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Abstract

Rational expectations models have increasingly been replaced by models with various forms of learning. This
paper studies the global dynamics of a model of renewable resource markets due to Hommes and Rosser [Macroecon.
Dyn. 5 (2001) 180] under adaptive and statistical learning systems. The statistical learning system is seen to generate
greater complexity of the structures of the basins of attraction, especially at higher discount rates. An element of
particular interest is that bifurcations generating lobes in the basins arise from particular focal points, associated
with prefocal sets at infinity on the Poincaré equator in the statistical learning model.
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1. Introduction

During the 1970s and 1980s, the rational expectations assumption was considered superior to the
previously used adaptive expectations assumption[1]. But more recently it has come to be realized by
many of the original advocates of rational expectations that it is more realistic to assume that agents
do not initially possess rational expectations but can only move towards that condition through learning
[2,3]. Others besides Sargent have come to emphasize that agents are boundedly rational and must learn
about market dynamics from experience using various updating mechanisms[4–7].

Boundedly rational learning mechanisms have been shown to allow agents to converge on rational
equilibria (RE). However, it is well known that there may be multiple such REs and Evans and Honkapo-
hja [8] show that different learning mechanisms can lead to convergence to different equilibria due to
their different transient dynamics. These transient dynamics depend on the global properties of dynamic
processes. This becomes especially important when different equilibria differ in their relative optimality.
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This paper re-examines a model of renewable resource market dynamics initially studied by Hommes
and Rosser[9]. They considered a simple adaptive learning mechanism and showed how agents could
learn to believe in a chaotic consistent expectations equilibrium, even with noise and with a smooth
underlying model. Following previous work by Bischi and Gardini[10], this paper will compare the
adaptive learning mechanism with a fading memory learning mechanism proposed by Lucas[11] and
labeled as statistical that has also been studied in[7]. Analysis of the transient dynamics and of the global
dynamics follows methods used in[12–14], which have focused on the structure of the basins of attraction
and their boundaries. The statistical learning model exhibits a phenomenon only previously observed in
an economics model in[15], namely that of lobes in basins of attraction arising from bifurcations at
particular focal points, associated with prefocal sets at infinity on the Poincaré equator (whose definition
will be given inSection 3).

These results extend earlier ones on learning dynamics in non-linear models in which convergence has
been to non-RE attractors or cycles or various forms of complex dynamics[16–22]. They also extend
earlier results on models that have regular RE attractors but have complex structures in their basins of
attraction, implying potential economic instability[23–25].

Such structures are significant for the model considered by Hommes and Rosser[9], especially when
this is applied to the problem of fisheries, which was its main inspiration despite its more general possible
application to all renewable resource markets. These complexities of basin structure imply that even in the
absence of chaos or other complex dynamics, small perturbations of control parameters can lead to sudden
jumps from one basin of attraction to another. In a fishery one could suddenly go from a “good” equilibrium
with many fish and low prices to a “bad” equilibrium with few fish and high prices, an outcome resembling
that generated by some catastrophe theoretic models of fishery collapse[26,27]. Such phenomena suggest
that extra care must be taken in the control of parameters in such situations or that efforts may be needed
to change the nature of the learning processes if they tend to generate such outcomes. In the difficult
world of actual fisheries such efforts are much easier to recommend than they are to implement.

The plan of the work is as follows. InSection 2, we shall describe the models, one assuming adaptive ex-
pectations (Section 2.1), recalling the related dynamic behavior as a function of the rate of discount (δ), and
a new one assuming a statistical learning with fading memory (Section 2.2), obtaining a two-dimensional
map. Really, we obtain two formulations of this second model. A first one, called mapTα, in which we see
that the new model behaves as a standard adaptive one in which the adjustment parameter (α) is replaced
by a time-dependent speed of adjustment(αt). However, this mathematical formulation is quite difficult
to study, as described inSection 4. The second is an equivalent, and easier to study, model obtained by a
change of coordinate, called mapTW , whose dynamics are studied inSection 3. The asymptotic behaviors,
and thus the attracting sets, of the more sophisticated model are already known, while their basins of
attractions, that is, the complete knowledge of which points converge towards different attracting sets,
are to be determined. This is described inSection 3.1, and we shall see that the learning process has a
destabilizing effect with respect to the standard adaptive process. This is mathematically described by a
mechanism of formations of particular structures, called “lobes”, of one basin inside another basin. These
results reformulated in the case of the modelTα, are very interesting from a mathematical point of view,
as shown inSection 4, because we can explain bifurcations which otherwise are very difficult to under-
stand, as the bifurcations generating lobes are due to contacts at infinity of arcs issuing from particular
focal points, associated with prefocal sets on the Poincaré equator. However, this model becomes more
sensitive to parameter changes, that is, a small shock in the state of the system (at any time) may cause a
drastic (and worst) change in the asymptotic behavior, as we notice in the conclusions (Section 5).
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2. The models

In a cobweb model representing the price dynamics of a perishable-good market, it is assumed that at a
given timet the demand function of the consumers depends on the current pricept+1 whereas the supply
function depends on the pricepe

t+1 expected by producers at the previous timet in which they decided their
production. So, if the production delay is taken as the unit time, the market clearing condition becomes
D(pt+1) = S(pe

t+1). The model of Hommes and Rosser described in[9], and recalled inAppendix A,
draws from essentially textbook models of fishery dynamics. The harvesting model is due to Gordon
[28] and has costs defined by a linear function of effort and harvest defined by a linear function of effort
times the stock of fish. The stock of fish (measured by biomass) depends on a biological growth model
due to Schaefer[29] of a simple logistic form. Bioeconomic optimization follows an optimal control
formulation due to Clark[30] and is based on sustained yield outcomes with fishers maximizing present
value of future harvests.

Given the present value calculation the discount rate used becomes a crucial parameter. As the discount
rate rises from zero the supply curve implied by the bioeconomic optimization begins to bend backwards
allowing for the possibility of multiple equilibria, an idea first suggested by Copes[31]. An infinite
discount rate implies a maximum backward bend of the supply curve and coincides with the open access
fishery case initially studied by Gordon[28]. We note that it is not unreasonable to think of the discount
rate as a possible control parameter as it may be influenced by market real interest rates.

Hommes and Rosser show this supply curve to be

Sδ(p
e
t+1) = f(x∗

δ (p
e
t+1)) (1)

wheref(x) is a logistic function representing the natural growth rate of the population (x(t) denotes the
size of the resource population at timet):

f(x) = rx
(
1 − x

k

)
the positive constantr represents theintrinsic growth ratewhile the positive constantk is the environmental
carrying capacityor saturation level, and solving an optimal control problem, assuming that the fishers’
objective is the maximization of the total discounted net revenues derived from the exploitation of the
resource, the following explicit solution (optimal population level) is obtained (seeAppendix A):
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4
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whereδ > 0 denotes therate of discount, q is thecatchability coefficient(q reflects a combination of
technological and biological conditions that relate fishing effort to the harvest of the fish), andc the
constantmarginal costof fishing effortE. By using the usual linear demand function

D(pt) = A − Bpt (2)

we can express the law of motion for the market clearing price in the following form

pt+1 = F(pe
t+1), F(pe

t+1) = D−1 ◦ Sδ(pe
t+1) = A − Sδ(p

e
t+1)

B
. (3)
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To close the model we must introduce the learning mechanism used by the fishers to foresee the future
price. In the next sections, we introduce the adaptive learning and the statistical learning for(3) and
then we shall study the dynamics of the models we will obtain in the two different cases. That chaotic
dynamics can happen in fisheries with backward-bending supply curves was first noted by Conklin and
Kolberg[32], although their model differs somewhat from this one.

2.1. Adaptive expectations

Let us consider first the case in which the producers use a standard adaptive estimation of the expected
prices, that is, forα ∈ (0,1):

pe
t+1 = (1 − α)pe

t + αpt (4)

then the map governing the expected price dynamics becomes:

pe
t+1 = (1 − α)pe

t + α
A − Sδ(p

e
t )

B
= g(pe

t ) (5)

and it is clear that the sequence of realized prices is obtained from the sequence of expected prices by
pt = F(pe

t ). Thus, the model reduces to a one-dimensional map which, for the sake of simplicity, we
rewrite in the following form by usingz = pe and the symbol “′” to denote the unit time advancement
operator (i.e. ifz is the value of the variable at timet thenz′ is the value at timet + 1):

z′ = gα(z), gα(z) = (1 − α)z + α
A − Sδ(z)

B
(6)

whose dynamics can be easily investigated. Hommes and Rosser[9] observed regimes of bistability of
RE, with a backward bending supply curve and reasonable parameter values. Let us briefly recall here
the possible dynamics, by using a set of parameter constellations quite close to those used in Hommes
and Rosser[9] (which reflect values based on empirical studies used in the work of Clark[30] and the
original study of backward-bending supply curves by Cobes[31]), that is

A = 5241, r = 0.05, c = 5000, α = 0.5, k = 400,000, q = 0.000014, B = 0.28,

(7)

assumingδ to be the control-parameter. It is clear that all the dynamics depend on the “shape” of the
functiongα(z) (seeFig. 1).

Let us first notice that we shall restrict our analysis to the positive half-linez > 0. The complete graph
of the functiongα(z) includes a branch in the negative semi-axis, as shown inFig. 1. However, we can
restrict our analysis to the interval ]0,+∞[ without loss of generality because this interval istrapping,
that is, mapped into itself, beinggα(]0,+∞[) ⊂]0,+∞[. This means that any initial condition (i.c.
henceforth) withz > 0 will have a trajectory completely in the half-linez > 0.

It is worth noticing thatgα(z) is unimodal. A unique local minimum valuec exists atc = gα(c−1), where
z = c−1 is the point of local minimum, i.e. critical point of the functiongα(z). Following the notation
in [33] (see also[34]), we can say that the map has a “rank-1” critical point atc, that is a point having
two coincident (ormerging) rank-1 pre-images (atc−1). Asgα(z) has no horizontal asymptotes, the local
minimum valuec separates points of thez-axis having a different number of pre-images. Points belonging
to the regionZ1 =] − ∞, c[ (seeFig. 1) have only one rank-1 pre-image whereas those belonging to
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Fig. 1. Complete graph of the function given in(6) with the parameters given in(7) andδ = 0.12.

Z3 =]c,+∞[ have three distinct pre-images. However, when we look for the rank-1pre-images of a point
z′ > 0, we are only interested in the positive pre-images, which are thus either two distinct ones or none.
That is, for anyz′ > c there are two distinct positive rank-1 pre-images ofz′ in the positive half-line,
while for 0< z′ < c there are zero positive rank-1 pre-images. This structure ofthe foliationof the real
axis will be used to determine the pre-images of points and thus the basin boundaries.

At low values ofδ the mapgα(z) has only one fixed point,RE3, with a low value of equilibrium
price and high fish-quantities, that is, a “good equilibrium” (seeFig. 2). But, as we may expect, asδ
increases, local and global bifurcations may occur. Atδ = δ0 (δ0 
 0.033), RE3 becomes unstable via
a flip-bifurcation and then a cascade (or Feigenbaum sequence) of period-doubling bifurcations occurs:
∀n, a stable 2n-cycle becomes unstable and gives rise to an attracting 2n+1-cycle. So, asδ increases, the
low-level attracting set, sayA, becomes more and more complex, and chaotic dynamics occur (seeFig. 3).
However, such asymptotic states must always belong to a known interval, which is the interval [c, c1],
wherec1 = gα(c) is the image of the critical value.

Increasingδ, another equilibrium may appear with a high value of equilibrium price and low fish-
quantities, that is, an adverse equilibrium, coexisting (and in competition) with dynamics occurring at
low values.

In Fig. 4, we can see that the graph ofgα is close to the main diagonal and whenδ > δ1 
 0.1 the
graph ofgα(z) intersects the bisectrix in two more points, causing the appearance of two new equilibria,
one unstable,S∗, and a stable one, called RE1, as shown inFig. 5. For δ < δ1, the good attractorA
is globally stable, while forδ > δ1, a new pair of equilibria appear, one of which persists to be stable
for δ greater thanδ1. Clearly, the new “bad” equilibrium is in competition with the low-attractorA, and
only for suitable initial conditions the dynamics will converge toA. Thus, it is important to know the
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Fig. 2. One rational equilibrium (δ = 0.01).

basins of attraction of the two coexistent attractors. These basins are easily determined, once we know
the pre-images of points in the dynamic process.

For δ > δ1, the stable set of the unstable equilibriumS∗ belongs to the frontier of the two basins of
attraction. Letz = s∗ be thez-coordinate of the unstable RE, then the two rank-1 pre-images are given
by two points,s∗−1 ands∗, and as long as we haves∗−1 < c (as it occurs in our cases) this point is without

Fig. 3. Graph near the tangent bifurcation (δ = 0.1).
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Fig. 4. Three rational equilibria (δ = 0.12)

further pre-images, so we can state (considering the basins only in the half-linez > 0) that the basin of
attraction ofRE1 is given by the union of two intervals:

B(RE1) =]0, s∗−1[∪]s∗,+∞[.

Fig. 5. Low level chaotic attractor (δ = 0.5).
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The complementary set is the basin of the absorbing interval [c, c1] which includes a different attracting
setA:

B([c, c1]) =]s∗−1, s
∗[.

The basin of attraction of the attractorA ∈ [c, c1] is the interval ]s∗−1, s
∗[ without at most a denumerable

set of points, for example, whenA is a cycle we have to exclude from the interval ]s∗−1, s
∗[ the point RE3

and the points belonging to repelling cycles, as well as their pre-images of any rank. Thus, we can end
the analysis of this one-dimensional model with the following proposition:

Proposition 1. For anyδ > δ1 there exists a low-level“good” attractorA, coexisting withRE1 and in
competition with it, and the interesting dynamics occur fori.c. in the interval]s∗−1, s

∗[, the basinB(A)
being the interval]s∗−1, s

∗[ except at most a denumerable set of points.

2.2. Statistical learning with fading memory

The second learning mechanism we are interested in, called statistical by some authors[7,10,11], is
obtained by assuming that at any timet agents compute the expected price for the next time(t + 1) as a
weighted arithmetic mean of past realized prices

pe
t+1 =

t∑
k=0

atkpk

and weights

atk ≥ 0, k = 0, . . . , t and
t∑

k=0

atk = 1.

With this assumption the discrete dynamical system in(3) becomes a recurrence “with memory of the
past”

pt+1 = F(pe
t+1), pe

t+1 =
t∑

k=0

atkpk. (8)

It is natural to assume (see, e.g.[35]) that recent prices are given higher weights than older ones. Thus,
following [12,14,36], we shall assume weights which are exponentially decreasing as the terms of a
geometric progression with memory ratioρ ∈ (0,1):

atk = ρt−k

Wt

, Wt =
t∑

k=0

ρt−k.

With these geometric weights, the expected prices are given by

pe
t+1 =

t∑
k=0

ρt−k

Wt

pk (9)
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or, equivalently,

pe
t+1 = Wt − 1

Wt

pe
t + 1

Wt

pt (10)

which, by defining

αt = 1

Wt

(11)

may be rewritten as

pe
t+1 = (1 − αt)p

e
t + αtpt. (12)

It shows that the expected prices are revised at each time period, in response to the forecasting error
of the previous period, in a way similar to the mechanism of adaptive expectations proposed in(4),
with the difference that the adjustment parameterα ∈ (0,1), a constant there, is now replaced by a
time-dependent speed of adjustment given by a decreasing sequence{αt} with αt ∈ (0,1) for eacht, and
such thatαt → (1 − ρ) as t → +∞. It is clear that by properly tuning the memory ratioρ, different
degrees of memory can be obtained: for small values ofρ, the memory of past prices vanishes very quickly
and the limiting caseρ → 0 reduces to static expectations. The other limiting value,ρ → 1, describes
the case in which all the previous prices are equally considered to compute the expected one. In order
to compare this mechanism with the adaptive one in(4), we shall considerα = 1 − ρ, i.e.ρ = 1 − α,
because we shall see that in this case the two different models are governed by the same one-dimensional
“limiting map” given in (6).

If we replacept in (12) with its expression given in(3), we obtain anon-autonomousfirst-order
difference equation (known in the literature asMann iteration(see, e.g.[13,36])):

pe
t+1 = (1 − αt)p

e
t + αtF(p

e
t ). (13)

In general, the study of the basins of attraction for the attractors of the recurrence(13) is not an easy
task, since its limit sets are not invariant sets. However, taking into account that the partial sums of the
geometric weights can be defined recursively as

Wt = 1 + ρWt−1 for t = 1,2, . . . ; W0 = 1

or

αt = αt−1

αt−1 + ρ
for t = 1,2, . . . ; α0 = 1

a two-dimensionalautonomoussystem fort ≥ 1 can be obtained from(13):

T
α

:



pe
t+1 = (1 − αt)p

e
t + αtF(p

e
t )

αt = αt−1

αt−1 + ρ

with i.c. (pe
1, α0) = (p0,1). (14)

The mapT
α

is equivalent to(13) because the projection on thepe axis of any trajectory of(14) (i.e.
any sequence ofpe

t values from that map) is also a solution of(13) associated with the same i.c.(
pe

1, α0) = (p0,1
)
. Thus, the study of the non-autonomous recurrence(13) is reduced to the study of

the two-dimensional map(14) with initial conditions only on the lineα0 = 1. To rewrite the map as an
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iterative process, we introducez = pe as in the previous section and obtain the following two-dimensional
map:

T
α

:



z′ = ρ

α + ρ
pe
t + α

α + ρ
F(pe

t )

α′ = α

α + ρ

with i.c. (z0,1) = (pe
1,1) = (p0,1) (15)

and following[10], we also write the equivalent forms with different weights:

TW :



pe
t+1 =

(
1 − 1

Wt

)
pe
t + 1

Wt

F(pe
t )

Wt = 1 + ρWt−1

with i.c. (pe
1,W0) = (p0,1) (16)

or

TW :



z′ = ρW

1 + ρW
z + 1

1 + ρW
F(z)

W ′ = 1 + ρW

with i.c. (z0,1) = (pe
1,1) = (p0,1). (17)

Clearly, in the maps written above, we have to substituteF(pe
t ) andF(z) with the expression derived for

the fishery model as described inSection 2, that is

F(z) = A − Sδ(z)

B
. (18)

We remark again that even if the maps written above are two-dimensional, we are interested only in initial
conditions belonging to the lineα = 1 orW = 1, called theline of initial conditions. However, as we
shall see, the basins of attractionmustbe studied with two-dimensional techniques even if the attracting
sets only depend on the one-dimensionallimiting map

g1−ρ(z) = ρz + (1 − ρ)F(z) (19)

whose dynamics are completely known, and have been commented on the previous section (by writing
α = (1−ρ)). To see this, it is enough to consider the second equation of the two-dimensional maps, which
are independent fromzand describe two monotone sequences: one decreasing inαand converging toα∗ =
(1− ρ), the other increasing inW and converging toW∗ = 1/(1− ρ) (being partial sums of a geometric
series of ratioρ). The reason why we have maintained the double notation for the model with fading
memory, by using the adjustment parameters asαt or Wt is the following. Although the model written
in (12) and(15) with αt seems more suitable for an economic interpretation of the state, the dynamical
properties (basins and their bifurcations) of that mathematical formulation are much more difficult to
study. With the help of the second formulation in(10) and(17) with Wt, this difficulty is overcome and
we can have a complete understanding of the fate associated with any given initial condition. This study
will be done in the next section, in comparisons with the standard adaptive model, while inSection 4, we
shall return to the other formulation and describe the dynamical difference in using the model withαt.
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3. Basins of the map TW

In this section, we shall consider the dynamic model with statistical learning which reduces to the
mapTW given in (17). The stability of the attractors of the model, all belonging to the lineW = W∗

(W∗ = 1/(1− ρ)), as noticed in the previous section, and their basins of attraction, can be studied on the
basis of the following proposition stated in[12].

Proposition 2. LetA be a k-cycle, k ≥ 1, of the mapg1−ρ(z), 0 ≤ ρ ≤ 1. Then

(i) if A is attracting for the limiting mapg1−ρ(z), then the setA = A × {W∗} is an attracting cycle of
the mapTW , andF(A) is an attracting cycle of the model with statistical learning;

(ii) the basin of attractionB of the attractorF(A) of the model with statistical learning is given by the
intersection of the two-dimensional basinB of the cycle A of the mapTW with the line of initial
conditionsW = 1;

(iii) any invariant set of the mapTW must belong toW = W∗ (line ofω-limit sets) and is transversally
attracting.

We recall that the casek = 1 (cycle of period 1) corresponds to a fixed pointz∗ of g(z), andF(z∗) = z∗ is
a RE, since the fixed points ofg(z) are also fixed points ofF(z). FromProposition 1, we can deduce that
the attractors of the recurrence(13), and their stability properties, are the same as those of the limiting
map(19) and, moreover, we have the procedure to obtain the basins of attraction and their boundaries.
This is particularly important when we have two coexisting attractors. In this case, the basin of attraction
B of an attractor of the recurrence(13) is given by the intersection of the basinB of the corresponding
attractor ofTW with the line of initial conditions:

B = B ∩ (W = 1).

To summarize, in the cases of multistability the knowledge of the exact structure of the basins of attraction
is crucial. Such a knowledge cannot be obtained from the limiting mapg1−ρ(z), because the initial
conditions are to be taken on the lineW = 1 whereasg1−ρ only governs the asymptotic dynamics on
the line ofω-limit setsW = W∗. This means that only a global analysis of the two-dimensional map
TW allows us to follow the whole trajectory from the line of initial conditions to that of theω-limit sets,
thus taking into account the role of the short-run behavior, in which the dynamics are not governed by
the limiting mapg1−ρ. Even if the trajectories of the mapTW starting from the line of initial conditions
are entirely included in the strip of phase plane(z,W) with W ∈ (1,W∗), we shall study the properties
of the mapTW in the whole phase plane, because, in order to understand the properties of the basins, a
global study of the action of the inverses is necessary. In fact, we first have to determine the basins of
attraction of the two-dimensional mapTW , and this is obtained by considering the pre-images of a suitable
neighborhood of the attracting sets located on the line ofω-limit sets. We recall that a closed invariant
setA ⊂ {W = W∗} is called asymptotically stable (or attracting) if a neighborhoodU of A exists such
thatTW(U) ⊆ U andT n

W(z,W) → A asn → +∞ for eachx ∈ U. Then, the basin of attraction ofA (a
stable equilibrium or a more complex attracting set) is the open set of points which generate trajectories
converging toA:

B(A) = {(z,W) : T t
W(z,W) → Aast → +∞}.
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B(A) may be obtained by taking all the pre-images of the points in the neighborhoodU

B(A) = ∪∞
n=0T

−n
W (U),

where, in the case of a non-invertible map,T−n
W (x)denotes the set of all the pre-images ofxof rankn, i.e. the

set of all the points that are mapped intox aftern applications ofTW . So, the study of the two-dimensional
basins involves the inverses of. In this case, we have that the properties and the qualitative changes of
its basins are strongly influenced by the presence of the denominator which can vanish along the line
W = −1/ρ and, in particular, by the points at which the first component ofTW has the form 0/0. Some
general properties of two-dimensional maps with a vanishing denominator have been studied in[37,38],
and this particular class of triangular maps have been studied in[39]. In these papers, it is proved that the
presence of points where a component of the map assumes the form 0/0, calledfocal points, may have
important consequences on the structure of the basins and their global bifurcations, because fans of basin
boundaries arise from them giving peculiar finger-shaped structures calledlobes.

The rational mapTW we are interested in is not defined on the whole plane, because the denominator
of its first component vanishes for points belongings to the lineW = −1/ρ, called thesingular lineof,
and briefly denoted byδs. So, to have a well defined two-dimensional recurrence the singular line and
all its pre-images of any rank must be excluded from the set of definition ofTW . By inverting the second
component ofTW , we obtainW = (W ′ −1)/ρ from which we deduce that the points mapped byTW onto
the singular lineδs are those belonging to the lineδ−1

s of equationW = −(1 + ρ)/ρ2, which is below
δs. In a similar way, we can also argue that the points which are mapped onto the singular line aftern

iterations ofTW are those on the lineδ−n
s of equationW = −(1 − ρn+1)/(ρn+1 − ρn+2), and these lines

are all belowδs, beingδ−(n+1)
s belowδ−n

s for all n ≥ 1. Thus, the pre-images of any rank ofδs belong to a
sequence of lines located in the half planeW < −1/ρ (out of interest for the application) and the domain
of definition ofTW is given byE = R

2 \ ∪∞
n=0δ

−n
s .

Summarizing, the trajectories with initial conditions on the lineW = 1 are entirely included in the
region of the phase plane(z,W) with W ∈ (1,W∗). The properties of the mapTW which are of interest
in the economic context must be studied in the regionW ∈ (−1/ρ,W∗), because the basins’ bifurcations
start in that region (associated with thesingular line). Let us recall the following definition.

Definition. A pointQ = (xQ, yQ) is a focal point of a mapTW if at least one component ofTW assumes
the form 0/0 in Q and there exist smooth simple arcsγ(t), with γ(0) = Q, such that limτ→0TW(γ(τ))

is finite. The set of all such finite values, obtained by taking different arcsγ(t) throughQ, is called the
prefocal setδQ.

Roughly speaking, a prefocal curve is a set of points for which at least one inverse exists that maps (or
focalizes) the whole set into a single point, calledfocal point.

For maps with a vanishing denominator, new kinds of contact bifurcations have been recently evidenced
in [37,39]. These bifurcations involve thesingular line, thefocal pointsand theprefocal set. In particular,
contacts between basin boundaries and prefocal curves may cause the creation of new kinds of structures
of the basin boundaries denoted aslobes. The existence of lobes, issuing from the focal points, has
important consequences on the structure of the basins of attraction of the model with learning whenever
they intersect the line of initial conditionsW = 1. This occurrence causes the creation of one dimensional
basins with complicated topological structure, such as basins formed by many disjoint intervals, also with
a chaotic structure.
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As only the first equation ofTW has a denominator, which vanishes on the singular lineW = −1/ρ,
the focal points ofTW must necessarily belong to this line. On this line the numerator vanishes only for
z such thatF(z) = z, that is, for every fixed point of the functionF which are also fixed points of the
limiting mapg1−ρ. So, a focal point is always expressed by(z∗,−1/ρ), wherez∗ is a fixed point ofF(z).
This implies that the focal points of the mapTW are related to the existence of RE, since on all the points
(z∗,W∗), wherez∗ is a fixed point ofF(z), the first component ofTW has the form 0/0.

In order to evidence the role of afocal pointand the relatedprefocal setin the dynamical behavior
of the mapT , we briefly describe here some geometric property (for more details we refer to[37,39]).
The mapTW may be non-invertible, the number of distinct inverses ofTW depends on the structure of
the functionF(z). In general, ifF(z) hasN distinct fixed points, i.e.N distinct RE (and thusTW also has
N fixed points) then the prefocal line must belong to a regionZN , whose points haveN distinct rank-1
pre-images. The following proposition is proved in[39].

Proposition 3. If F(x) hasN fixed points satisfyingF ′(x∗) �= 1 then

(i) TW hasN focal pointsQi = (z∗
i ,−1/ρ) all associated with the same prefocal lineδQ of equation

W = 0;
(ii) the prefocal line ofTW belongs to a regionZN whereTW hasN distinct inverses;

(iii) for each focal pointQi the mapTW defines a one-to-one correspondence between the slopem of an
arc γ in Qi and the point(u,0) in which the imageTW(γ) crosses the prefocal curveδQ given by

m → (u,0) : u = z∗
i + F ′(z∗

i ) − 1

ρm

(u,0) → m : m = F ′(z∗
i ) − 1

ρ(u − z∗
i )

(20)

From the properties of the prefocal set, we can easily deduce the behavior of the rank-1 pre-images of a
smooth arcηwhich intersects the prefocal lineδQ at one point(u,0). Taking the arcη in the regionZN (see
the qualitative sketch inFig. 6), then theN distinct rank-1 pre-images ofη, sayT−1

W,i
(η), i = 1, . . . , N,

are arcs that intersect the singular line in the focal pointsQi = (x∗
i ,−1/ρ), with slopemi as given in

(20): mi(u) = (F ′(x∗
i ) − 1)/(ρ(u − x∗

i )).
Some consequences of this correspondence, important for the characterization of the basin boundaries

and their bifurcations, are deduced by considering a smooth arcη intersecting the prefocal line in two
points, say(u1,0) and(u2,0), as shownFig. 7, then each rank-1 pre-image ofη, sayT−1

W,i
(η), has a loop

with knot in the focal pointQi = (x∗
i ,−1/ρ), and we have the following:

Proposition 4. Letη be an arc which crosses the prefocal line in two points, say(u1,0) and(u2,0), and
let T−1

W,i
be an inverse ofTW which applies to all the points ofη. Then each pre-imageT−1

W,i
(η) intersects

the singular line at a focal pointQi = (z∗
i ,−1/ρ) forming a loop with a double point inQi. The slopes

of the two tangents inQi are given bymi(u1) andmi(u2) according to(20).

From this proposition, we can easily deduce the kind of contact bifurcation that occurs when a smooth
curve segmentη moves toward the prefocal lineδQ until a contact occurs followed by a crossing, as
qualitatively shown inFig. 8: as η moves towardδQ, its pre-images move towardsQi, and whenη
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becomes tangent toδQ in the point(uc,0) then each pre-imageηi−1 = T−1
W,i
(η) has a cusp point inQi. The

slope of the common tangent to the two arcs that join inQi is given bymi(uc), according to(20). When
the curve segmentη crossesδQ at two points, say(u1,0) and(u2,0), then its pre-images gives loops with
double points at the focal pointsQi.

Of course, whenη is a portion of a basin boundary, a contact betweenη andδQ implies that a loop is
created on the basin boundary, because a basin boundary includes all the pre-images of any portion of it,
and the portion of the basin inside the loop is a lobe (seeFig. 8).

Now, let us consider the forward iteration ofTW . It is easy to see that the image of rank-nof the prefocal
lineW = 0 belongs to the line of equationW = Wn where

Wn = 1 − ρn+1

1 − ρ
(21)

W

Z

u

m1(u)
m2(u)

1
1,wT 1

2,wT

1
wT

S

Q

-

Fig. 6. Pre-images of an arc crossing the prefocal line at one point.
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1,wT

z

W

1
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1
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Q

Fig. 7. Pre-images of an arc crossing the prefocal line at two points.
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Fig. 8. Contact bifurcation with the prefocal set.

i.e. these images constitute a sequence of lines parallel to the prefocal lineδQ and converging to the
line of theω-limit setsW = W∗. Thus, any cycle belonging to theω-limit setW = W∗ is transversely
attracting, and this property is important in order to study the boundaries of the basins. In fact, we recall
that in general the boundaries of a basin are obtained by taking the stable sets of some cycle on it. In the
case of mapsTW such cycles can only be of saddle type, and located on the line ofω-limit sets. To get
the stable setWs of a saddle it is enough to take the pre-images of any rank of a local stable setWs

loc, that
is Ws = ∪∞

n=0T
−n(Ws

loc), whereWs
loc is transverse to the lineW = W∗ and its pre-images cannot have

other cycles at finite distance as limit sets, since all the cycles ofTW belong to the lineW = W∗. Thus,
due to the expansive character ofT−1

W along theW direction, such pre-images must necessarily reach, in
a finite number steps, the prefocal lineW = 0. In this way, all these pre-images must necessarily cross
the singular lineW = −1/ρ through focal pointsQi. From this observation, it follows that the stable set
of any saddle cycle ofTW , obtained by taking the pre-images of a local stable set, is made up of branches
issuing from the focal points, as stated in the following proposition:

Proposition 5. All the branches of stable sets of all the saddle cycles of the mapTW are “ focalized”
through the focal points.

From the arguments given above, it follows that if we consider an arcη, which intersects the lineδQ at
two points, thenT−1

W,i
(η) crosses the singular line at a focal pointQi forming a loop. So. if we consider an

arcηwhich intersects the lineW = Wj, j = 0,1, . . . , (n−1) at two points, then the set of the pre-images
of rankn, T−n

W (η), can includeNn lobes issuing from the focal pointsQ1, . . . ,QN . This behavior applied
to the stable manifold of the saddle cycle (unstable RE) constitute the global mechanism causing the birth
of particular structures which cause the difference between the adaptive model and the statistical one, as
we shall see in the next section.

3.1. Basins in the fishery model

Up to now we have analyzed properties of the mapTW that hold whatever the functionF(z) is in its
definition. In the following, we shall see the behavior of the mapTW whenF(z) is the function defined
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in (18) and inSection 2. We are interested in comparing the model with statistical learning with the one
with standard adaptive expectations considered inSection 2. Thus, let us consider the parameters given
in (7), assumingρ = 1 − α = 0.5, so that we already know that for 0< δ < δ0 the good equilibrium
RE3, and forδ0 < δ < δ1, the good attractorA, are globally attracting for the limiting map. This is also
true in the model with statistical learning, as no alternatives exist. So, except for a denumerable set of
points (of zero Lebesgue measure), any i.c.(z0,1) belongs to the basin of the attractor. Clearly, things
change as the parameterδ increases. Forδ > δ1 on the line ofω-limit sets (W∗ = 1/(1 − ρ)), there are
two coexisting stable attractors, RE1 andA while S∗ = (s∗,W∗) is a saddle equilibrium whose stable set
Ws(S∗) separates the two basins of attraction,B(RE1) andB(A). We know that for maps of this kind the
vertical line through an equilibrium point belongs to its stable manifold, thus the local stable manifold of
S∗ is the linez = s∗, which we shall denoteω0, and the global stable manifold ofS∗,WS(S∗), is obtained
by taking all the pre-images of any rank ofω0:

WS(S∗) =
⋃
n≥0

T−n
W (ω0).

We can see the structure of this set directly inFig. 9. On the line ofω-limit setsW = W∗ there are the
equilibriaS∗ andRE1, and the cycleA, and the picture shows the basins for the two-dimensional mapTW :
the points in grey belong to the basinB(RE1) while those in light grey belong toB(A) (those in dark grey
will be explained below). Thus, the corresponding intervals on the line ofω-limit sets withz > 0 denote
the basins of attraction of the two attractors under the standard adaptive mechanism, and are the same
basins already commented inSection 2(the basin ofA is the interval ]s∗−1, s

∗[ and the complementary
set inz > 0 is the basin of RE1 made up of two intervals), while the intersection with the line of initial

Fig. 9. Phase plane for the mapTW , the points in gray belong to the basinB(RE1) while those in light grey belong to
B(A)(δ = 0.12).
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conditionsW = 1 gives the basins of attraction for the model with statistical learning. We can see in
Fig. 9 thatB(A) = B(A) ∩ (W = 1) is still a connected interval, sayI, I =]sl, s∗[, which is slightly
smaller than ]s∗−1, s

∗[. This situation persists for values ofδ in a (small) right interval ofδ1.
The structure of the stable set ofS∗ is influenced by the presence of the focal points of the map on the

singular lineδS, W = −1/ρ, mainly ofQ2 andQ3. Whenδ > δ1, there are three focal points located
on the intersection between the singular lineδS and the vertical line through the equilibrium points. The
stable set ofS∗ is clearly observable inFig. 9, being the boundary separating the two basins of attraction
(i.e. the frontier between the points in grey and those in light grey): the local stable manifold, the vertical
line ω0, z = s∗, crosses the focal pointQ2 associated with the fixed pointS∗, the rank-1pre-image is
denoted byω−1, and is a curve which crosses the focal pointQ3 associated with the stable equilibrium
RE3, the pre-image of rank-2 ofω0 includes a curve denoted byω−2 which crosses the focal points
Q2,Q3 andQ1, the pre-image of rank-3 includes a curve denoted byω−3 which crosses the focal points
Q2,Q3, and a curve denoted byω−4 which approaches the focal point from below, and so on. Let us first
remark how the existence of the focal points (although in a region out of interest in the applied model)
causes global bifurcations in the structure of the basins which lead to different trajectories and different
asymptotic behavior associated with the same i.c. in the two different kinds of learning mechanism here
considered. For low values ofδ, as it is the case represented inFig. 9, there are not many differences
between the basins of attractionB(A) in the two models (with adaptive expectations and with statistical
ones), and similarly forB(RE1). However, we can see inFig. 9that the arcω−2 has crossed the prefocal
lineW = 0, let us say at the bifurcation valueδc0 (δc0 
 0.09), and is approaching the region of interest,
i.e. the line of initial conditionsW = 1, asδ increases. Whenω−2 has a contact with (and then intersects)
the prefocal lineW = 0, atδc0, two branches ofω−3 have a cusp at the focal pointsQ2 andQ3 and then
cross the focal points creating lobes of the basinB(RE1), as can be seen inFig. 9, and whenω−2 has a
contact with the lineW = 1, say at the bifurcation valueδc1, the two lobes bounded byω−3 have a contact
with the prefocal lineW = 0 andω−4 has cusp points at the focal points (seeFigs. 10 and 11), preparing
the creation of four new lobes issuing fromQ2 andQ3 for δ > δc1.

It is clear thatδc1 denotes the first contact bifurcation for the model with statistical expectations, as
the contact between the boundary∂B(RE1) and the line of initial conditionsW = 1 (via the arcω−2),
changes the basinB(A) because forδ > δc1 the basinB(A) is no longer an interval but it will be the union
of two intervals (forδ not far fromδc1):

B(A) = B(A) ∩ {W = 1} = I1 ∪ I2.

The two intervals are separated by a portion of the basin of the other equilibrium,B(RE1) = B(RE1) ∩
{W = 1}, as shown inFig. 10. We can equivalently say that in the previous intervalI a “hole” of points
belonging to the other basinB(RE1) has been created at this first contact bifurcation. FromFig. 11, we
can also see that the second contact bifurcations between the boundary∂B(RE1) and the line of initial
conditionsW = 1 (via the two arcs ofω−3), just occurred, say atδ = δc2, at which value four, 22, arcs
bounded byω−4 have a contact with the prefocal setW = 0 and 23 arcs bounded byω−5 are issuing from
the focal points creating new lobes. Forδ > δc2, the basinB(A) is no longer made up of two intervals as
it will be the union of four intervals (forδ not far fromδc2), or, equivalently we can say that two more
“holes” of the basinB(RE1) will appear in the old intervalI. And so on: a very fast sequence of contact
bifurcations occurs asδ increases, causing the transition of the basinB(A) from the union of 2n intervals
to the union of 2n+1 much smaller intervals, and increasing, in number and in size, the “holes” of the
basinB(RE1) inside the old intervalI.
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Fig. 10. MapTW. First contact bifurcation for the basins (δ = 0.18).

Fig. 11. MapTW . Second contact bifurcation for the basins (δ = 0.9).
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As we have already noticed, on the lineW = W∗, the basin of the equilibriumA is always the connected
interval ]s∗−1, s

∗[. Thus, we can conclude that different dynamics occur with the two different mechanisms
for the expected values, as whenever we take an i.c.z = z0 in one of the “holes” of the old intervalI, we
shall obtain a sequence of states converging to the good attractorA in the case of adaptive mechanism,
while with a more sophisticated learning mechanisms the states will converge to the bad equilibrium RE1.

Moreover, this is not the only difference of behavior between the two mechanisms. In fact, as we
have remarked inSection 2, the model with standard adaptive expectations is always “well posed” in the
positive axisz > 0, as by iterating the mapgα(z) any i.c. withz0 > 0 will give a sequence of positive
values which is convergent somewhere, either to the bad equilibrium RE1 or to some different attracting
set in the bounded interval ]s∗−1, s

∗[ (and this can be observed also on the line ofω-limit setsW = W∗).
This is no longer the case in the model with statistical learning. In the figures of this section there is also
a dark grey region which we have not yet commented on. The vertical axisz = 0 separates points of
the half planez < 0 from those havingz > 0 so that the pre-images of any rank of this line separate
points which belong to the basinB(RE1) from those having at least one state in the regionz < 0, and
that we shall callunfeasible. That is: the dark grey points denoteunfeasiblestates, as any point belonging
to the dark grey region has a trajectory with a state in the half planez < 0, reached in a finite number
of steps.

It is worth noting that for the values of the parameterδ considered in the previous figures the unfeasible
region is unimportant for the economic model because that region has no contacts with the line of initial
conditionsW = 1, but we may expect that asδ increases there will be a contact, followed by a crossing,
between the dark grey region and the line of initial conditions we are interested in. In fact, the boundary
of the dark grey region is obtained from the pre-images of any order of the linez = 0, and also these
pre-images follow the usual rules of the inverses of such kinds of maps, and are influenced by the existence
of the focal points. Whenever an arc crosses the prefocal lineW = 0 in two points, then its pre-images
issue from the focal points creating lobes, and when this occurs to the boundary of the dark grey region
we get lobes belonging to the unfeasible region. Asδ increases the arcs move toward higher values ofW ,
so that it is reasonable to have crossing also of the lineW = 1.

We end this section by noticing the remarkable differences between the adaptive mechanism and the
statistical one, as for a wide interval of values of the parameterδ the basinB of the low-level attractorA
is disconnected and may also have a fractal structure, and for many initial conditionsz0 ∈]s∗−1, s

∗[ (which
may also be the widest part) the model with geometric memory converges toward RE1, and there exist,
i.c. also very close toA, which may have non-admissible trajectories.

4. Dynamics and basins of the map Tα

From an economic point of view it would be of interest to study directly the dynamic behavior of
the model with geometric memory as given in(14) (or in (15)), because the adaptive parametersαt,
which change in time, are susceptible of an economic interpretation. Clearly, taking into account that
αt = 1/Wt, in this section, we are not giving new results, because the sequencesαt can easily be deduced
from theWt. However, we shall describe the study of the map in(15) because it is quite different from
the study performed in the previous section, and it gives us the opportunity to show how the bifurcations
in two-dimensional non-invertible maps may occur via contacts at infinity, on the Poincaré equator (PE
henceforth).



560 I. Foroni et al. / Mathematics and Computers in Simulation 63 (2003) 541–567

Thus, in this section we consider the two-dimensional map in(15), which we rewrite for convenience:

T
α

:



z′ = ρ

α + ρ
pe
t + α

α + ρ
F(pe

t )

α′ = α

α + ρ

with i.c. (z0,1) = (pe
1,1) = (p0,1). (22)

The mapTα is not defined on the whole plane because the denominators of both components vanish
on the lineδS of equation

δS : α = −ρ (23)

so thatTα is well defined only if we exclude the singular line from the phase plane as well as its pre-images
of any rank. The pre-images ofδS belong to a sequence of lines located aboveδS, that is, in the strip
−ρ < α < 0. In fact, it is easy to invert the second component ofTα obtaining

α = α′ρ
1 − α′

from which we have that the points mapped byTα on the singular lineδS in one iteration are the points
of the lineδ−1

S of equation

δ−1
S : α = − ρ2

1 + ρ
(24)

which is located aboveδS, and so on, the points mapped on the singular line aftern iterations ofTα belong
to the lineδ−n

S of equation

δ−n
S : α = −ρn+1∑n

k=0 ρ
k

= −ρn+1 − ρn+2

1 − ρn+1
. (25)

We remark that all these lines are located aboveδS, as the lineδ−(n+1)
S is higher thanδ−n

S for n ≥ 1 and
have the lineα = 0 as the accumulation set whenn → +∞. Thus, the domain of definition of the map
Tα is given byE = R2\ ∪∞

n=0 δ
−n
S .

We already know that the second component ofTα gives rise, starting fromα0 = 1, to a decreasing
sequence ofαt values converging toα∗ = 1 − ρ as t → ∞, so that the limiting map ofTα is the
one-dimensional mapz′ = g1−ρ(z) located on the lineα = α∗, called the line ofω-limit sets.

As the mapTα has a vanishing denominator in the points of the lineα = −ρ, it follows that focal points
must necessarily belong to it. Onα = −ρ the numerator of the first component ofTα becomesρ[z−F(z)],
thus it vanishes if and only ifF(z) = z, that is, at each fixed point of the functionF and also of the limiting
map. It follows that the first component ofTα takes the form 0/0 in the pointsQ = (z∗,−ρ), wherez∗ is
a fixed point ofF(z) (and thus a RE). In our model, considering thatF(z) is the function defined in(18),
we have that forδ > δ1 three points of this kind exist, denoted byQ1, Q2 andQ3, associated with the
equilibria RE1, S∗ and RE3, respectively, and it is immediate to see that such points are particular focal
points ofTα, due to the fact that both the functions definingTα have a vanishing denominator. In fact,
although the first component ofTα has finite limiting values, on different arcs which cross these points,
the second component ofTα is always divergent. Thus, the values that usually constitute the prefocal set
in the mapTα, are now at infinity and thus belong to the PE. However, a one-to-one correspondence can be
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established between the slopes of arcs throughQ and the points on the PE (which recalls the one existing
for the focal points, given in(20) for maps having only one function with a vanishing denominator). To
see this, let us consider an arcγ transverse toδS in a pointQ = (z∗,−ρ), represented in parametric form
by

γ(τ) :

{
z(τ) = z∗ + ξ1τ + ξ2τ

2 + · · ·
W(τ) = −ρ + η1τ + η2τ

2 + · · ·
τ �= 0. (26)

To study the shape of the setTα(γ), let us assume thatγ is deprived of the point(z∗,−ρ), so that the arc
can be considered as the union of two disjoint pieces, sayγ = γ+ ∪ γ−, whereγ− andγ+ are obtained
from (26)with τ < 0 andτ > 0, respectively. Considering the imageTα(γ) we have

lim
τ→0±

T(γ(τ)) =
(
z∗ + ρ

ξ1

η1
[F ′(z∗) − 1],∓∞

)
(27)

thusTα(γ) is made up of two unbounded arcs, located on opposite side of the phase plane, issuing from
the point(27)of the PE. Letm = η1/ξ1 be the slope of the tangent to the arcγ in the point(z∗,−ρ), we
may write

lim
τ→0±

T(γ(τ)) = (um,∓∞), with um = z∗ + ρ
F ′(z∗) − 1

m
. (28)

As m varies inR\{0} we obtain all the points of the PE. Thus, we may extend the definition given in
[37,39]and quoted inSection 3, for maps having only one function with a vanishing denominator, to maps
in which both the functions have a vanishing denominator. The pointsQi are particular focal points ofTα,
as all the arcs crossingQi with slopem are mapped byTα in two unbounded arcs which are transverse to
the PE in the point(um,∓∞), whereum is given in(28)with the suitable value ofz∗, and the prefocal set
does not assume finite value, being the PE. And we already know that the pointsQi assume a particular
importance in the explanation of the bifurcations occurring in the basins of attraction. Moreover, also the
points at infinity, that is on the PE, are endowed with properties similar to those of the prefocal line of
the mapsTW . In fact, the pre-images of an arc crossing the PE give loops issuing from the focal points,
and thus lobes in the basins.

We now describe the sequence of bifurcations concerning the basins of attraction of the mapTα,
considering the same cases of the previous section (that is,ρ = 0.5 and increasingδ), considering the
figures giving the basins of the two coexisting RE forδ > δ1. In Fig. 12, the equilibria are evidenced on
the line ofω-limit setsα = α∗ = 1−ρ, the basinB(RE1) is made up of grey points while the basinB(A)
is the one in light grey and, as in the previous section, the dark grey points denote the unfeasible set of
i.c. whose trajectories enter the half-planez < 0 (and the frontier is made up of the pre-images of any
rank ofz = 0).

The intersection of the basins with the lineα∗ = 1 − ρ gives the basins for the model with standard
adaptive expectations, and we already know that the basin ofA is the interval ]s∗−1, s

∗[. The intersection
of the basins with the line of initial conditionsα = 1 gives the basins for the modelTα with statistical
expectations, and we already know that the basin ofA, for δ close toδ1, is an interval smaller then ]s∗−1, s

∗[.
The stable set of the saddleS∗ gives the boundary of the basins of the two equilibria, and the local stable
manifold is always the linez = s∗ denoted byω0, crossing the singular line in the focal pointQ2, and we
can see that the rank-1pre-image includes an arcω−1 crossing the focal pointQ3, the rank-2 pre-image
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Fig. 12. Phase plane of the mapTα(δ = 0.12).

includes an arcω−2 which issues from the focal pointsQ3 andQ2, bounding a portion of basinB(A)
denotedA1 in Fig. 12. As δ increases, this portionA1 increases going down towards−∞ of thez-axis
and the contact with infinity, i.e. the contact with the PE occurs at the bifurcation valueδc0 at which two
arcs ofω−3 have cusps in the focal points preparing the creation of two lobes issuing from them. For
δ > δc0, the portionA1 crosses the PE creating a new area coming from above (+∞ of thez-axis) and
denoted byA2 in Fig. 12, and at the same time the two lobes bounded byω−3 are going down towards
−∞ of the z-axis, and the contact with the PE occurs at the bifurcation valueδc1, at the same time 22

arcs ofω−4 have cusps in the focal points preparing the creation of four new lobes issuing from them.
At δ = δc1 the first bifurcation of the basins occurs because the portionA2 of the basinB(RE1) reaches
(from above) the line of initial conditionsα = 1 (seeFig. 13).

For δ > δc1, the basin we are interested in becomes disjoint,B(A) = B(A) ∩ {α = 1} = I1 ∪ I2, that
is, in the previous intervalI a “hole” of points belonging to the other basinB(RE1) has been created at
this first contact bifurcation. Forδ > δc1, the two lobes bounded byω−3 cross the PE giving rise to two
new lobes coming from above (+∞ of thez-axis), reaching the line of initial conditions atδ = δc2 (see
Fig. 14), and at the same time the 22 arcs ofω−4 (going down towards−∞ of thez-axis) have a contact
with the PE and 23 arcs ofω−5 have cusps in the focal points preparing the creation of eight new lobes
issuing from them. Forδ > δc2, the basinB(A) is made up of 22 disjoint smaller intervals, that is, in the
previous intervalI three “holes” of points belonging to the other basinB(RE1) have been created. And
so on, infinitely many contact bifurcations occur with the PE (and thus with the line of initial conditions),
modifying at each contact the structure of the basins for the model with statistical learning.

We end this section observing that we can clearly describe the contact bifurcations with the PE due
to our knowledge of the properties of the mapTW , and the results observed in this model with the map
Tα are important not only for the economic interpretation of the model (which can be obtained also in
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Fig. 13. MapTα. First contact bifurcation for the basins (δ = 0.18).

Fig. 14. MapTα. Second contact bifurcation for the basins (δ = 0.9).
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Section 3) but also for the mathematical properties of the particular focal points, associated with prefocal
sets at infinity, on the PE, due to maps having both the functions with a vanishing denominator.

5. Conclusion

We extended the analysis of the model of renewable resource markets developed by Hommes and Rosser
[9] by comparing its simple adaptive expectations learning mechanism with a geometrically declining
statistical learning mechanism. Our analysis considered the global properties of the respective mechanisms
and found considerable differences as the discount rate rises above a critical level where more complex
dynamics are observed in the original model. The statistical learning model is associated with much more
complicated patterns of basin boundaries of the coexisting attractors. These complications include the
emergence of zones of unfeasible points as well as the appearance of lobes on the basin boundaries that
imply holes in one basin containing points of another basin. The complexity of this phenomenon is much
enhanced for the case of particular focal points associated with prefocal sets at infinity, that is in the
Poincaré equator.

This difference between the two learning mechanisms suggests that in the face of complex dynamics
it may be safer for agents to fall back on simpler adaptive mechanisms than to follow more sophisticated
learning systems that make use of more information. Such a conclusion echoes an argument made previ-
ously by Heiner[40] that agents tend to rely on simple rules of thumb as complexity increases and that
this can be a stabilizing strategy. Arguably this is also implicit in the findings of Hommes and Rosser, and
earlier of Hommes[41], that agents may be able to learn to believe in chaotic dynamics using relatively
simple adaptive mechanisms.
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Appendix A. The fishery model

In this appendix, we recall, for the sake of completeness, the model proposed in[9]. The Gordon–Schaefer
fishery model of a population growth and harvesting is based on a differential equation of the form

dx

dt
= f(x) − h(t)

wherex(t) denotes the size of the resource population at timet (t is expressed in days),f(x) is a given
function representing the natural growth rate of the population andht represents the rate of removal or
harvesting[28–30]it is assumed

f(x) = rx
(
1 − x

k

)
. (A.1)
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where the constantr, assumed to be positive, is calledintrinsic growth rate. The positive constantk
is usually referred to as the environmentalcarrying capacityor saturation level. Iff(x) = h(t) the fish
population remains at a constant level or, in other words, the natural growth ratef(x)equals the sustainable
yield that can be harvested without changing the fixed level populationx. In case of constant harvesting,
that is whenh(t) = h, the condition of sustainable harvesting of renewable resources becomes

h = rx
(
1 − x

k

)
. (A.2)

We remark that, for the population levelx = (k/2), there exists amaximum sustainable yield(MSY)

hMSY = maxf(x)

with the property that any larger harvest rate will lead to the depletion of the population. The level
x = (k/2) can be considered optimal from a biological point of view but we have to notice that the cost
of catching fish tends to rise as the population is reduced. When the costs as well as the benefits are
taken into consideration, it might be argued that the optimal stock level should be higher thank/2. In this
assumption, thecatch-per-unit-effortis proportional to the stock level, that is

h = qEx

whereE denotes fishing effort andq is the catchability coefficient. So the equilibrium harvest, or sus-
tainable yieldY = h corresponding toE is given by

Y = qEx.

If p represents the price of the fish per unit, the total revenue will be

R(Y) = pY= pqEx (A.3)

whereas the total cost is given by

C(E) = cE (A.4)

with c the constant marginal cost of effortE.
It is assumed that the sole owner’s objective is the maximization of the total discounted net revenues

derived from the exploitation of the resource. Ifδ > 0 is a constant denoting the rate of discount and
c[x(t)] equals the unit harvesting cost when the population level isx, this objective may be expressed as

max
h(t)

∫ +∞

0
e−δt(p − c[x(t)])h(t)dt. (A.5)

Solving (A.5) subject to the conditionsx(t) � 0 andh(t) � 0 is an optimal control problem. Aṡx =
dx/dt = f(x) − h(t), substitutingh(t) = f(x) − ẋ into (A.5)

max
h(t)

∫ +∞

0
e−δt(p − c[x(t)])(f(x) − ẋ)dt. (A.6)

is obtained. Applying the Euler necessary condition for a maximum to solve(A.6), we get:

f ′(x) − c′(x)f(x)
p − c(x)

= δ. (A.7)
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We remark that(A.7) is an implicit equation for the populationx. The solutionx = x∗ of (A.7) is the
optimal equilibrium population level. For the model in[29] it is

c(x) = c

qx
, f(x) = rx

(
1 − x

k

)
and

c′(x) = − c

qx2
, f ′(x) = r − 2rx

k
(A.8)

Substituting(A.8) into (A.7), a quadratic equation inx is get, with positive solution

x∗
δ (p) = k

4


1 + c

pqk
− δ

r
+

√(
1 + c

pqk
− δ

r

)2

+ 8cδ

pqkr


 . (A.9)

The sustained yield corresponding to(A.9) is given byY = f(x∗
δ (p)) and the market supply curve is

Sδ(p) = h = f(x∗
δ (p)). (A.10)
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