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This paper is devoted to the study of the global dynamical properties of a two-dimensional
noninvertible map, with a denominator which can vanish, obtained by applying Bairstow’s method
to a cubic polynomial. It is shown that the complicated structure of the basins of attraction of the
fixed points is due to the existence of singularities such as sets of nondefinition, focal points, and
prefocal curves, which are specific to maps with a vanishing denominator, and have been recently
introduced in the literature. Some global bifurcations that change the qualitative structure of the
basin boundaries, are explained in terms of contacts among these singularities. The techniques used
in this paper put in evidence some new dynamic behaviors and bifurcations, which are peculiar of
maps with denominator; hence they can be applied to the analysis of other classes of maps coming
from iterative algorithmgbased on Newton’s method, or others© 1999 American Institute of
Physics[S1054-150009)02202-9

We consider a class of two-dimensional noninvertible the two-dimensional map converge to a fixed point provided
maps, characterized by the existence of a vanishing de- that the initial condition is sufficiently close to it, but there
nominator, so that the iterative process is not defined ina are no general results on their global basins of attraction.
zero-measure subset of the plane. This class of maps is Thys the main problem is to obtain the boundaries of the
obtained by the application of the Bairstow’s method(@n  pasins of the fixed points, and to study their qualitative
iterative numerical algorithm to find roots of polynomi- . nqeg( e, their bifurcations as the coefficients of the
als) to a cubic equation. The study of the two-dimensional polynomial vary.

maps reveals that the choice of the initial point of the . . .
: . . . : The geometric features and dynamic behavior of a two-
iterative process is crucial for the convergence, since very . : . )

dimensional map coming from Bairstow's method are

complex basins of attraction are obtained. We explain the ] ) )
structure of the basin boundaries and the global bifurca-  Strongly influenced by the following two general properties:
(i) it is a noninvertible map(ii) it is a fractional rational map

tions which cause their qualitative changes by using con- " ot _ al :
cepts and techniques which have been recently proposed With vanishing denominator. Frofii) it follows that there is

for the study of the global properties of maps with a van- @ subset of the plane where the map is not defined, also
ishing denominator. calledsingular setin Billings and Curry? and such a subset

may include points in which also a numerator vanishes, so

that the map takes the form 0/0, which are candidate to be

. INTRODUCTION focal points following the terminology introduced by Bischi,
The Bairstow’s method is an iterative numerical algo- Gardini, and Mir&=° Some dynamical effects of these sin-

rithm to find roots of polynomials with real coefficients, pro- 9ularities, specific to maps with a vanishing denominator,
posed by Bairstow in 191%This numerical method, which have been recently investigatédee Bischi, Gardini, and
involves only real arithmetic, is based on the factorization ofViira® and references thergimnd such results can be use-
the polynomials into products of quadratic functions, whosdully applied in order to study the structure of the basin
coefficients are the roots of algebraic equations. Applicatiorboundaries, as well as their bifurcations, for the maps com-
of the iterative Newton’s method to find such roots gives riseing from Bairstow’s method.

to atwo-dimensional rational mapwvhose fixed points cor- As a prototype of this class of maps we shall consider
responds to the desired coefficients of the quadratic factorshe one obtained by applying Bairstow’s method to the one-
These fixed points are locally attracting, i.e., the iteration ofgarameter family of cubic polynomialsP,(x)=x3
+(a—1)x—a. The factorization P,(x)=(x?+ux+uv)(x
dCorresponding author. —u) occurs if and only ifu andv are fixed points of the
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two-dimensional mapT,:(u,v)—(u’,v’) given by (see, (Xx>+ux+v) we get P(x)=(x>+ux+uv)Q(x)+F(u,v)x
e.g., Billings and Curr): +G(u,v). We then seek for a factor &f(x) by using New-

ton’s method to solve the algebraic system
ul+u(v—a+1l)+a

T.: v 2u+v [g((llj'v))fg
) u(uw’+a-1)+2au V)=
v = 2uZ+v : which gives rise to the two-dimensional mapm’(v’)

=B,(u,v) where
We have chosen this family for two reasons: It is the sim-
plest map coming from the application of Bairstow’s method
and its dynamical properties have already been investigated
by many authorgsee the works of BoydBlish and Curnf?
Billings, and Curry? Billings, Curry, and Phipp$ Fiedlerl?

’ -1

Fu(u,v) F,(u,v)
| Gu(u,w) G,(u,v)

After reordering, the map, reads as

|u
a-

u
v

F(u,v)
G(u,v)

v !

Blish,** Curry, Garnet, and SullivdA). However, the global , N;(u,v)
structure of the basins of attraction of the fixed points of the u'=H(u,v)= D(u,v)
mapT, is still an open problem, and their study is of interest Ba: N,(u,v)

both from the point of view of the application of the numeri- v'=K(u,v)= D(u.0)

cal method, since a proper choice of the initial condition is

often the most challenging part of the numerical method, anavhere both the components of the mBp, H(u,v), and

from the point of view of the new and rich dynamical prop- K(u,v) are fractional rational functions with a denominator

erties of the two-dimensional maps obtained. Particulathat vanishes in the points of a one-dimensional subset of the

structures and bifurcations of the basin of the fixed points oplane, given by a set of algebraic curves that will be called

T, have been already evidenced in Billings and Cdrand  singular sef and denoted by, :

IBllllngs, (_:urry, an_d Phlpp_%,\/\{h_ere the eX|stence_ of mvarlan_t 5.={(u,v) € RZD(u,v)=0}.

ines, which may include infinitely many repelling cycles, is

shown, and the importance of the presence of the singular seet us briefly recall an important property associated with

is stressed. However, the basin structures are not only relatedich kind of maps, which was proven by Bdy@ee also

to such sets. The main purpose of the present work is t8lish and Curr):

show how theglobal structure of the basins, as well as their Property 1. Let £ be a real root of Fx). Then the line

main bifurcations, are related to the focal points of the map(L,) in the (u,v) plane of equatiow + éu+ £=0is invari-

and to the corresponding prefocal sétsdefinition of these ant for B,. The restriction of g to the line(L;) is a one-

terms is given in the next sectipn dimensional map associated with the Newton-function ap-
The plan of the work is as follows. In Sec. Il we briefly plied to the reduced polynomial £x) = P(x)/(x—§).

deduce the two-dimensional map by the application of the  We remark that, following the existing literature on the

Bairstow’s method to a cubic polynomial and then we givesubject, the terminvariant is used here as synonymous of

some basic properties, taken from the existing literature otrapping, i.e..B,(L,) C(L,), differently from the definition

the Bairstow’s method. Then we give a short review of someadopted in several texts on dynamics, where invariant means

recent definitions and results concerning the maps with @xactly mapped into itselB,(L,)=(L,).

vanishing denominator, in particular the definitions and the In this paper we shall focus our attention on a particular

geometrical properties of the concepts of focal point and premap, coming from Bairstow’s method applied to the cubic

focal curve are given in Subsection |1 B, and in Subsectiorpolynomial P,(x)=x3+(a—1)x—a. The factorization

Il C these definitions are applied to stress some properties & ,(x) = (x?+ux+uv)(x—u) occurs if and only ifu andv are

the inverse maps. In Sec. lll the structure of the basins of theolutions of the algebraic system

fixed points is examined in detail in different ranges of the

parametera. The main bifurcations are explained in terms of

contacts of the focal points, prefocal curves, and the singular

set, and many numerical explorations are used to illustratand thus if and only ifu andv are fixed points of the fol-

the role of these new kinds of singularities that characterizgowing two-dimensional mapT(u,v)=(H(u,v),K(u,v))

the global dynamical properties of maps with a vanishinggiven by

denominator.

F(uv)=u’-v+a—1=0
G(u,v)=uv—a=0,

. u+u(v—at+l)+a

u

2u’+u
Ta v(u’+a—1)+2au (1)
Il. SOME GENERAL PROPERTIES OF THE TWO- v' = 5
DIMENSIONAL MAP PAVR )
A. Definitions and basic properties The domain of definition of the functiof, is given by

R2\8,, whered, is the singular set, formed by the points of

Bairstow’s method is a well-known iterative technique
the parabola

to determine a real quadratic factor of a polynoniglx)
with real coefficients. DividingP(x) by a quadratic factor Ss={(u,v) e RZv=—2u?. 2
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So the iteration off , is well-defined provided that the initial Phipps). Both from a theoretical and a practical point of
condition belongs to the sé& given by view, it is important to obtain an estimate of the stability

E—R2A 3) extent of.the fixed points, i..e.,.a delimitati_on of their basins

' of attraction, and to ascertain if sets of points exist that gen-

where A is the union of the preimages of any rank of the erate trajectories that do not converge to any fixed point.
singular setdg This requires an analysis of the global dynamical properties
of the two-dimensional map, i.e., an analysis which is not
limited to the study of its linear approximation. Furthermore,
the global bifurcations determined by variations of the coef-
ficients of the polynomial, which are the real parameters of
the map, should also be investigated. In the following we
study the boundaries of the basins of the fixed points of the
map T, and how they change as the parametearies.

We denote byB(A) the basin of attraction of a given
invariant setA, defined as the set of points whosdimit set
glongs toA

A= UT,46).
k=0

In fact, only the points belonging to the $etgenerate non-
interrupted trajectories

7(Ug,00) ={(Un,vn) =T5(Ug,vo),n=0} (4)

by the iteration of the map ,:E—E. We notice that, being
the singular seb, a curve ofR?, the setA of points excluded
from the phase space of the recurrence has zero LebesgB
measure k2.

Several properties of the map have been already stud-
ied in the literature. For example, in Blish and Cdriyis
shown that:

B(A)={(u,v) e E|lw(u,v)CA}

. . ] ) [we recall that they-limit set w(u,v) of a point (u,v) is the
Property 2. Lft_ R=(u*,v™) be a fixed point of T. |imjt set of its trajectoryr(u,v)]. Considering mafT, under

Then the line u=u* is mapped by {into the fixed point R gyqy, let us denote bB(R;) the basin of attraction of the
Really, a more correct formulation of Property 2 shouldjyeq pointR;, i=1,2,3. Two ranges of parametay with

say thatT,(u*,v)=(u*,v*) for any (U*,v) in which the gitterent behavior of the map, have already been noticed:
map is defined, since the line=u* always intersects the set 5 1/4 anda> 1/4.

of non definition ofT,, given by parabol#2).

In Blish and Curryl it is also shown that for<<1/4 the
map T, has three distinct fixed pointassociated with three
quadratic factors foP4(x)), given by

R;=(uf ,v})=(1a), Rp=(u},uj),

e In the casea<1/4, when three fixed point&;, i
=1,2,3, exist, it is possible that any point,{) € E
belongs to one of the basif¥R;). However, as al-
ready argued in Blish and Curfythere are regions of
“uncertainty” with respect to the asymptotic behav-

(5 ior, i.e., regions in which, given an initial condition

_ * *
Rs=(uz ,uz), (Ug,vo), it is difficult to decide toward which of the

where three fixed points the iterations will converge. In fact,
as we shall prove in the present paper, there exist sev-

Uk = 1+Vl-4a Ut = —1-vyi-4a ©) eral regions in which the asymptotic behavior of the

2 2 ro3 2 trajectories is extremely sensitive with respect to

changes, even very small, of the initial condition. A
goal of the present work is to explain the structure of
such regions, and how it is modified by changing the

are the real roots of the quadratic equatich u+a=0.
From Property 1 we deduce that fax 1/4 three invari-

ant lines exist, say;, i=1,2,3. Each invariant ling; con-

nects two fixed points, being; the excluded one. Link; of value of the parametex

equation * In the casea>1/4 only the fixed poinR; exists and,
Utvt1=0 @ as already argued in Blish and Cutand Billings and

Curry? in order to get the basiB(R;) we have to

is invariant also in the ranga>1/4, when only the fixed
point R; exists. The equations of the other two invariant
linesL;, i=1,2, existing fora<1/4, are

u=a+x(v—-1), =23 (8)

where\,=(a—u3)/(1—uj3) and\z=(a—u3)/(1—-u3).

The Bairstow’'s method is clearly a “local method”
since convergence to a given fixed point is only ensured for
initial conditions which are sufficiently close to (and in
such a case the convergence is quadratic, because the fixed
points are superstalleBut a global study of the asymptotic
behavior of the trajectories in E¢), as the initial condition
(ug,vo) varies in the plane, is still an open problem, studied
by many authors in the recent literatufgee Boyd, Blish
and Curn® Billings and Curry? Billings, Curry, and

exclude fromE at least the invariant line, as well as

all the points whose trajectory converges toward that
ling, i.e., the stable séor basin B(L,) of L;. The set
B(L.) may also be a “big” one, in a measure theo-
retic sense. Indeed, as conjectured by Billings, Curry,
and Phipp%(and we shall further motivate this conjec-
ture) for 3<a<1 the basinB(L,) has positive Le-
besgue measure, while it turns into a set of zero Le-
besgue measure fa>1. Moreover, also in the case
a>1/4 there is uncertainty with respect to the
asymptotic behavior in a wide region of the plane,
where it is very difficult to predict whether a trajectory
will converge to the fixed poiniR; or if it goes toL,
(convergence td.; means that the Bairstow method
fails).
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As stated in the Introduction, in order to understand the
qualitative structure of the basins of attraction, we shall
make use of the fact that the map is noninvertible and that

Gardini, Bischi, and Fournier-Prunaret

)

Lb,)

4
//
7/

[/7;(72)

it has a vanishing denominator. We recall that a noninvert-

ible mapT:(x,y)—(x',y’) is characterized by the fact that LT

the rank-1 preimage$ 1(x’,y’) of a given point §’,y’),

may be more than one. This implies that the plane can be 3

subdivided into regiong,, k=0, whose points havk dis-

tinct rank-1 preimages. The global properties of noninvert-

ible maps of the plane have been mainly studied by the (a)

method of critical curvegsee Gumowski and Mir& Mira

et al,'* Abrahamet al1®) defined as the locus of points hav-

ing two or more merging preimages, and usually located

along the boundaries that separate different regignsThe

role of the critical curves is analogous to that of the local

maximum and minimum values in one-dimensional nonin- -

vertible maps. 5
Instead, the global properties of two-dimensional maps

with denominator, recently considered in Bischi, Gardini,

and Mira3 can also be characterized by the presence of other

kinds of singularities, like the sets of vanishing denominator

(or singular sets the focal points, and the related prefocal

sets. Indeed, as we shall see below, both the redigremd

P=(uy,v,) /

/7@.)
V/,

the properties of the basins of the map are explained by () - \ ez, /
these latter kinds of singularities, specific to maps with de- o/ o e
nominator. ‘N
Q /
B. Focal points and prefocal curves 8, n ;
: . . . P,
Many global dynamical properties of two-dimensional ‘ (©)

maps can be explained by the analysis of new kinds of sin-

gularities, su_ch_as the Setsf where a denommator of the MaRG. 1. Qualitative sketches that illustrate the geometric behavior ofTrpap

(or some of its invers@ssanishes, the points where the map and its inverses.

(or some of its inversggakes the form 0/0 in at least one

component, and the prefocal curves, whose definition is here

recalled from Bischi, Gardini, and Mira: Eg. (9) with 7<0 and7>0, respectively. The closurg7) is
Definition 1. Consider a two-dimensional map T. A gych thaty_(0)= . (0)=(ug,vo). AS (Ug,v) € ds We

point Q belonging to the set of non definitiay, is a focal  haye a vanishing denominatd(uy,v,) =0, and let us first

point if at least one component of the map T takes the forBssume that the two numerators are different from zero,

0/0 in Q and there exist smooth simple argér), with N (u,,v,)#0 andN,(ug,v0) %0, then

v(0)=Q, such thatlim__,, T(y(7)) is finite. The set of all )

such finite values, obtained by taking different args) lim To(y(7))=(,),

through Q, is called prefocal sef; . 0
In order to explain the role of #ocal pointand the wheres means either-o or —o. This means that the image

relatedprefocal setin the geometric and dynamic properties To(7y) is made up of two disjoint unbounded arcs asymptotic

of the mapT,, we consider a smooth simple ayd¢ransverse to a liner(ug,vo) wWhose slope is given by the ratio

to &5 and look how it is transformed by the application of the

mapT,, i.e., what is the shape of its imag€y). In doing

this we assume that the arcis deprived of the point in

which it intersectsd. Let (uo,vo)z(uo,—Zug) e 65 be this

point and assume that in a neighborhoodwf,¢ o) y is rep-

resented by the parametric equations

U(T)=Ug+ & rt Eprot-
v(7)=vot g7t Tt

N2(Ug,v0)
N1(Ug,vg)

Different arcs through the same point are mapped into dif-
ferent arcs asymptotic to the same lisee Fig. 13)].

A different situation occurs if the pointug,vg) € &5 is
such that not only the denominator but also the numerators
of the mapT, vanish in it, i.e.,

The portion of y in such a neighborhood can be seen as D(Uo,00) =N1(Uo,v0) = N2(Uo,v0) =0, (19

the union of two disjoint pieces, say=y_U vy, , wherey— because in this case the limits may be finite and the image of
and y+ denote the portions of located on opposite sides an arcy may be a bounded arft,(y).

with respect to the singular cuné&, and are obtained from It is easy to see that E@10) always occurs in the point

m(Ug,vg) =

y(7): 7#0. (9)



Chaos, Vol. 9, No. 2, 1999

Q:=(1,-2) 11
and, fora<1/4, also in points
QZZ(UE 1_2u;2)1 Q3=(u’:’§ 1_2u§2) (12)

Then, let us consider the poifl; e 65, and take the limits

which may be finite in both the components of the map, and

depend on the arg:

lim Ta(y()=(lim H(y(7), im K(7(7))=(u, ,),
7—0 —0 7—0
13

where, by denotingxl_lyuzaNllau(Ql) and analogously for
the other partial derivatives,

B Niyé1+Na,m

B N é1+Noy, 7
Dyé1+Dym

2ot 2 (14)
Dyé1+Dymy

u

The whole prefocal selSQl is given by the set of points
(u,,v,) obtained on varying the slope of the gr¢hrough

the pointQ; . In this way we obtain a one-to-one correspon-

dence between slopm= 7,/&; of arcy in Q; and point
(Um,vm) Inwhich T(y) crosseﬁQl. The values of the limits
in Eq. (13) are finite if the denominator in E@l4) is differ-
ent from zero, i.e., if the slopm=5,/&; of arcy in Q, is
different from the slope of curvé, in the same point, given
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For a<1/4, beside€Q, the mapT, has two more focal
points, given in Eq(12). Repeating the procedure followed
above with the point®; = (u¥ ,—2u¥?), i=2,3, we get the
parametric equations of the prefocal séts as a function of
the parametem (slope of the arc through;):

ur(m-1)+1-2a
B Au¥ +m

m

u’(4a—4—m)—2a—-m
B 4u¥ +m

Um '
and by eliminating the parametar we get the equations of
the prefocal Iines&Qi, i=2,3, given by:

=2,3. (17)

It is plain that the geometric properties of the images of arcs
through each focal poir®; , as well as the preimages of arcs
through each prefocal linég , are the same as those com-
mented above fo@Q, and 4q,-

Note that the second component of the nigpK(u,v),
also takes the form 0/0 in the origi®@=(0,0). However,
according to definition 1, this point af; is not a focal point,
except for the casa=0, when it merges with focal point
Q,. In fact, fora#0 the first component of the map gives
H(u,v)=4a/0, which is either+o or —c. Thus no finite

Sq v=2ufu+(uf+2a—-1), i

by —D,/D,. The parametric equation of the prefocal setvalue can be obtained for lim, T.(y(7)), wheny(0)=0.

dq, is given, as a function of the parametar(slope of the
ar¢ by the equations:

Niy+Ni,m 2—a+m
u =— — = ,
"™ D,+D,m  4+m

Np,+Ny,m —4+2a+ma
Um= =

D_u-}-D_Um 4+m

and by eliminating the parametar we get the equation of
the prefocal Iine&Ql, given by:

5Ql:v=2u—2+a. (15

Some arcy through the focal pointQ; and their images
Ta(v) are qualitatively shown in Fig. (). However, the

This means that the origi® e §; behaves as a generic point,
not focal, of the singular sei;.

We can so state the following proposition:

Proposition 1. Let T, be the map in Eq. (1). For a
>1/4the map T, has one focal point @, given by Eq. (11),
with related prefocal Iine6Ql of Eq. (15). For a<1/4 the
map T, has three focal points Q i=1,2,3,given by Egs.
(11) and (12), with related prefocal Iine&Qi, i=1,2,3,of
Egs. (15) and (17)

C. Inverses of T, and related properties

As remarked above, in order to understand the global
dynamical properties of map, it is important to see how
many inverses map, has and in which regions of the phase

reasons of the terms focal and prefocal becomes cleargjane the inverses are defined. Let ') be a given point

when the geometric behavior of the invggeof T, is con-
sidered. In fact, it is plain that given a point,Qu—2+a)
€dq,, with u#1, and an arg crossing&Ql through it, at
least one of the inverses @f, must have a rank-1 preimage
which is an arc througl,, with slope inQ; given by

—4u+2—a

u—1 (16

m(u)=
In particular, if we consider the rank-1 preimage of an-arc
crossing 5Q1 in two points of abscissa&pl and Up,, as
shown in Fig. 1c), then at least one of the inverses Tf
must have a rank-1 preimage which form®ap throughQ,
where the two branches have slopa(supl) and m(upz) in

Q1.

of the plane. Then, by solving the system of equations in Eq.
(1) with respect tou andv, we can get either two distinct
real solutions, called rank-1 preimages of the point,¢'),

or no real solutions, depending on the point,¢'). Let us

call Z, andZ, the regions of the plane whose points have,
respectively, two distinct rank-1 preimages and no preimages
at all. These regions are given by

Z,: {(uw): F(uw)=u’—v+a—1>0}

Zo: {(uv): F(uw)=u?—v+a—1<0}. (18

For a point (',v') e Z, we denote the inverses of mdp

by T,; andT, }, being the two preimages located one on the
right and one on the left of the poinu(,v’) (symmetric
with respect to that point
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u=u'++F(u',v") u=u’'—F(u',v")
Tor , We'—a) Ty (U —a)
VE(u'v') ' VF(U vy
(19

In the following we shall denote by, * both the inverses of
Ta, i€, T (U0)=TLUT 1

We observe that in order to write the inverses as in Eq

(19), we have simplified the expressions coming from @&g.
by eliminating the factor §’ +F(u’,v’)) to getT,; and
by eliminating the factor’ — VF(u’,v")) to getT, . This

is without loss of generality, as it is immediate to see tha

such factors only vanish on the line of equatioh=a—1
which belongs taZ, except for the point (&—1), and the
two rank one preimages of a point of such line are correctl
detected by Eq(19) [one belongs to the line=0 and the
other belongs to the hyperbale= — (2a)/u+2(a—1)].

It is worth noticing that the regiong, and Z, are, re-

spectively, inside and outside the parabola of equation
v=u’+a—1, (20)

but the boundarwZ,=dZ, between the two regionéve
shall call it9Z, henceforth, given by Eq.(20), is not a locus

Gardini, Bischi, and Fournier-Prunaret

ymptote which separates portions of the range having differ-
ent number of preimages. As a horizontal asymptote of a
one-dimensional map corresponds to a vertical asymptote for
at least one inverse; also in our two-dimensional rmgapve
can consider the parabolZ,=4, as a two-dimensional
analogue of a horizontal asymptote. On the basis of similar
arguments we suggest the following interpretation for the
setsds and &, : the points of the singular se of the map
T, behave as points of vertical asymptote except for the focal
points Q, while for the map 7 the points of the singular set
6¢(=dZ,) of the inverses behave like points of horizontal
@symptote, except for the points.R

Moreover, straightforward algebraic computations show
that the prefocal linegg;, i1=1,2,3, are the tangents &,

Jn the fixed pointRR;. We can so state the following propo-

sition:

Proposition 2. Let T, be the map in Eq. (1)i=1 for
a>1/4,i=1,2,3 for a<1/4. The fixed points belong to the
boundary of the region £ R;edZ,. The focal points Q
e 8N (u=u;") have prefocal curvesy; which are the tan-
gents todZ, in the fixed points R

From this proposition and the properties of the inverses
given above, it follows that if we consider a small neighbor-
hood U of the fixed pointR;, then the points belonging to

of critical points where the two inverses are defined aanmZO have no preimages, while the pointsinZ, have

merge. As explained in Bischi, Gardini, and Mithis oc-

two distinct rank-1 preimages, given by an unbounded area

currence is related to the fact that such a boundary is the?—l(u) (which must include the whole line=u%*) whose
a 1

singular set of at least one of the inverses of the map. In facbualitative shape is shown in Fig. 2. The particular shape of
in our case, from the definition EL9) of the inverses, it is T.1(U) is due to the fact that the focal poif, belongs to

immediate to see that both the inverses are not defined in tqﬁae lineu=u* and that the
|

setdZ,, since the denominator vanishes. In other wodds,
is the singular set off ;1. For this reason it will also be
denoted bys;, .

prefocal curvég, is tangent to

the singular seb;(=dZ,) in the fixed pointR; . This means
that any neighborhoot of R; intersectsdq , as well asd;,

As also the inverses have a vanishing denominator wd&! WO distinct points: the preimages of arcs crossing do,
may ask for focal points and prefocal curves of the inversesare arcs througtQ;, henceT, *(U) must shrink into the
But we have now to do much less work to determine sucHfocal pointQ;, and the preimages of points near’ (u’?
sets. In fact, from Property 2 we know that the vertical line+a—1) e UN &g are arbitrarily large, i.e., close to infinity,

through a fixed point is mapped into the fixed point itself,
T.(uf ,v)=R;, and thusT, is not invertible in such vertical
lines, where it is many-to-onéhe Jacobian of, vanishes
on the linesu=u¥). As shown in Bischi, Gardini, and Mira,

from these properties we can immediately state that the focal

points of the inverse map, ! are the fixed points of 5 with
associated prefocal sets the vertical lines. Reassuming, f
the inverse mapl,! there are three focal points fa
<1/4: Q{=R;, with related prefocal line$y’ of equation
u=u¥, for i=1,2,3, wheread,* has only the focal point
Q;, with related prefocal lineSy; of equationu=uy , for
a>1/4.

This means that if we consider a small bounded &arc
which crosses)Z, in a point u’,v’) which is not a fixed

asymptotic to the linei=u’.

D. Invariant sets of T,

As stated above, foa>1/4 the lineL, of Eq. (7) is an
invariant submanifold for the map,, and fora<1/4 the

ree linesL;, i=1,2,3, whose equations are given in Egs.
(é ) and(8), are invariant submanifolds of the phase space of
the mapT,. This means that if {,v) eL;, then @',v’)
elL; and the one-dimensional dynamics embedded into the
line L; is governed by the restriction af, to the invariant
line, which can be written as a one-dimensional m&p
=F;(u). Each one-dimensional mdp coincides with the
Newton function of the reduced polynomid?;(u)=u?
—sju+p;, i.e., Fi(uy=u—P;(u)/P{(u), where the coeffi-

point, and look for the rank-1 preimages of this arc, then thecients of P;(u) are given by §,,p;)=(—1.), (s,,p>)

points inZ, have no preimages, while the points4p have
two distinct preimages. These preimage'l's;rl(n) and

T;ﬂ( 7), are unbounded arcs asymptotic to the straight line

u=u’, which depends on the point in which crosses the
singular sets,(=dZ,) of the inverses.

We can consider such a situation similar to the one oc-

curring for one-dimensional maps having a horizontal as

=(—u3,u}) and (s3,p3)=(—Uu3 ,u3). Thus we get:

u’—a u?—uj
Fi(u)= 20F 1 Fo(u)= uTu
2
u?—u}
T
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FIG. 2. Qualitative sketch of the rank-1 preimages,(U)
=T, (U)UT,}(U) (which is unboundedof the neighborhoodJ of the
fixed pointR; (the gray-shaded circular regipn
. . L,
It is very simple to see that foa<<1/4 all three one-
dimensional map$-; are topologically conjugated with the f (b)

mapg(x) = (x?+1)/2x, while for a>1/4 the mapF, is to-

pologically conjugated with the mafifx) = (x>—1)/2x. This

is a simple consequence of the following proposition.
Proposition 3. Let F(u)=(u?—p)/(2u—s) be the

Newton-function associated with the polynomiglulp=u?

FIG. 3. One-dimensional restriction of mdf to invariant linesL;. For
a<1/4 they have the same shape as the graph shoya), iwhereR, andR;
are the fixed points belonging tq , A, is the vertical asymptote, ar@, is
the focal point belonging th; . Some preimages d; are also shown in
(a). For a>1/4 the restriction to the only invariant line; has the same

—su+p. When Ru) has real roots then the map(E) is
topologically conjugated with the mag{j) = (x>+ 1)/2x via
the homeomorphism :uhg(x)z(\/sz—4p/2)x+ s/2. When
P(u) has complex roots then the maguy is topologically

shape as the graph shown(in).

to the invariant line, since the equivalence does not hold for
conjugated with the map(X) = (x?—1)/2x via the homeo- the focal point and its preimages of any rank. In fact, the
morphism u=h(x) = (V4p—s?/2)x+s/2. reduced polynomial is obtained by dividing by the ragt

In our case, the three polynomials associated with théwhich has the same-coordinate of the focal point®; and
restrictionsF; have real roots foa<1/4 and complex roots of the fixed pointsR;), thus we are assuming# u’* , as well
for a>1/4. Thus fora<1/4 all the three map&; on the asu different from all the preimages af® in the case of
invariant linesL; have the simple dynamic behavior of the iterated application of the map.
map g(x)=(x?+1)/2x, and their graphs have the same For example, each restrictioR; has two superstable
characteristics of the one shown in FigaB R; is the fixed fixed points, whose basins of attraction are separated by the
point not belonging td_;, and thus we have denoted By ~ point of non definitionA; (i.e., the vertical asymptorewe
andRy the two fixed points belonging to; which are sepa- denote byB(R;)=]—=,A] the one-dimensional basin of
rated by a point of vertical asympto#e, clearly due to the one fixed point, and(R,) =]A;,+ [ the one-dimensional
intersection ofL; with the singular sety;. However, each basin of the other one. The sB{(Ry) is not exactly the
invariant lineL; intersects the singular sét in two points, intersection of the two-dimensional bad#iR,), of the map
the vertical asymptoté; and the focal poinfQ;. Thus the T,, with the invariant lineL;, because we have to exclude
dynamics of each one-dimensional mapis not completely the focal pointQ; and its preimageé’;l(Qi): Those ob-
equivalent to the restrictionf the two-dimensional map,  tained by the iterated application &f rl constitute a diverg-
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ing sequence on the right, and those obtained’Qﬂz con- In fact, setA=U,-oT,"(5s), excluded from the set of
stitute a sequence which tends toward the vertical asymptofgoints of the plane in which the recurrence is well defined, is
A; (i.e., the other singular point on the invariant lihg). obtained by taking the preimages of any rank&f Thus
These preimages play an important role, which will be evi-only the portions;NZ, of &5 is important to obtain the set
denced in the next section. A. From the equation o and that ofdZ,, it is easy to see
For a>1/4 only one invariant line; exists, and the that fora< 16, intersectsiZ, in two points, and in this case
polynom|al P,(u) associated with the Newton-function 5Nz, is made up of two disjoint pieces, sa§,NZ,

F1(u) has complex roots, hende;(u)=(u?-a)/(2u+1) =4, ,Ud,,, whereas fom>1 we haves,NZ,=, i.e., the
has no fixed points, and its dynamics are chaotic. In faCBinguIar setds is entirely included inZ,. This implies a
F1(u) is conjugate to the sawtooth map change in the structure of, and thus ofE=R?A, and

27 for 0<z<1/2 consequently a qualitative change also in the b&§iR;).
g(2)= (21) The basins’ boundaries are sets which are invariant un-
2z-1 for 1/2<z=1 der inverse iteration of the map, that i, '(9B(R;))
by the homeomorphism z=h(u)=3+(1/m)arctaf(u  =dB(R;). Generally a basin’s boundary is a set which in-

+1)/(y4a—1)], and the dynamics of Eq(21) are well cludes some repelling cycles and their stable sets. However,
known, from both a topological and a measure theoreticafor a<1/4 we have not found any other cycle except for the
point of view: it has chaotic dynamics in the intery@l, 1]  stable fixed pointR;. But in two-dimensional maps with
with an absolutely continuous invariant measure associatedanishing denominator it may occur that the getof the
to it. This implies thathe preimages of Qof any rank are  preimages of any rank of the singular set also behaves as a
dense in the whole line L frontier between two or more basins of attraction. A one-
We can so state the following proposition: dimensional analogue is the magx) shown in Fig. 8a),
Proposition 4. Let T, be the map in (1)i=1 for a  where the vertical asymptote separates the basins of the two
>1/4,i=1,2,3for a<1/4.The invariant lines L of the map, fixed points. A two-dimensional example where a similar
whose equations are given in Eq. (7) or Egs. (7) and (8)property holds is given in the Bischi, Gardini, and Mir&he
respectively, do not include the fixed pointsdd include  mapT, given in Eq.(1) is another example of this remark-

the focal points Q: able property, specific to maps with denominator.
Ri¢Li, Qiel;. A. Basins structures for a<1/4
The restriction of the two-dimensional mag % a line L; As remarked above, in order to describe in detail the
has the same dynamic behavior of the following onehasins’ boundaries in this range of the parameter, we have to
dimensional maps consider the singular sei and its preimages. The two pa-
u2—a rabolasss anddZ, intersect in two points: The portion &
u'=Fy(u)= a1 On L, located insideZ, has no preimages, whereas the portion lo-
cated insideZ,, say 5;NZ,=85,U d;,, is made up of two
u—u¥ disjoint branches, each one having two rank-1 preimages.
u'=Fpy(u)= Surar N Lo ThusT, *(6,) is made up of four branches, as shown in Fig.
2 4(a). We remark that even if Fig. 4 has been obtained for the
u?—uj particular valuea=0.15 of the parameter, the qualitative
u'=Fs(u)= 2u+ut on Ls, structure of the preimages shown in this figure may be con-

sidered as emblematic of the whole rarege 1/4.

As J5, is an unbounded curve that intersects the prefocal
line 6Q1 in a point with abscissa,, then its rank-1 preimage
Ill. THE BASINS OF MAP T, ;}(650 is an unbounded arc crossing throu@h with
slopem(u,) given by Eq.(16). Furthermore, sincé, in-
Cludes Q1, its preimages must include the correspondlng
preimages of that focal point. Analogously, &s; intersects
also the prefocal Iine§Q2 and dq, the rank-1 preimage on

except for the point Qand its preimages of any rank

In this section we describe the qualitative shape of the
basins of attractiol8(R;), i =1,2,3 and their bifurcations as
the parametera varies. It is clear that strong qualitative
changes in the basins must occuraat 1/4, when the fixed 1 .
points R, and R, (existing fora<1/4) merge and then dis- the left, T, 7(Js,), must be an unbounded arc crossing
appear fora>1/4. We also note that @=1/4 we haveR, through the two focal point®, andQ5, with known slopes.
=R;=Q,=Q,, that is, the merging and disappearance alsd-ollowing similar arguments, as the a#fg, intersects the
holds for two focal points of the map. prefocal linesdg, and &g, its rank-1 preimageT, ;(s,)

A second bifurcation value can be predicted. At must be an unbounded arc crossing thro@ghandQ, with
= —2 we have again the merging of two fixed points with given slopes, and the rank-1 preimage on the 1&11,1,(53,0,
two focal points, that isR;=R,=Q;=Q,, and this causes a must be an unbounded arc crossing through the focal point
drastic change in their basins, as we shall see below. Qs and its preimag&;_;. These four branches are repre-

A third bifurcation value is given bya=1, because as sented in Fig. &). Many portions of the rank-1 preimages of
the parametea crosses the valua=1 we have a qualitative &5 belong to the regio,, so preimages of higher rank exist
change in the shape of the singular §gtand its preimages. and so on. Indeed, the process never ends, and infinitely



Chaos, Vol. 9, No. 2, 1999 Gardini, Bischi, and Fournier-Prunaret 375

"0,

0.2 u 1

FIG. 5. a=0.15<1/4. Enlargement of a portion of Fig(h).

shape” that are located on the Idfte., in the half-planeu
<0). This gives infinitely many “lobes” of different basins
issuing from the focal poin®,, as shown in the enlargement
of Fig. 5. Note also that all the lobes issuing fr@y inter-
sect bothvZ, and dq,, SO that the infinitely many preimages

“on the right” must include a “fan” of unbounded arcs
issuing fromQ, and crossing througkp, _;, issuing from
Q1 -, and crossing throug®; _,, and similar fans of strips
of different colors(i.e., whose points belong to different ba-
sing issue from all the infinitely many preimages @f, .

b Analogously, the preimag“é;’rl(és,r) (or, better, the fan
(b) issuing fromQ,,Q; 1, etc) intersects the prefocal IinéQ3

FIG. 4. a=0.15<1/4. In (a) the rank-1 preimages dfs;, ,ds,}= 8N Z, in two points, forming an arc, and its rank-1 preimage has a
are represented. Itb) three different gray tones are used to represent the*loop” issuing from the focal pointQs, and so on for the
three basins of attraction of the fixed points. The dark gray represents thgther curves, constituting a fan, intersecting the prefocal line

points belonging td3(R;), the intermediate gray represents the points be- P R - .o
longing to B(R;), and the light gray represents the points belon§(gs). 5Q3 in “arcs,” giving rise to infinitely many lobes of the

The pointsQ;, Q,, andQ; are the focal points. three basins issuing from the focal pof@t, shown in Fig.

6(a). A further enlargement is shown in Fig(t8, which puts

in evidence the invariant link; and some preimages of the
many preimages exist. Note that whenever an arc is unfocal pointQ; on it, which accumulate toward the poif,
bounded and intersects the $&, then it also intersects all the other intersection of; with the singular sets;, and
the three prefocal line&lue to the fact that the prefocal lines constituting the vertical asymptote for the one-dimensional
are tangent ta’Z, in the fixed pointsR;), thus its rank-1 restriction Fy(u) [see Fig. &)]. It is clear that the two-
preimage is made up of two branch$f1=T;,1U T;,l, dimensional map is not defined in such points, which are the
which cross through the three focal poiids. loci from which infinitely many arc¢and a kind of crescents

It is a numerical evidence that all these arcs, that constifor the basingsare issuing.

tute the setA, also separate the three basins of attraction From Fig. 4 it can be seen the different role played by
[compare Fig. @) with Fig. 4b)]. But more, each branch of the focal pointQ, with respect to the other two focal points.
the preimages determined as described above is, from orkhis is due to the fact thaD, e Z,, so that it has no preim-
side, a limit set of other preimages, i.e., a limit set of portionsages. It follows that whenever some arc crosses through the
of the three different basins. This numerical result can beprefocal linedy, its preimage gives rise to an arc through the
explained by the properties of the focal points and prefocajocal pointQ, and here the sequence of preimages stops.
lines. For example, consider in Figia#the arcT, (). It As we shall see, the property th@,e Z, holds for
crosses the prefocal IinéQ1 in two points (only the upper —2<a<1/4, while fora<—2 we haveQ,eZ, and Q;
one is visible in the figure Thus its rank-1 preimage on the €Z,, i.e., the role of these two focal points is swapped at
right must be a “loop” issuing from the focal poi@,, as a=—2. In fact, as the parametaris decreased, at the value
gualitatively explained in Sec. Il. The same property holdsa=0 we haveQ,=(0,0)e Z,, which is also a value with a
for the infinite sequence of preimages having a “parabolicparticular symmetric structure in the basifes the basins
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a=0.15
\

FIG. 6. a=0.15<1/4. Enlargements of two portions of Fig(b}.

B(R;) andB(R3) become symmetric with respect to the ver-
tical axis u=0, as shown in Fig. |f and then, fora<o,
the focal pointQ, moves on the right side towar@, (see

Fig. 8.

FIG. 7. a=0. Basins of attraction of the fixed points.

Gardini, Bischi, and Fournier-Prunaret

a=-0.7 \

FIG. 8. a=—0.7. Basins of attraction of the fixed points.

At a=-2 we haveR;=R,=Q;=Q,. Then, fora
<—2 a “change of role” between the couplk;,Q; and
R,,Q, occurs, as now it i€, the focal point inZ, (with no
preimages while Q, e Z, has infinitely many preimages. In
Fig. 9(a) the structure of the basins just before the bifurcation
is shown, while in Fig. @), obtained just after the bifurca-
tion, it is evident that a generic pointi§,vo) which belongs
to the basim3(R;) for a>— 2 will belong to the basiB(R,)
for a<—2.

The situation appearing in Fig. 10, obtained with
=-5, can be considered a generic representation of the
gualitative structure of the basins for any valueaobelow
a= —2. The structure of the basins is the same as that com-
mented above, with the only change of the index 1 with 2.

B. Basin structure for a>1/4

As remarked in Sec. Il, as the parameteapproaches
the value 1/4 the fixed point?, andR; approach each other
[see Fig. 108)], and ata= 1/4 they merge with the two focal
points Q, and Q3. In this case there is not a “change of
role,” because the fixed points disappear #or1/4, and
only the fixed pointR; survives. Also the focal point®,
and Q3 disappear af=1/4, and fora>1/4 only the focal
point Q, exists with the related prefocal Iinﬁg1 (which is
tangent todZ, in Ry).

In this situation the only invariant line ik, which in-
cludes the focal poinfQ; and does not contain any fixed
point in it [the restriction ofT, to L is the mapF,, whose
graph has the qualitative shape represented in Fig].3rhe
boundaries of the basii(R;) are now changed with respect
to those described in the previous subsection, as the preim-
ages of the singular sl are different. In fact, as long as
a<l, 4, intersects dZ, in two points, and §;NZ,
=05 Udq;. ThusT, (8,) is still made up of four branches,
but having a different structure with respect to the case con-
sidered in the previous subsection. The bradghintersects
only the prefocal Iine(SQ1 in a point (Uy,v4), and includes

Q, [see Fig. 11b)]. Then its rank-1 preimagEa"rl(ésJ) is an
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a=- 1.9\

a=\5

FIG. 10. a= —5. Basins of attraction of the fixed points.

ous invariant measure on it, and this implies that the preim-
ages of any point, and in particular the preimages of the
vertical asymptote and of the focal poi;, are dense on
that line. However, while on the restrictidfy, only the ver-
tical asymptote plays a rol@s that point and all its dense
preimages of any rank are to be excluded from the domain of
definition), for the two-dimensional maf, also the focal
pointQ, play an important role. In fact, the focal poi, is
crossed by a “fan” of curves belonging th, and the same
occurs to all its preimages of any rank, which are dense on
the line. Such curves are on the boundary of the domain of
definition of the mapT, and also on the boundary of the
basin B(R;). That the basin3(R;) must crossL; on the
focal pointQ, in a particular way is already known. Consid-
. . i _ . ering a neighborhootl of R; the geometric behavior of its
FIG. 9. Basins of attraction of the fixed pointg) a= —1.9, just before the . . . . .
bifurcation occurring ab=—2. (b) a=—2.1, just after the bifurcation oc- rank-1 pre!ma_\ge '? schematically Showr_‘ in Fig. 2, a.nd the
curring at aa=—2. same qualitative picture must hold also in all the preimages
of Q4 which are dense oh;. Thus the basin shown in Fig.
. _ _ 11(b), where it is evident that also in this situation the Aet
arc crossing througkp, with slopem(u,) and includes the — of 4 the preimages of; form the basin boundary, is only a
preimage T, ;(Q,) of the focal point. Its left preimage rough approximation of the true bast(R;), which must
T..i(Js,) is an unbounded arc crossing the invariant line  include infinitely many “fan” issuing from the preimages of
in the other rank-1 preimage @1, T, (Qy). Similar prop-  Q,. This structure becomes more evidentzais increased.
erties hold for the rank-1 preimages of the other axg, of  An example is shown in Fig. 18), and a few preimages of
the singular se®;. In fact, 5, intersects the prefocal line s (up to those of rank ¥are shown in Fig. 1®).
dq, in a point (Uz,v,) and the invariant ling, in the point Thus it is easy to conclude that the invariant libe
corresponding to the vertical asymptote for the restrictioncannot be an attracting set far>1/4, although infinitely
F1(u). Then its rank-1 preimagg, ,1(55,|) is an arc crossing many cycles exists on it and all are transversally attracting.
throughQ; with slopem(u,) and intersecting the invariant That is, the invariant lind.; may only be an attractor in
line L in the right preimagd ; 7(A;), while the left preim-  Milnor sense(see Milnor*® Alexanderet al.'” Buescd®).
ageT;ﬂ(éS,,) is an unbounded arc crossing the invariant lineThis bifurcation was already considered in Billings and
L, in the left preimagér;,l(Al) [see Fig. 11b)]. Curry? where it was called “eruption,” due to the fact that
Also in this case infinitely many preimages exist, be-on the invariant lineL; we have the sudden appearance of
cause all the preimages of increasing rank have some poinisfinitely many cycles, of any periotexcept for the period
belonging to the regiod,. It is evident that, with respect to 1) which are repelling for the map, . In fact such periodic
the situation described in the previous subsection, now thpoints are all expanding for the restriction bp and trans-
preimages of the singular set, located on the invariant lineersally attracting at least & is slightly above 1/4, and
L,, are very different. In fact, the restriction of the m&ép  loose transverse stability a@sis increased as shown in Bill-
to the invariant linel;, given by the one-dimensional map ings and Curry.
F,(u), is chaotic on the whole line with absolutely continu- In Billings, Curry, and Phipp$,it is shown that for
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FIG. 11. (a) a=0.249<1/4. Fixed pointsk; andR,, as well focal points ~ FIG. 12.a=0.5.(a) Basins of attraction of fixed poi®; and of the chaotic
Q; andQ,, are very close, and they are going to mergeatl/4. (b) a set embedded inside the invariant lihe, represented by dark gray and
=0.251>1/4. Only fixed pointR; exists, and only focal poin®, exists.  light gray points, respectivelyb) Preimages, up to rank-4, @t .

The dark gray region represents the basin of the fixed g®jntas in the

previous figures, whereas now the light-gray region represents the set of

points which are attracted to the chaotic set embedded into the invariant "nﬂ'\at such a kind of “eruption” is likely to occur whenever
L two fixed points(of a map coming from Bairstow’s methpd
merge into a unique one. However, as is shown by this ex-
ample (map T,), it is not the case when two fixed points
1/4<a<1 the invariant line Ly is probably a Milnor attrac-  merge and then exchange their position on the invariant line,
tor, with the peculiarity that the “tongues” issuing from it, as occurs when the parametercrosses the valua= —2.
made up of points whose trajectory escape from a neighborwhile when two fixed points merge on an invariant line and
hood of the line, are not issuing from a repelling cycle butthen disappearleaving a one-dimensional restriction which
from the focal point and its preimages, which are denselyis the Newton-function associated with a reduced polynomial
distributed along L . having only complex roots, then it is certainly true that an
Moreover, as already proved by Boydihe one- explosion of infinitely many repelling cycles occur, because
dimensional magk, is purely chaotic and an ergodic invari- the one-dimensional restriction suddenly becomes a chaotic
ant measure exists. According to Alexaneeasl,!’ the pres- map.
ence of such set of tongues issuing from points densk;on
and transverse to it, whose points go away frognto reach
the fixed point, is an essential feature for the existence o
riddled basins. Thus as argued by Billings, Curry, and The qualitative shape of the basB(R,) after the rid-
Phipps’ the bifurcation occurring aa=1/4 gives rise to a dling bifurcation, as shown in Fig. 18, is that of a “wide”
Milnor attractor with a basi3(L,) which is riddled by the basin having a fractal boundary whose closure, however, is
basinB(R;). not the whole plane, because the stable 3dt,) is a set
We note that in Billings and Curfyit was conjectured  with positive Lebesgue measure, as long as<d4 1. How-

. Basin structure for a>1
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a=1.05 aZ, s The important feature in this regime is that although

e is not globally attracting, the basiB(R;) is such that its
closure covers the wholei(v) plane, as the points excluded
from B(R;) constitute a set of zero Lebesgue measure.

In fact the invariant lind_; and all its preimages are to
be excluded, and also, as proved in Billings and Cénrg;
pelling cycles outside the invariant link;, which make
their appearance via transverse bifurcation of the cycles on
L,. These, on their turn, may undergo further bifurcations
leading to more and more cycles outslde However, all of
these belong to a set of zero measure as well as the stable set
B(L4), the natural transverse Lyapunov exponent being now
positive.

IV. CONCLUSIONS

Many numerical iterative methods to find the roots of
e basi o ) equations, being based on the Newton’s method, require the
FIG. 13. a=1.05>1. The basins(L,) has now zero Lebesgue measure. joration of maps with denominator. Among these, one of the
The two rank-1 preimages @, which is now entirely included insidg, , . . . . !
are also represented. most known and used in practice is the Bairstow’s method.
In this paper we have considered a two-dimensional non-
invertible map arising from the application of Bairstow's

ever, as noticed in Billings and Curfythe cycles embedded Method to a cubic polynomial, and we have shown how the
inside L, become less and less attracting in the directior®OMPlex structures of the basin boundaries, as well as the
transverse to the invariant lile, asa approaches the value global t_)lfurcauons that c_hange the qualitative _propertlgs of
a=1. In a measure theoretic sense, the stablé3get) be- the basins, can be explained in terms of new kinds of singu-
comes smaller and smaller, as also revealed by the naturifities specific to maps with denominator, recently intro-
transverse Lyapunov exponefitere explicitly known, and duced in the literature, such as singular sets, focal points and
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