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Equator and the dangerous bifurcations
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Abstract

The object of the present work is to describe some bifurcations occurring
in the 2D piecewise linear continuous map in canonical form involving the
Poincaré Equator (i.e. periodic points at infinity) and its relation to the
regions of so called dangerous bifurcations (following Hassouneh et al. [15]
and Ganguli and Banerjee [12]). It will be shown that such regions are related
not only to stable fixed points and repelling saddle cycles, and a more general
definition is proposed. The boundaries of such regions are curves related to
border collision bifurcations of cycles on the Poincaré Equator.

1 Introduction

Recently many works have been published showing applied models (in engineering,
economics, etc.) described by continuous piecewise smooth or piecewise linear maps.
Examples may be found in [16], [23], [24], [19]-[21], [33], [2]-[4], [10], [32], [11], [13],
[14], [27]-[29], [35], [36]. The bifurcations occurring in these maps, different from
those studied in smooth models, are denoted as border collision bifurcations (BCB for
short henceforth) after Nusse and Yorke [23]. This is a quite recent research subject,
although some works by Feigen date back to the 70th, and were rediscovered only
a few years ago, see [5]. The first works associated with discontinuous linear maps
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are due to Leonov almost fifty year ago (see [17], [18]), and were rediscovered by
Gumowski and Mira, see [22] and Maistrenko et al. [19]-[21].

In the two-dimensional case the works are more recent, and several of them deal
with the two-dimensional canonical form proposed in Nusse and Yorke [23]. This
piecewise linear map is defined by two linear functions and its analysis is quite im-
portant because its dynamic behavior is at the basis also of the BCB occurring in
piecewise smooth systems. The two-dimensional canonical form has been mainly
considered in dissipative cases associated with real eigenvalues of the point which
undergoes the BCB. Among the effects studied up to now we recall the uncertainty
about the occurrence after the BCB (see e.g., [25], [9]), multistability and unpre-
dictability of the number of coexisting attractors (see e.g. in [35]). The center
bifurcation associated with complex eigenvalues has been considered in [31], [30],
[26].

A special phenomenon, the so-called dangerous BCB (introduced in [15] and in
[12]), is related to the case in which a fixed point is attracting before and after
the BCB, while close to the bifurcation value the basin of attraction shrinks up
to a unique point and at the bifurcation value the dynamics are divergent, except
at most a set of zero Lebesgue measure (as noticed also in [8], [26]). This specific
subject will be reconsidered in the present paper. In the recent paper by Avrutin
et al. [1] it is shown the importance of the bifurcations involving infinity, which we
refer as occurring on the Poincaré Equator (PE for short henceforth), because they
involve cycles existing on the PE, and may be considered as well as border collision,
that is: PE-collision bifurcations. It was partly observed in [12] that the dangerous
BCB may occur in regions bounded by the curves of PE-collision bifurcation. In
the present paper we discuss how these two types of bifurcations are related to
each other. Additionally, it is possible that cycles different from fixed points are
involved in the dangerous BCB (examples can be found in [7]). We also present
several examples which lead us to the conclusion that the definition of dangerous
BCB suggested in the cited works should be extended.

The plan of the work is as follows. In Section 2 we shall consider the two-
dimensional piecewise linear map which is a normal form to study BCB in piecewise
smooth two-dimensional maps, recalling some known bifurcations involving cycles
of the map and introducing the bifurcations involving the PE. In Section 3 we
shall illustrate the known results and its dynamic behaviors in the case of dangerous
bifurcations, giving an extended definition, and showing the regions in the parameter
space where they may occur. Section 4 gives some conclusion.
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2 Piecewise linear 2D normal form

As proposed in [23], the normal form for the border-collision bifurcation in a 2D
phase space, the real plane, is given by a family of two-dimensional piecewise linear
maps F : R2 → R2 made up of two linear maps FR and FL which are defined in two
half planes L and R:

F : X ′ =
{

Fl(X) = AlX +B if x ≤ 0
Fr(X) = ArX +B if x ≥ 0

where

X =

[
x
y

]
, Al =

[
τl
−δl

1
0

]
, Ar =

[
τr
−δr

1
0

]
, B =

[
µ
0

]

τl, τr are the traces and δl, δr are the determinants of the Jacobian matrix of the
map F in the left and right halfplanes, i.e., in L and R, respectively, R2 = L ∪R.

Following [2] we denote by O∗
L and O∗

R the fixed points of Fl and Fr given,
respectively, by

O∗
L/R =

(
µ

1− τl/r + δl/r
,

−δl/rµ

1− τl/r + δl/r

)
(1)

(where the notation l/r denotes l or r). Obviously, O∗
L and O∗

R are fixed points of
the map F only when they belong to the related partitions L and R. Namely, O∗

L is
the fixed point of the map F if µ/(1− τl+ δl) ≤ 0, otherwise it is a so-called virtual
fixed point. Similarly, O∗

R is the fixed point of F if µ/(1− τr + δr) ≥ 0, otherwise it
is a virtual fixed point. Clearly, if the parameter µ varies through 0, the fixed points
(including virtual fixed points) cross the border x = 0, so that the collision with it
occurs at µ = 0, value at which O∗

L and O∗
R merge with the origin (0, 0). As shown

in [1], there is also another bifurcation which leads a fixed point to become virtual,
and it occurs when the denominator in (1) becomes zero, that is at:

χL/R =
{(

τl/r, δl/r
) | τl/r = 1 + δl/r

}
(2)

At this bifurcation one real eigenvalue of the matrix Al/r becomes equal to +1, and
the real fixed point O∗

L/R is merging with a fixed point on the PE (the limit point

on the eigenvector associated with the eigenvalue λ = 1), becoming virtual after, for
τl/r > 1 + δl/r.

Let µ vary from a positive to a negative value. As it was noted in [2], if some
bifurcation occurs for µ decreasing through 0, then the same bifurcation occurs also
for µ increasing through 0 if we exchange the parameters of the maps Fl and Fr,
i.e., there is a symmetry of the bifurcation structure with respect to τr = τl, δr = δl
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in the (τl, τr, δl, δr)-parameter space. Thus, it is enough to consider µ varying from
positive to negative (or vice versa).

The stability of the fixed points O∗
L/R comes from the eigenvalues λL,R

1,2 of the
Jacobian matrix of the map Fl/r, which are

λL,R
1,2 =

1

2

(
τl/r ±

√
τ 2l/r − 4δl/r

)
(3)

The stability of O∗
L/R is thus given by:

SO∗
L/R

=
{(

τl/r, δl/r
) | − (1 + δl/r) < τl/r < (1 + δl/r) , δl/r < 1

}
(4)

The bifurcation curves

ξl/r =
{(

τl/r, δl/r
) | τl/r = −(1 + δl/r)

}

are associated to the eigenvales λ1 = −δl/r and λ2 = −1.
At µ = 0 we have O∗

L = O∗
R = (0, 0), i.e., the fixed points collide with the border

line x = 0, and for µ > 0 (i.e., before the border-collision) the fixed point O∗
R is real

and O∗
L is virtual, while the viceversa occurs for µ < 0.

Turning to the cycles of the map different from the fixed points, their existence
is related to the applications of the linear maps Fl/r in the proper order, and their
stability is governed by the eigenvalues of the matrix product of the matrices Al/r in-
volved. For example, for a 2−cycle denoted ORL we obtain that its points (xRL

i , yRL
i )

i = 1, 2 are given by

(xRL
1 , yRL

1 ) =

(
µ(1 + δl + τl)

(1 + δl)(1 + δr)− τlτr
, −δlx

RL
2

)
(5)

(xRL
2 , yRL

2 ) =

(
µ(1 + δr + τr)

(1 + δl)(1 + δr)− τlτr
, −δrx

RL
1

)

The 2−cycle ORL exists iff the points given in (5) are located in the proper half-
planes, which means that one of them must be in L and the other one in R. The
2−cycle is stable when the eigenvalues of the matrix ArAl, given by

λ1,2 =
1

2

(
τlτr − δr − δl ±

√
(τlτr − δr − δl)2 − 4δlδr

)

are less than 1 in modulus. Notice that when the denominator in (5) becomes zero,
i.e.at the PE-collision bifurcation curve

χLR = {(τl, τr, δl, δr)| τlτr = (1 + δl)(1 + δr)} (6)
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one eigenvalue becomes equal to 1 and we have the merging of the real 2−cycle
with a 2−cycle on the PE (and then it becomes virtual). Notice that only one kind
of 2−cycle can exist, whereas for all higher periods there are several orbits with
the same periods but corresponding to different symbolic sequences. Especially
important for us are pairs of so-called complementary cycles ([12], [1]). In the most
simple case such a pair is given by ORLn−1 and OR2Ln−2 . These orbits appear via
a so-called fold BCB : At this bifurcation a cycle with one point on the boundary
x = 0 emerge, which splits after into two points on opposite sides of the boundary.
Therefore, the two complementary cycles differ only by one application of the linear
maps, or with other words, by one letter in the symbolic sequence.

The explicit formulation of the complementary 3−cycles (with periodic points
(xRL2

i , yRL2

i ) and (xR2L
i , yR

2L
i ), i = 1, 2, 3) can be found in [1] (see also in [12]). Here

we recall that from the expression of the periodic points

xRL2

i = µ
NRL2

i

DRL2 and xR2L
i = µ

NR2L
i

DR2L
(7)

we can obtain directly the parameter subspaces where these orbits undergo some
bifurcations. The condition NRL2

3 = 0 and NR2L
1 = 0 determine the border collision

bifurcation curve associated with the existence of the cycles, given by

ξ =
{
(τl, τr, δl, δr)| NRL2

3 = 0
}
≡

{
(τl, τr, δl, δr)| NR2L

1 = 0
}

(8)

= {(τl, τr, δl, δr)| τlτr + τl + τrδl + δrδl − δr + 1 = 0}

and shown in Fig.1.
Further, from the condition that the denominators in (7) vanish, we obtain the

surfaces of the PE-collision bifurcations of the 3−cycles, which are given explicitly
by

χRL2 =
{
(τl, τr, δl, δr)| DRL2

= 0
}

(9)

=
{
(τl, τr, δl, δr)| 1 + δl(τl + τr) + τlδr + δ2l δr − τ 2l τr = 0

}

χR2L =
{
(τl, τr, δl, δr)| DR2L = 0

}
(10)

=
{
(τl, τr, δl, δr)| 1 + τr(δl + δr) + τlδr + δlδ

2
r − τlτ

2
r = 0

}

We recall that at such bifurcation curves (χ) a finite 3−cycle expands up to merging
with a 3−cycle located on the PE (whereby one of its eigenvalues becomes equal to
+1). Hence, when a stable 3−cycle expands up to merging with a 3−cycle located
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Figure 1: Two-dimensional bifurcation diagram in the (τl, τr) parameter plane at
δr = δl = 0.52 fixed, associated with the complementary 3−cycles ORL2 and OR2L.

on the PE (approaching the curve χRL2) becoming virtual after the bifurcation and
leaving only one unstable 3−cycle in the plane, we have a dynamic behavior that
is typical for transcritical bifurcations. When a single unstable 3−cycle expands
up to merging with a 3−cycle located on the PE (approaching the curve χR2L)
disappearing after the bifurcation, we have a dynamic behavior that is typical of a
saddle-node bifurcation.

To accomplish the description of the complementary orbits ORL2 and OR2L we
have to consider their stability. Straight forward calculations show that at the curve
θ− (see Fig.1) the matrix ArAlAl (responsible for the stability of the 3−cycle ORL2)
has an eigenvalue equal to −1. On the left side of θ− the orbit ORL2 is a stable node
and OR2L is a saddle, whereas on the right hand side of θ− both the orbits ORL2 and
OR2L are unstable (in the case shown in Fig.1 both orbits are saddles).

The relative location of the curves ξ, χRL2 , χR2L in the parameter space with
respect to each other, as illustrated in Fig.1, show that there is a whole region (the
dark gray one) in which, of the complementary pair of 3−cycles, only one saddle
exists. As one can clearly see, there is a region between the curves θ− and χRL2

where the orbit ORL2 is stable. It is known that the saddle cycle OR2L is located on
the boundary of the basin of the stable orbit ORL2 . By contrast, between the curves
χR2L and χRL2 the stable orbit ORL2 no longer exists (destroyed by the PE-collision
bifurcation) whereas the saddle OR2L still persists in the phase-plane. As shown in



Bifurcations on the Poincaré Equator 59

[12] and [1], this is the reason why in this region dangerous bifurcations may occur.
As it follows from eq.(7), the parameter µ is a scale parameter, so that without

loss of generality we can fix µ = 1 for the generic case µ > 0 and µ = −1 for the
generic case µ < 0. This means that if the parameter µ is changed from positive
to negative values (or viceversa), all the cycles existing in the phase plane shrink
up to the origin. Consequently, the bifurcation occurring at µ = 0 is a peculiar
one: the unique cycle in the phase plane is the fixed point O in the origin, which
may be attracting, or we may have divergent trajectories (which means that there
exists an attractor on the PE). It follows that a peculiar behavior may occur when
we have divergent trajectories at µ = 0, separating the transition to some attractor
(or attractors), existing for µ > 0 to one attractor (or attractors), existing for
µ < 0. When this occurs we say that a dangerous BCB takes place.

It is worth noticing that this definition includes (and thus extend) the one pre-
viously given in [15] and [12]. In the cited works, the definition of the dangerous
bifurcation was restricted to the situation in which a stable fixed point exists both
for µ > 0 and µ < 0. However it will be shown that also in such a case, a stable
fixed point may be not the unique attracting set. Moreover, we shall see that for
µ < 0 (resp. µ > 0) we may have the fixed point which is stable while for µ > 0
(resp. µ < 0) the divergent phenomena coexists with some attractors different from
a fixed point, and the dangerous behavior exists at µ = 0.

3 Dangerous bifurcations

Let us first consider the examples proposed in [15] and [12], which assume the
parameters 0 < δi < 1 and

−(1 + δi) < τi < (1 + δi) , i = l/r

so that before and after the BCB we have a stable fixed point: O∗
R is locally stable

for µ > 0 and O∗
L is locally stable for µ < 0. Then in the two-dimensional parameter

plane (τL, τR) we may have regions corresponding to divergent trajectories at µ = 0
which are called regions of dangerous BCB, shown in dark gray in Fig.2.

The example shown in [15] and [12] refers to the case δl = δr = 0.9 which is the
same used in Fig.2, and in the cited references the authors were interested only in
the rectangle [−1.9, 1.9]× [−1.9, 1.9], where the dark gray regions are such peculiar
regions of dangerous BCB. However, in Fig.2 we show a wider region, and there
the dark gray regions are bounded by the curves of the PE-collision bifurcations for
specific pairs of complementary orbits, as explained in the pervious section. Hence,
for µ 6= 0 in these parameter regions correspond to there exist an unstable (saddle)
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Figure 2: Two-dimensional bifurcation diagram in the (τl, τr) parameter plane
at δr = δl = 0.9 fixed, and µ = 0. The boundaries of the dark gray regions
are the PE-collision bifurcation curves. There is divergence in the white region
[−4, 1.9] × [−4, 1.9] and convergence to the origin in the light gray region bounded
by the bifurcation curves χR, χL and χLR.

cycle whose stable set separates the basin of attraction of the stable fixed point from
the trajectories which are diverging (i.e. attracted from an attractor on the PE).

As illustrative example consider the case shown in Fig.3. For µ > 0 (Fig.3b) the
fixed point O∗

R is locally stable (and its basin of attraction is formed by the stable
set of the unique 3-cycle, a saddle), while for µ < 0 (Fig.3a) the fixed point O∗

L is
locally stable (and here also its basin of attraction is formed by the stable set of the
unique 3-cycle saddle). Due to the scaling of the state space linear in µ, at µ = 0 the
3-cycles, and thus the basin of attraction of the fixed points, reduce to the unique
fixed point in the origin, and all over around the generic trajectory is divergent.
Thus, the existence of only one saddle cycle (not in pair with a complementary
stable cycle), seems related with the dangerous behavior. This was evidenced in
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Figure 3: Two dimensional phase plane at δr = δl = 0.9, τl = −0.3, τr = −1.85
fixed. In (a) µ = −1, the stable fixed point O∗

L is the unique attractor. In (b)
µ = +1, the stable fixed point O∗

R is the unique attractor. In both figures dark gray
points denote the basin of divergent trajectories (whose boundary is the stable set of
the 3−cycle saddle), while white points denote the basin of attraction of the fixed
point.

Ganguli and Banerjee [2005], where the equations bounding the region associated
with a saddle 3-cycle were given, suggesting that a similar behavior is going to occur
in the other dark regions, associated with so-called principal k−cycles saddles, for
k = 4, 5, ... having one point in one region and the remaining (k − 1) points in the
other (also called basic or maximal orbits). Indeed we shall see that this behavior
occurring in the region associated with the saddle 3−cycle can be generalized only
in part.

As shown in [1] all the cycles which undergo a fold BCB appearing in pair,
give rise to two bifurcations with the PE and the parameters between these two
bifurcation curves (for example the dark gray region in Fig.1) are those which may
be associated with the dangerous bifurcation. To be more precise, consider the case
shown in Fig.2 at τr = −1.85 fixed and decreasing τl from 0.5. Before entering the
dark-gray region in the dynamics of the map, for µ > 0 there are two coexisting
attractors: the stable fixed point O∗

R and a stable 3-cycle, the two basins of attraction
are separated by the stable set of the 3-cycle saddle. When the parameter τl has
a contact with the right side boundary of the region, the stable 3-cycle has a PE-
bifurcation (curve χRL2), and disappears (becoming virtual), but leaving in the
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Figure 4: Two dimensional phase plane at δr = δl = 0.9, τl = 0.9, τr = −1.85 fixed.
In (a) µ = −1, the stable fixed point O∗

L is the unique attractor. In (b) µ = +1,
the stable fixed point O∗

R coexists with a stable cycle of period 3. In both figures light
gray points denote the basin of divergent trajectories, white points denote the basin
of attraction of the fixed point, and dark gray points in (b) denote the basin of the
3−cycle.

phase-plane the saddle 3-cycle, which exists, on decreasing the parameter τl (and
the 3-cycle becoming wider and wider), up to the bifurcation on its turn with the
PE occurring at the contact with the curve χR2L. So that (as evidenced also in [30])
for values of τl between these two curves (χRL2 and χR2L) besides the stable fixed
points there exist a unique saddle 3-cycle, and it is on the boundary of the basin of
attraction of the origin. It follows that for the parameters (τL, τR) inside this region
we are lead to a dangerous bifurcation for µ = 0. The reasoning in the other dark
gray tongues is similar but not completely the same. As it is shown in Fig.2 the
other dark gray regions on the right of the one associated with the 3-cycle saddle
are denoted as k−regions for k = 4, 5, ... because indeed the boundaries of these
regions are related to the existence of a k−cycle saddle without the existence of the
complementary k orbit. That it to say: the equations of the tongues are given by
the PE-bifurcation curves χRLk−1 (contact with the PE of the stable k-cycle) and
χR2Lk−2 (contact with the PE of the saddle k-cycle), and for parameter values inside
such regions only a saddle k−cycle exists, without the complementary orbit, and
this k−cycle saddle is responsible of the dangerous behavior. However it is not the
unique cycle existing for parameter in such k−regions at µ > 0. Considering for
example a point inside the region of the 4-cycle, in Fig.4 we show the phase portrait
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of the map for positive and negative values of µ. It is shown in Fig.4b that for µ > 0,
besides the locally stable fixed point O∗

R a pair of 3−cycles exist, one locally stable
and one saddle (i.e. we are inside the region of existence of the two complementary
3-cycles, before the collision bifurcation of the 3-cycle node with the PE but after
the collision bifurcation with the PE of the 4-cycle). Moreover, both the 3-cycle
saddle and the 4-cycle saddle have transverse homoclinic points, and all the three
basins (of the origin, of the 3-cycle and of the PE) have a fractal structure. Anyhow,
decreasing µ, at µ = 0 all the infinitely many cycles merge in the origin, and only the
most external basin (that of the PE) is left, thus causing the dangerous behavior.
It can be seen that the behavior is similar also in the other regions: between the
curves χRLk−1 and χR2Lk−2 for k = 4, 5, ... at least one pair of (k − 1)−cycles exist
in some subregions.

We have commented up to now the dark-gray regions below the main diagonal
of Fig.2, and it is clear that we can reason in the same way also in the symmetric
tongues, as exchanging the values of the parameters the comments in the regions
µ > 0 and µ < 0 are just exchanged. For example keeping the δr = δl = 0.9 as in
Fig.4, but symmetric values with respect to the diagonal of Fig.2 for the two other
parameters: τl = −1.85, τr = 0.9, then for µ = 1 the stable fixed point O∗

R is the
unique attractor while for µ = −1 the stable fixed point O∗

L coexists with a stable
cycle of period 3. The stable set of the 4-cycles always bounds the basin of divergent
trajectories.

Thus our extended definition of dangerous bifurcations can be applied to all the
cases discussed above. But more, there is no reason to limit the analysis to the
regions in which the fixed points are locally stable. In fact, whichever is the finite
attracting set, the occurrence of a dangerous bifurcation may be related to some finite
attractors for µ > 0 and µ < 0 coupled with divergence at µ = 0 (as all the cycles
and all the basins of attraction shrink up to a single point for µ tending to zero,
so that there is mainly divergence at µ = 0). Fig.2 shows in fact a wider region:
[−4, 1.9]× [−4, 1.9]. The upper and right limits are related with the bifurcations of
the fixed points with the PE (χR and χL curves, given in (2)), and for points in the
parameter space on the other side of such borders, for τl > 1 + δl or τr > 1 + δr, we
mainly have divergent dynamics at least on one side of µ = 0. So we are interested
in the extension of the region on the other side (where τl/r < 1+δl/r). But below the
χLR curve, given in (6), we have an unstable 2-cycle with divergent behavior on one
side of µ = 0, and divergence in the white region below the χLR curve (where the
fixed points are unstable both for positive and negative values of µ). Thus we are
left to the other region (see Fig.2): above the χLR curve and before crossing the χL/R

curse, in which we have either −(1+ δl) < τl < (1+ δl) or −(1+ δr) < τr < (1+ δr),
so that we can conclude that either for µ > 0 or for µ < 0 we have a locally
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Figure 5: Two dimensional phase plane at δr = δl = 0.9, τl = −0.3, τr = −3
fixed (white point in Fig.2 inside the gray tongue of the 3−cycle saddle). In (a)
µ = −1, the stable fixed point O∗

L is the unique attractor, and gray points denote its
basin of attraction. In (b) µ = +1, the fixed point O∗

R is unstable, and two attractors
coexist: a stable 2−cycle and a stable 5−cycle, whose basins are in two different gray
tonalities, while dark gray points denote the basin of divergent trajectories, whose
boundary is the stable set of the 3−cycle saddle.

attracting fixed point. In these strips (see Fig.2) we have dark gray tongues bounded
by pairs of χRLk−1 and χR2Lk−2 bifurcation curves of collision with the PE. Around
such regions we see light gray points denoting that we have a stable fixed point at
least on one side of µ = 0. Inside such dark gray regions we may have bounded
attractors for µ > 0 and µ < 0 coupled with generic divergence at µ = 0, that
is: dangerous BCB. In fact, Fig.5 shows an example at τL = −3 inside the tongue
associated with the 3-cycle and Fig.6 shows an example at τL = −4 inside the region
associated with the 4-cycle. As we are outside the stability region of the fixed point
O∗

R we have a different attracting set existing for µ > 0. In Fig.5b (inside the 3-cycle
tongue) we have a stable 2-cycle coexisting with a stable 5-cycle and their basins
are separated by the stable set of the saddle 5-cycle, whose limit set is the stable set
of the saddle 3-cycle bounding the basin of divergent trajectories. While in Fig.6b
(inside the 4-cycle tongue) we have a stable 3-cycle. Anyhow, the crucial fact is the
existence of a k-saddle cycle whose stable set bounds the basin of attraction of the
PE and this causes a dangerous bifurcation, as on the other side, for µ < 0, the
fixed point is locally stable.
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Figure 6: Two dimensional phase plane at δr = δl = 0.9, τl = 0.9, τr = −4 fixed
(white point in Fig.2 inside the gray tongue of the 4−cycle saddle). In (a) µ = −1,
the stable fixed point O∗

L is the unique attractor, and white points denote its basin of
attraction. In (b) µ = +1, the fixed point O∗

R is unstable and a stable 3−cycle exists
whose basin has a fractal boundary. In both figures dark gray points denote the basin
of divergent trajectories, and the boundary is the stable set of the 4−cycle saddle.

The extension of the definition of the dangerous BCBs can be appreciated
at a different set of parameters for δL and δR. Fig.7 shows the two-dimensional
bifurcation diagram in the case δL = δR = 0.55 at µ = 0. We remark that the
bifurcation diagrams in Fig.2 and Fig.7 are numerically detected setting µ = 0 in
the map, and considering an initial condition close to the origin. As we know, a
dark gray region (bounded by bifurcation curves of collision with the PE) denotes
the region of existence of a k−cycle saddle, whose related k−cycle node belongs to
the PE and at µ = 0 the points of the k−cycle saddle are reduced to the origin,
however the k−invariant lines belonging to the related unstable set of the k−cycle
saddle at µ = 0 give k−invariant lines belonging to the unstable set of the origin,
but also the k−invariant lines belonging to the stable set of the k−cycle saddle at
µ = 0 give k−invariant lines belonging to the stable set of the origin. Thus at least
a set of points of zero Lebesgue measure whose trajectories are convergent to the
origin always exist, also at µ = 0.

In Fig.7 it can be seen that now inside the rectangle [−1.55, 1.55]× [−1.55, 1.55]
(where O∗

R is locally stable for µ > 0 and O∗
L is locally stable for µ < 0) we have

no dangerous regions associated with fixed points locally stable before and after
the bifurcation. However, the tongues associated with the k−cycle saddle for k =
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Figure 7: Two-dimensional bifurcation diagram in the (τl, τr) parameter plane at
δr = δl = 0.55 fixed, and µ = 0.

3, 4, 5 can be clearly seen, and the dark gray tongues may be regions of dangerous
bifurcations occurring between a locally stable fixed point on one side and some
other attracting set on the other side. Fig.8 shows an example of phase plane for
parameter values inside the 3−cycle tongue.

However, it is worth noticing that inside such dark gray regions bounded by pairs
of χRLk−1 and χR2Lk−2 bifurcation curves, it is not true that all the points denote a
dangerous bifurcation. In fact, it is easy to find points for which we have no stable
cycle on one side of µ = 0 (so that the bifurcation is a transition from a stable
fixed point on one side and divergence on the other side). In Fig.9 we show an
example in which for µ = −1 the fixed point O∗

L is attracting while for µ = 1 there
exists a chaotic attractor, which is very close to its basin boundary, i.e. close to the
homoclinic bifurcation causing its transition to a chaotic repellor, as it occurs for
example at lower values of τR.

It is clear that in order to detect the proper points leading to the transition to
another attractor(s) we have to ”overlap” the stability regions of the k−cycles, as
well as the regions having some bounded attracting set, which may also be chaotic.
And the examples given above show that many regions may coexist in those tongues.
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Figure 8: Two dimensional phase plane at δr = δl = 0.55, τl = 0, τr = −3 fixed
(white point in Fig.7 inside the gray tongue of the 3−cycle saddle). In (a) µ = −1,
the stable fixed point O∗

L is the unique attractor, and white points denote its basin
of attraction. In (b) µ = +1, the fixed point O∗

R is unstable, and a stable 2−cycle
is the unique attractor, with basin in light gray tonality. In both figures dark gray
points denote the basin of divergent trajectories, whose boundary is the stable set of
the 3−cycle saddle.

4 Conclusions

In this work we have considered the problem related with the so-called dangerous
bifurcation in the two-dimensional map in canonical form commonly used to study
the border collision bifurcations in two-dimensional piecewise smooth maps. We
have shown that the previous definition may be too strict to consider all the possi-
ble cases associated with two stable fixed points on both sides of the border collision
occurring as the parameter µ crosses the value µ = 0. In fact, inside the regions
of dangerous bifurcation known up to now we have seen that coexistence of stable
attractors is a common event, as thus it is common to have two saddle-cycles (or
many more), and a problem arise in order to detect which one is related with the
dangerous bifurcation. We have shown that such points belong to regions in the pa-
rameter space bounded by two special bifurcation curves, called χRLk−1 and χR2Lk−2

(denoting a contact of a cycle with the PE), and we have shown that such cycles,
which exist as saddle without the complementary stable cycles, are those related
with the dangerous bifurcations. Moreover, our definition of dangerous bifurcation,
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Figure 9: Two dimensional phase plane at δr = δl = 0.55, τl = 0.1, τr = −3, and
µ = +1 (point inside the gray tongue of the 3−cycle saddle of Fig.7). The attractor
is a one-piece chaotic set. Dark gray points denote the basin of divergent trajectories,
whose boundary is the stable set of the 3−cycle saddle.

which consists in giving this label whenever we have attractors at finite distance
both for µ > 0 and µ < 0 coupled with divergence at µ = 0 is an extension of the
previous one, and leaves open the problem of its full determination and description.
By using several examples we have shown how many different cases may occur.
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