a loop with a double point |Q, The slopes
of the two tangents i®; are given byn; («;) andm;(u,) according to(20).

From this proposition, we can easily deduce the kind of contact bifurcation that occurs when a smooth
curve segmeni moves toward the prefocal ling, until a contact occurs followed by a crossing, as
qualitatively shown inFig. 8 asn moves towardiy, its pre-images move toward3;, and wheny
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becomes tangent 8, in the point(u,, 0) then each pre-imagg ; = T~ 1(77) has a cusp point i@;. The
slope of the common tangent to the two arcs that joi@jns given bym (u.), according tq20). When
the curve segmentcrosses,, at two points, sayu1, 0) and(u,, 0), then its pre-images gives loops with
double points at the focal poing;.

Of course, whem is a portion of a basin boundary, a contact betwgands, implies that a loop is
created on the basin boundary, because a basin boundary includes all the pre-images of any portion of it
and the portion of the basin inside the loop is a lobe Eged).

Now, let us consider the forward iterationBj . It is easy to see that the image of ramkf the prefocal
line W = 0 belongs to the line of equatidi = W, where

1— n+1
w,=-_F* (21)

1-p
\ /I "my(U)
ml(u‘}\\ /T
N ,(Q‘ S

4

Fig. 6. Pre-images of an arc crossing the prefocal line at one point.

w

1
/_\ 5
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Qm(m T,,)
/\Q, /\Qg

z

Fig. 7. Pre-images of an arc crossing the prefocal line at two points.
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Fig. 8. Contact bifurcation with the prefocal set.

i.e. these images constitute a sequence of lines parallel to the prefocé} limed converging to the

line of thew-limit setsW = W*. Thus, any cycle belonging to thelimit set W = W* is transversely
attracting, and this property is important in order to study the boundaries of the basins. In fact, we recall
that in general the boundaries of a basin are obtained by taking the stable sets of some cycle on it. In the
case of mapdy such cycles can only be of saddle type, and located on the lineliafit sets. To get

the stable se#* of a saddle it is enough to take the pre-images of any rank of a local stalikg sehat

is W8 = U . T~"(Wp,), whereWp  is transverse to the lin@ = W* and its pre-images cannot have
other cycles at finite distance as limit sets, since all the cycl&@%,dielong to the line% = W*. Thus,

due to the expansive characterqul along theW direction, such pre-images must necessarily reach, in

a finite number steps, the prefocal li#é = 0. In this way, all these pre-images must necessarily cross
the singular ling% = —1/p through focal pointg);. From this observation, it follows that the stable set

of any saddle cycle dfy,, obtained by taking the pre-images of a local stable set, is made up of branches
issuing from the focal points, as stated in the following proposition:

Proposition 5. All the branches of stable sets of all the saddle cycles of the Fpagre “focalized’
through the focal points

From the arguments given above, it follows that if we consider an,ashich intersects the ling, at
two points, therTv;_l(n) crosses the singular line at a focal pofitforming a loop. So. if we consider an
arcnpwhichintersectsthe lind = W;, j =0, 1,..., (n — 1) attwo points, then the set of the pre-images
of rankn, Ty," (n), can includeN” lobes issuing from the focal poing,, . .., Q. This behavior applied
to the stable manifold of the saddle cycle (unstable RE) constitute the global mechanism causing the birth
of particular structures which cause the difference between the adaptive model and the statistical one, as
we shall see in the next section.

3.1. Basins in the fishery model

Up to now we have analyzed properties of the rigpthat hold whatever the functiof(z) is in its
definition. In the following, we shall see the behavior of the rigpwhen F(z) is the function defined
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in (18) and inSection 2 We are interested in comparing the model with statistical learning with the one
with standard adaptive expectations considereSidation 2 Thus, let us consider the parameters given

in (7), assumingp = 1 — o = 0.5, so that we already know that for© § < 8o the good equilibrium

RE;s, and fordy < § < 81, the good attractod, are globally attracting for the limiting map. This is also
true in the model with statistical learning, as no alternatives exist. So, except for a denumerable set of
points (of zero Lebesgue measure), any(izg, 1) belongs to the basin of the attractor. Clearly, things
change as the parameteincreases. Fa¥ > §; on the line ofw-limit sets W* = 1/(1 — p)), there are

two coexisting stable attractors, REndA while $* = (s*, W*) is a saddle equilibrium whose stable set
W3(S*) separates the two basins of attractiBRE;) andB(A). We know that for maps of this kind the
vertical line through an equilibrium point belongs to its stable manifold, thus the local stable manifold of
S* is the linez = s*, which we shall denotey, and the global stable manifold §f, WS(S*), is obtained

by taking all the pre-images of any rank®:

w(s*) = (J Tyy" (@o)-

n>0

We can see the structure of this set directl{ig. 9. On the line ofw-limit setsW = W* there are the
equilibriaS* andRE,, and the cycle, and the picture shows the basins for the two-dimensionalfpap

the points in grey belong to the badiiRE;) while those in light grey belong t8(A) (those in dark grey

will be explained below). Thus, the corresponding intervals on the liaelohit sets withz > 0 denote

the basins of attraction of the two attractors under the standard adaptive mechanism, and are the sam
basins already commented $ection 2(the basin ofA is the interval §* ,, s*[ and the complementary
setinz > 0 is the basin of REmade up of two intervals), while the intersection with the line of initial

0 8000 7=pe 16000

Fig. 9. Phase plane for the m&fy, the points in gray belong to the basB(RE;) while those in light grey belong to
B(A)(§ = 0.12).
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conditionsW = 1 gives the basins of attraction for the model with statistical learning. We can see in
Fig. 9that B(A) = B(A) N (W = 1) is still a connected interval, say I =]s;, s*[, which is slightly
smaller thang*;, s*[. This situation persists for values &fn a (small) right interval 08;.

The structure of the stable set$fis influenced by the presence of the focal points of the map on the
singular linesg, W = —1/p, mainly of O, and Q3. When§ > §;, there are three focal points located
on the intersection between the singular bgeand the vertical line through the equilibrium points. The
stable set of* is clearly observable ikig. 9, being the boundary separating the two basins of attraction
(i.e. the frontier between the points in grey and those in light grey): the local stable manifold, the vertical
line wp, z = s*, crosses the focal poin®, associated with the fixed poist, the rank-1pre-image is
denoted byw_1, and is a curve which crosses the focal pahitassociated with the stable equilibrium
REs, the pre-image of rank-2 afg includes a curve denoted hy_, which crosses the focal points
0», Q3 andQ1, the pre-image of rank-3 includes a curve denoted bywhich crosses the focal points
0>, 03, and a curve denoted lay 4, which approaches the focal point from below, and so on. Let us first
remark how the existence of the focal points (although in a region out of interest in the applied model)
causes global bifurcations in the structure of the basins which lead to different trajectories and different
asymptotic behavior associated with the same i.c. in the two different kinds of learning mechanism here
considered. For low values &f as it is the case representedriy. 9, there are not many differences
between the basins of attracti®iA) in the two models (with adaptive expectations and with statistical
ones), and similarly foB(RE;). However, we can see Iig. 9that the arev_; has crossed the prefocal
line W = 0, let us say at the bifurcation valdg (5., >~ 0.09), and is approaching the region of interest,

i.e. the line of initial conditiondV = 1, asé increases. Whes_, has a contact with (and then intersects)
the prefocal lineW = 0, até,,, two branches ob_3 have a cusp at the focal poinfs and Q3 and then
cross the focal points creating lobes of the bad%iRE;), as can be seen kig. 9, and whenw_; has a
contact with the linév = 1, say at the bifurcation valug,, the two lobes bounded lay_3; have a contact
with the prefocal liné¥V = 0 andw_4 has cusp points at the focal points ($&gs. 10 and 1)} preparing
the creation of four new lobes issuing frofly and Qs for § > 4.

It is clear thats., denotes the first contact bifurcation for the model with statistical expectations, as
the contact between the bounda#§(RE;) and the line of initial conditiondV = 1 (via the araw_»),
changes the basiB(A) because fos > §., the basinB(A) is no longer an interval but it will be the union
of two intervals (fors not far fromé,, ):

B(A) = B(A)N{W =1 = LU L.

The two intervals are separated by a portion of the basin of the other equilitBidRi;) = B(RE) N

{W = 1}, as shown irFig. 10 We can equivalently say that in the previous inteval“hole” of points
belonging to the other basiB(RE;) has been created at this first contact bifurcation. Fragn 11, we
can also see that the second contact bifurcations between the bodi#dRE) and the line of initial
conditionsW = 1 (via the two arcs of»_3), just occurred, say &t= §.,, at which value four, 2 arcs
bounded by»_4 have a contact with the prefocal $8t= 0 and 2 arcs bounded by _s are issuing from
the focal points creating new lobes. Bot §.,, the basinB(A) is no longer made up of two intervals as
it will be the union of four intervals (foé not far from$,,), or, equivalently we can say that two more
“holes” of the basinB(RE;) will appear in the old interval. And so on: a very fast sequence of contact
bifurcations occurs asincreases, causing the transition of the baia) from the union of 2 intervals

to the union of 2! much smaller intervals, and increasing, in number and in size, the “holes” of the
basinB(RE,) inside the old interval.
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0 8000 ~ z=pF 16000

Fig. 10. MapTy, . First contact bifurcation for the basins£ 0.18).

o 8000 2=p° 16000

Fig. 11. MapTy . Second contact bifurcation for the basifs0.9).
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As we have already noticed, on the lile= W*, the basin of the equilibrium is always the connected
interval Js* ;, s*[. Thus, we can conclude that different dynamics occur with the two different mechanisms
for the expected values, as whenever we take an &Czg in one of the “holes” of the old intervdl, we
shall obtain a sequence of states converging to the good attradhothe case of adaptive mechanism,
while with a more sophisticated learning mechanisms the states will converge to the bad equilibfium RE

Moreover, this is not the only difference of behavior between the two mechanisms. In fact, as we
have remarked iSection 2the model with standard adaptive expectations is always “well posed” in the
positive axisz > 0, as by iterating the mag,(z) any i.c. withzo > 0 will give a sequence of positive
values which is convergent somewhere, either to the bad equilibriupoRiB some different attracting
set in the bounded interval”];, s*[ (and this can be observed also on the linedfmit setsW = W*).

This is no longer the case in the model with statistical learning. In the figures of this section there is also
a dark grey region which we have not yet commented on. The verticakaxi© separates points of

the half planez < 0 from those having > 0 so that the pre-images of any rank of this line separate
points which belong to the basi®(RE;) from those having at least one state in the region 0, and

that we shall calunfeasible That is: the dark grey points denatefeasiblestates, as any point belonging

to the dark grey region has a trajectory with a state in the half pdane0, reached in a finite number

of steps.

Itis worth noting that for the values of the parameéteonsidered in the previous figures the unfeasible
region is unimportant for the economic model because that region has no contacts with the line of initial
conditionsW = 1, but we may expect that &sncreases there will be a contact, followed by a crossing,
between the dark grey region and the line of initial conditions we are interested in. In fact, the boundary
of the dark grey region is obtained from the pre-images of any order of the kad®, and also these
pre-images follow the usual rules of the inverses of such kinds of maps, and are influenced by the existence
of the focal points. Whenever an arc crosses the prefocaline 0 in two points, then its pre-images
issue from the focal points creating lobes, and when this occurs to the boundary of the dark grey region
we get lobes belonging to the unfeasible regions Agcreases the arcs move toward higher valugg pf
so that it is reasonable to have crossing also of thelline 1.

We end this section by noticing the remarkable differences between the adaptive mechanism and the
statistical one, as for a wide interval of values of the parandates basinB of the low-level attractoa
is disconnected and may also have a fractal structure, and for many initial conditiels$ ,, s*[ (which
may also be the widest part) the model with geometric memory converges towardiEhere exist,

i.c. also very close tal, which may have non-admissible trajectories.

4. Dynamics and basins of the map T,

From an economic point of view it would be of interest to study directly the dynamic behavior of
the model with geometric memory as given(itd) (or in (15)), because the adaptive parameters
which change in time, are susceptible of an economic interpretation. Clearly, taking into account that
a, = 1/ W,, in this section, we are not giving new results, because the sequgreseasily be deduced
from the W;. However, we shall describe the study of the mafilib) because it is quite different from
the study performed in the previous section, and it gives us the opportunity to show how the bifurcations
in two-dimensional non-invertible maps may occur via contacts at infinity, on the Poincaré equator (PE
henceforth).
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Thus, in this section we consider the two-dimensional mgg%), which we rewrite for convenience:

/ '0 e o e
7= P+ F(p;)
o+ p oa+p o e
T, : o with i.c. (z0, 1) = (p1, 1) = (po, D). (22)

The mapT, is not defined on the whole plane because the denominators of both components vanish
on the lineds of equation

ds: o=—p (23)

so thatT, is well defined only if we exclude the singular line from the phase plane as well as its pre-images
of any rank. The pre-images 6§ belong to a sequence of lines located abéyethat is, in the strip
—p < a < 0. Infact, itis easy to invert the second componenf,obbtaining

__xp
i

from which we have that the points mappedZyon the singular linés in one iteration are the points
of the linesg of equation

o

2

_1+p

which is located abovés, and so on, the points mapped on the singular line aftirations of7, belong
to the liness" of equation

st a= (24)

n+1 n+l _ n+2

—p p p
B > ko P T1- Pt ()

We remark that all these lines are located ab&yes the Iineﬁg(””) is higher tharsg" for » > 1 and
have the linex = 0 as the accumulation set when— +oco. Thus, the domain of definition of the map
T, is given byE = 2\ U, 85"

We already know that the second component pfjives rise, starting fromg = 1, to a decreasing
sequence of; values converging te* = 1 — p ast — oo, so that the limiting map of, is the
one-dimensional mag = g1 ,(z) located on the linez = «*, called the line ofv-limit sets.

As the mar,, has a vanishing denominator in the points of thedine —p, it follows that focal points
must necessarily belong to it. @n= — p the numerator of the first componentifbecome|[z — F(z)],
thusitvanishes if and only f(z) = z, thatis, at each fixed point of the functiéghand also of the limiting
map. It follows that the first component &f takes the form 00 in the pointsQ = (z*, —p), wherez* is
a fixed point ofF(z) (and thus a RE). In our model, considering th&t) is the function defined i(l8),
we have that fob > 8, three points of this kind exist, denoted B, O, and Q3, associated with the
equilibria RE, S* and RE, respectively, and it is immediate to see that such points are particular focal
points of T, due to the fact that both the functions definifighave a vanishing denominator. In fact,
although the first component @, has finite limiting values, on different arcs which cross these points,
the second component &f is always divergent. Thus, the values that usually constitute the prefocal set
in the mapr,, are now at infinity and thus belong to the PE. However, a one-to-one correspondence can be

—n .
3"«
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established between the slopes of arcs thra@gimd the points on the PE (which recalls the one existing
for the focal points, given ii20) for maps having only one function with a vanishing denominator). To
see this, let us consider an artransverse tés in a pointQ = (z*, —p), represented in parametric form

by
2D ="+ ET+ETP -
r(v)

T #0. (26)
W) = —p + mt + nat? + - -

To study the shape of the sEf(y), let us assume thatis deprived of the pointz*, —p), so that the arc
can be considered as the union of two disjoint piecesysayy, U y_, wherey_ andy, are obtained
from (26) with T < 0 andt > 0, respectively. Considering the imaggy) we have

lim T(y()) = (z* + pé[F/(z*) - 1], qEOO) (27)
=0+ n1

thusT,(y) is made up of two unbounded arcs, located on opposite side of the phase plane, issuing from
the point(27) of the PE. Lein = n1/&; be the slope of the tangent to the arin the point(z*, —p), we
may write

im T(/(0) = (um, F00), With wu, = z* + pF(Z—)_l. (28)
=0+ m

As m varies inR\ {0} we obtain all the points of the PE. Thus, we may extend the definition given in
[37,39]and quoted irsection 3for maps having only one function with a vanishing denominator, to maps

in which both the functions have a vanishing denominator. The pgingse particular focal points &f,,

as all the arcs crossin@; with slopem are mapped b¥, in two unbounded arcs which are transverse to
the PE in the pointu,,, F00), whereu,, is given in(28) with the suitable value of*, and the prefocal set

does not assume finite value, being the PE. And we already know that the @pim$ésume a particular
importance in the explanation of the bifurcations occurring in the basins of attraction. Moreover, also the
points at infinity, that is on the PE, are endowed with properties similar to those of the prefocal line of
the mapsTy . In fact, the pre-images of an arc crossing the PE give loops issuing from the focal points,
and thus lobes in the basins.

We now describe the sequence of bifurcations concerning the basins of attraction of thg,map
considering the same cases of the previous section (that=#s0.5 and increasing), considering the
figures giving the basins of the two coexisting RE dof §;. In Fig. 12 the equilibria are evidenced on
the line ofw-limit setsa = a* = 1 — p, the basi3(RE;) is made up of grey points while the bagigA)
is the one in light grey and, as in the previous section, the dark grey points denote the unfeasible set of
i.c. whose trajectories enter the half-plane: 0 (and the frontier is made up of the pre-images of any
rank ofz = 0).

The intersection of the basins with the lin& = 1 — p gives the basins for the model with standard
adaptive expectations, and we already know that the basini®the interval §* ;, s*[. The intersection
of the basins with the line of initial conditions = 1 gives the basins for the modg] with statistical
expectations, and we already know that the basi, &r 5 close tos,, is an interval smaller thenq,, s*[.

The stable set of the sadd§é gives the boundary of the basins of the two equilibria, and the local stable
manifold is always the line = s* denoted byvy, crossing the singular line in the focal poi@is, and we
can see that the rank-1pre-image includes amvatccrossing the focal poin@s, the rank-2 pre-image



562 I. Foroni et al. / Mathematics and Computers in Simulation 63 (2003) 541-567

0 10000 z=p°® 20000

Fig. 12. Phase plane of the m@p(s = 0.12).

includes an arw_, which issues from the focal poin3; and Q», bounding a portion of basii(A)
denotedA; in Fig. 12 As § increases, this portioA; increases going down towardsx of the z-axis
and the contact with infinity, i.e. the contact with the PE occurs at the bifurcation §glatwhich two
arcs ofw_3 have cusps in the focal points preparing the creation of two lobes issuing from them. For
8 > 4., the portionA; crosses the PE creating a new area coming from abgwe ¢f the z-axis) and
denoted byA, in Fig. 12 and at the same time the two lobes boundedby are going down towards
—oo of the z-axis, and the contact with the PE occurs at the bifurcation valyeat the same time?2
arcs ofw_4 have cusps in the focal points preparing the creation of four new lobes issuing from them.
At § = é.1 the first bifurcation of the basins occurs because the portioof the basin3(RE;) reaches
(from above) the line of initial conditions = 1 (seeFig. 13.

Foré > §.,, the basin we are interested in becomes disj@) = B(A) N {a = 1} = I1 U I, that
is, in the previous interval a “hole” of points belonging to the other baskiRE;) has been created at
this first contact bifurcation. Far > §.,, the two lobes bounded hy_3 cross the PE giving rise to two
new lobes coming from above-po of thez-axis), reaching the line of initial conditions &= 4., (see
Fig. 14), and at the same time thé arcs ofw_4 (going down towards-oo of the z-axis) have a contact
with the PE and 2arcs ofw_s have cusps in the focal points preparing the creation of eight new lobes
issuing from them. Fo8 > §,,, the basinB(A) is made up of 2disjoint smaller intervals, that is, in the
previous intervall three “holes” of points belonging to the other basifRE;) have been created. And
so on, infinitely many contact bifurcations occur with the PE (and thus with the line of initial conditions),
modifying at each contact the structure of the basins for the model with statistical learning.

We end this section observing that we can clearly describe the contact bifurcations with the PE due
to our knowledge of the properties of the mAp, and the results observed in this model with the map
T, are important not only for the economic interpretation of the model (which can be obtained also in
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0 10000 z=p¢ 20000

Fig. 13. MapT,. First contact bifurcation for the basins+£ 0.18).

0 10000 z=p°® 20000

Fig. 14. MapT,. Second contact bifurcation for the basias<(0.9).
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Section 3 but also for the mathematical properties of the particular focal points, associated with prefocal
sets at infinity, on the PE, due to maps having both the functions with a vanishing denominator.

5. Conclusion

We extended the analysis of the model of renewable resource markets developed by Hommes and Rosst
[9] by comparing its simple adaptive expectations learning mechanism with a geometrically declining
statistical learning mechanism. Our analysis considered the global properties of the respective mechanism
and found considerable differences as the discount rate rises above a critical level where more comple»
dynamics are observed in the original model. The statistical learning model is associated with much more
complicated patterns of basin boundaries of the coexisting attractors. These complications include the
emergence of zones of unfeasible points as well as the appearance of lobes on the basin boundaries th
imply holes in one basin containing points of another basin. The complexity of this phenomenon is much
enhanced for the case of particular focal points associated with prefocal sets at infinity, that is in the
Poincaré equator.

This difference between the two learning mechanisms suggests that in the face of complex dynamics
it may be safer for agents to fall back on simpler adaptive mechanisms than to follow more sophisticated
learning systems that make use of more information. Such a conclusion echoes an argument made prev
ously by Heinef[40] that agents tend to rely on simple rules of thumb as complexity increases and that
this can be a stabilizing strategy. Arguably this is also implicit in the findings of Hommes and Rosser, and
earlier of Homme$41], that agents may be able to learn to believe in chaotic dynamics using relatively
simple adaptive mechanisms.
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Appendix A. Thefishery model

Inthis appendix, we recall, for the sake of completeness, the model prop¢8edime Gordon—Schaefer
fishery model of a population growth and harvesting is based on a differential equation of the form

dx
o J(x) — h(1)

wherex(f) denotes the size of the resource population at tiifaes expressed in days)(x) is a given
function representing the natural growth rate of the populationsamepresents the rate of removal or
harvestind28-30]it is assumed

f(x) = rx (1 - %) : (A.1)



|. Foroni et al. / Mathematics and Computers in Simulation 63 (2003) 541-567 565

where the constant, assumed to be positive, is calledrinsic growth rate The positive constanit

is usually referred to as the environmertalrying capacityor saturation level. Iff(x) = h(¢) the fish
population remains at a constant level or, in other words, the natural growtfixatmuals the sustainable
yield that can be harvested without changing the fixed level populatibncase of constant harvesting,
that is whem () = h, the condition of sustainable harvesting of renewable resources becomes

X
h = rx (1 - £> . (A.2)
We remark that, for the population level= (k/2), there exists anaximum sustainable yie([@1SY)

hvsy = maxf(x)

with the property that any larger harvest rate will lead to the depletion of the population. The level

x = (k/2) can be considered optimal from a biological point of view but we have to notice that the cost

of catching fish tends to rise as the population is reduced. When the costs as well as the benefits are
taken into consideration, it might be argued that the optimal stock level should be highgf2hémthis
assumption, theatch-per-unit-efforts proportional to the stock level, that is

h = qEX

where E denotes fishing effort anglis the catchability coefficient. So the equilibrium harvest, or sus-
tainable yieldY = h corresponding t& is given by

Y = gEx

If p represents the price of the fish per unit, the total revenue will be

R(Y) = pY = pgEx (A.3)
whereas the total cost is given by
C(E) =cE (A.4)

with ¢ the constant marginal cost of effaft

It is assumed that the sole owner’s objective is the maximization of the total discounted net revenues
derived from the exploitation of the resourceslt- 0 is a constant denoting the rate of discount and
c[x(#)] equals the unit harvesting cost when the population level ikis objective may be expressed as

+00
max / e % (p — c[x(O]h() dr. (A.5)
h(® Jo

Solving (A.5) subject to the conditions(r) > 0 andi(r) > 0 is an optimal control problem. As =
dx/dt = f(x) — h(¢), substitutingz () = f(x) — x into (A.5)

+o00
max [ e (p — c[x(OD(f(x) — %) dr. (A.6)
0
is obtained. Applying the Euler necessary condition for a maximum to $8lN8, we get:
S0 _

S = e =

(A7)
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We remark thafA.7) is an implicit equation for the population The solutionx = x* of (A.7) is the
optimal equilibrium population level. For the model[RB] it is

c(x) = é(, fx) = 1x (1 _ %)

and
, c , 2rx
c(x) = —@, fx)=r— e (A.8)
Substituting(A.8) into (A.7), a quadratic equation inis get, with positive solution
k c 8 ¢ 8\° 8
sp=-31+——- 1+ ——- . A9
BP=21 pak r+/< " pak r) " pakr (A9)

The sustained yield corresponding(fa9) is given byY = f(xj(p)) and the market supply curve is
Ss(p) = h = f(x5(p)). (A.10)
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