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We investigate the properties of recurrence of the type x,11 = (a+2f:_02 Tp_i)/Tp_(k—1), known
as Lyness iterations from [Lyness, 1942, 1945, 1961] and recently analyzed by several authors
in the case a > 0, see e.g. [Kocic et al., 1993; Csornyei & Laczkovich, 2000]. We reconsider
Lyness recurrences at the light of some recent results on iterated maps with denominator, given
in [Bischi et al., 1999a], where new kinds of singularities, such as focal points and prefocal
curves, have been defined. In this paper, in particular, we give an answer to one of the open
problems proposed in [Kocic & Ladas, 1993, pp. 141] concerning the dynamic behavior of Lyness
recurrences for a < 0. We also give some new results in the case a > 0, and we improve a previous

result on Lyness “periodic recurrences”.
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1. Introduction

The dynamic behavior of some recurrence relations
of order k (k > 2) of the type

k—2
o+ E biﬂl’n—i
1=0

Tp41 =

1

Ln—(k—1) ( )
has been recently investigated by several authors
(see e.g. [Kocic et al., 1993; Li & Liu, 1999; Csornyei
& Laczkovich, 2001]). After the early works by
Lyness [1942, 1945, 1961] several results have been
established for recurrences of the type (1), mainly
in order to detect bounded oscillatory behaviors of
positive trajectories for non-negative values of the
parameters. A survey of these results can be found
in the book by Kocic and Ladas [1993, Chap. 5],
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where several interesting references are also given.
Csornyei and Laczkovich [2001] give some results
concerning special parameters’ values for which (1)
is a “periodic sequence”, that is, all the infinite se-
quences which are solutions of (1) are periodic. The
interest in the recurrences (1) is not only theoret-
ical, but is often related to the fact that they are
met in several applications, for example in ecologic
modeling, see e.g. [Kocic et al., 1993], and refer-
ences therein. The authors quoted above focused
their attention on the existence of a positive equi-
librium with oscillatory behavior around it, whereas
the question whether positive and bounded trajec-
tories exist when some parameter is negative was
left as an open problem. The main purpose of the
present paper is to give an answer to this and other
questions concerning recurrences (1). We shall make
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use of some recent results on iterated maps with
a denominator which can vanish, given in [Bischi
et al., 1999a, 2000], where new kinds of singular-
ities, called focal points and prefocal curves, have
been defined (see also the related works by Bischi
and Gardini [1997] and Mira [1999]). As shown
throughout the paper, some interesting features of
the recurrences (1) can be evidenced at the light of
these new concepts, which allow us to stress some
global structures of the phase curves on which the
sequences generated by (1) are confined.

For sake of simplicity we shall mainly focus on
the simplest case, obtained for £k = 2 in (1). How-
ever, many of the techniques and properties that
we present in this paper can be generalized to recur-
rences (1) with higher values of &, i.e. recurrences of
order greater than 2. Some possible generalizations
are explicitly shown in the paper.

The plane of the work is as follows. In Sec. 2
we present the simplest case, we recall some known
results given in the literature, and we state the new
results concerning the case a < 0. Such new results
are proved in Sec. 3, where some properties and
the terminology introduced in [Bischi et al., 1999a]
are briefly described and extensively used. In Sec. 4
we show that the results and methods contained in
Secs. 2 and 3 can also be applied to the case of posi-
tive parameter, thus confirming and extending some
results given in the literature. In Sec. 5 some exten-
sions are given for higher order recurrences (1) with
k > 2. In Sec. 6 we shall consider the particular case
with k = 3, we prove that an uncountable many pe-
riodic solutions exist for any value of the parameter
a, and we improve a result concerning periodic re-
currences given by Lyness (see [Kocic et al., 1993]
or [Csornyei & Laczkovich, 2001]).

2. The Simplest Recurrence
Let us consider the recurrence (1) with k& =2, i.e.

o+ bz
L (2)
Tn—1
with b # 0. By the change of variable © = by we get
the recurrence
a+ Yn

Yn—1

Yn+1 =

where a = a/b?, so that we are led to the recurrence
in one parameter, which we rewrite again as

a—+ Ty

3)

Tp41 =
Tn—1

In the following we shall refer to the recurrence (3)
as the simplest recurrence. For a > 0 it has been
proved that (see e.g. [Kocic et al., 1993; Kocic &
Ladas, 1993]):

(i) the solutions of (3) satisfy the equation
H(xp—1, x,) = const. where

H(xn—h mn)
1 1
:(a+xn_1+xn)<1+ ><1+—>
Tp—1 T

(i) if the initial conditions (i.c. henceforth) are
positive, then the solution of the recurrence (3)
is given by a positive and bounded sequence,
i.e. there exist m > 0 and M > m such that
m< x, <MVn;

(iii) a unique positive equilibrium exists and all the
positive solutions are oscillating around the
positive equilibrium.

Of particular interest are the cases called periodic
recurrences, in which all the trajectories are peri-
odic. The following result holds:

(iv) every positive solution of (3) is periodic of pe-
riod 5 iff a = 1; every positive solution of (3)
is periodic of period 6 iff a = 0.

Moreover, in [Csornyei & Laczkovich, 2001] is
proved that these are the only possibilities for the
recurrence (2) to be a periodic recurrence. In other
words, the infinitely many solutions of (2) are all
periodic iff a = 0 or a = 1, giving rise to periodic
solutions of periods 6 and 5, respectively. Indeed, as
we shall see in the following, for the recurrence (2)
such values of the parameter a can be seen as bi-
furcation values when we consider such recurrence
from the point of view of the singularities specific to
two-dimensional iterated maps of the plane which
are not defined in the whole plane due to a vanish-
ing denominator, as given in [Bischi et al., 1999a,
1999b, 2000].

Our first result concerns the properties of the
recurrence (3) when a is a negative parameter. As
we shall see, the equilibria of (3) exist only for
a > —1/4, so we are interested in the parameter
range —0.25 < a < 0. Our first result is expressed
by the following Theorem:

Theorem 1.
then

Let —0.25 < a < 0 in recurrence (3),



(j) the solutions satisfy H(xn—1, x,) = const.,
where H is defined in (4);

(jj) there are two fized points of the recurrence
(3) given by S* = (xf, x¥), with ¥ = (1 —
V1+4a)/2 and P* = (x,, ;) with r, =
(1 + V1+4a)/2, of saddle and centre types
respectively, such that a positive region in the
plane (x,—1, x,,) exists, bounded by a closed in-
variant curve, locus of homoclinic orbits of the
saddle S*, and including the equilibrium P*,
inside which all the trajectories are bounded
and oscillating around P*;

(jij) the trajectories of i.c. outside the area de-
scribed in (j7) belong to invariant phase curves
which cross through the four points (0, —a),
(-1, 0), (—a, 0), (0, —=1) and are made up of
at least three unbounded branches;

(jv) there ezists a three-cycle Cs of saddle type,
given by:

~1, -1, (1—a), -1, =1, (1 —a),...

(v) in the plane (zp—1, T,), the three lines (r;),
i1 =1, 2,3, of equation r,,—1 +1 =0, x,_1+
Tn+a =0, and x, +1 = 0 respectively, consti-
tute the stable set of the three-cycle Cs given
in (jv), and their points generate, through (3),
sequences for which an explicit analytic expres-
ston exists, given by:

-1, ug, —(up +a), =1, u1, —(u1 + a),...
where
(a—1)"(up—14a)—(a—1)(up+1)
“(a—D)7(ug—1+a) + (up+ 1)
Yug# —a andn >0

Up =

In order to prove this theorem we shall use
the terminology and some properties of the iterated
maps of the plane having a vanishing denominator.
In the next section we first recall such properties
and then we give a proof of Theorem 1.

3. Proof of Theorem 1

In order to prove the Theorem stated in Sec. 2, let
us rewrite the second-order recurrence in (3) as a
two-dimensional system of the first order, i.e. an
iterated map of the plane. As usual, this is ob-
tained by letting (x,,—1, ) = (z, y) so that (3) can
be written as T : (xp—1, ) — (T, Tnt1), Where
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T(x, y) — («', y') is the two-dimensional map given
by
=y
T: , oty (5)

X

3.1. Properties of the equivalent
two-dimensional map

The map T is not defined on the line J; of equa-
tion x = 0, so the iteration of T generates uninter-
rupted sequences provided that the initial condition
(o, yo) (i.c. henceforth) belongs to the set E given
by

E =R*\A (6)

where A is the union of the preimages of any rank
of the line 4,

A= [j T%(5)
k=0

In other words, the sequences generated by the re-
currence (3) can be obtained by the iteration of
the two-dimensional map T : E — FE which is not
defined in the whole plane.! Following the termi-
nology introduced in [Bischi et al., 1999a] the line
0s will be called set of nondefinition, and its point
@ = (0, —a), where the second component of the
map 7" assumes the form 0/0 constituting a simple
focal point of T', and the associated prefocal set 6(Q)
is the line of equation x = —a. This means that a
one-to-one correspondence exists between the slopes
m of arcs v through the focal point ) and the points
(—a, y) where their images T'(vy) cross the prefocal
set 0(Q). In this case such correspondence is very
simple, given by

m«—— y(m) =m

This implies that the image by T of an arc vy crossing
through @ with a slope m in @, is an arc T'(y) which
crosses the prefocal line at the point (—a, m), and,
conversely, the preimage T~!(n) of an arbitrary arc
71 which crosses the line x = —a at a point (—a, y) is
an arc which crosses through @) with a slope m =y
in @), where the inverse map is given by

T\ (x, y) = (“‘;x :r> (7)

The latter property justifies the terms focal point
and prefocal set, since all the segments crossing

I'Notice that the set A of points excluded from the phase space of the iterated map has zero Lebesgue measure in R2.
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Fig. 1.

the prefocal line are “focalized” by T~! into arcs
through @ [see the qualitative pictures in Fig. 1(a)].
Instead, if an arc 7y crosses the set of nondefinition
0s at a nonfocal point (0, £), then its image by T is
an unbounded arc, doubly asymptotic to the line of
equation x = & (see [Bischi et al., 1999a, 1999b]).

The property that infinitely many invariant
curves of the map may cross through focal points
of T or of its inverse T~!, although such points are
not fixed points or cycles of the map T, is now well
known. We shall see that this also occurs in this ex-
ample, and the properties of focal points and pre-
focal sets of T and 7! will help us to understand
the peculiar properties of the recurrence (3).

3.2. Proof

Let us first consider the invariant curves of the
map (5). We already know the existence of a con-
stant function H(z, y) in the case a > 0, and it is
straightforward to see that the same function plays
the same role also in the case a < 0. That is, the
phase curves of T satisfy H(x, y) = const. where

H(z,y) = (a+z+7y) <1+%> <1+$> (8)

being H(T(z, y)) = H(x, y). Moreover, the map T
is invertible and its inverse, given by (7), has in-
variant phase curves which satisfy the same equa-
tion and such curves are symmetric with respect
to the line x = y. In fact, the two maps, T" and
T~ are topologically conjugate by the symmetry
s(z, y) = (y, z), with

soTos=T71.

So, both T and T~! have the same phase curves.
Moreover, looking at the explicit definition (7) of
T, it is easy to see that the line y = 0 is the set
of nondefinition for 7!, we denote it by 6;, and its
point Q' = (—a, 0) is a focal point for T, the related
prefocal set 6(Q’) being the line of equation y = —a.
This means that whenever an arc, say -y, crosses
through the line y = —a, then T~HT1(v)) = T(v)
is an arc which crosses through the focal point Q’.
And if an arc crosses the set of nondefinition of 71,
y = 0, in a nonfocal point (&, 0), £ # 0, then its im-
age by T~! is an unbounded arc, doubly asymptotic
to the line of equation y = & [see Fig. 1(b)].

All these facts lead us to the properties of
the phase curves of T' described in Theorem 1. By
elementary calculus we can see that for —0.25 <
a < 0 there exist two fixed points of T', both in the



positive half-plane, a centre P* and a saddle S* :

. 1++V1+4a
T Ty

N o ., 1—+1+4a
S :('rS’a’:S)? xszf‘
The two eigenvalues, and related eigenvectors, of
the Jacobian matrix of T' computed in the saddle
S* are given by

1— /T 4272
M= —S——, =1 N\)

*
2z

P = (}, a7),

_ !
-5

Two branches of the invariant curves issuing from
the saddle S* must merge into a closed invariant
curve, locus of homoclinic orbits of S*, in the pos-
itive half-plane. This is a consequence of the fact
that the phase curves, defined by H (z, y) = const.,
are symmetric with respect to the line x = y. In
fact, considering H (z, y) = H(x%, x¥) we show that
the curve must cross the line z = y at a point (ps,
ps), with ¥ < x,, < ps. This can be proved by ana-
lyzing the properties of the one-dimensional restric-
tion of H to the line z = y, given by the function
F(x) = H(x, x), which reads

Ao ro = (1, Ag)

F(z) = (a + 2z) <1 + é)Q

The qualitative graph of F'(z) (for —0.25 < a < 0) is
shown in Fig. 2, and from the properties of its local
extrema we prove the existence of ps, which means
that the phase curves of T' through the saddle S*
have homoclinic orbits on a closed curve through
the fixed point [see Fig. 3(a)]. But in the graph of
F(x), shown in Fig. 2, besides the existence of the
saddle S* (the local maximum in z}) and of the cen-
ter P* (the local minimum in z}), another critical

P
point of the function H(x, y) can be seen, given by
the local maximum at the point x = —1. This im-

plies that the two-dimensional 7' must have a saddle
also at the point (—1, —1). However, that point is
not a fixed one of T', but a point of a three-cycle of
T of saddle type, as described below.

So, we have proved that homoclinic orbits of
S* exist on a closed curve through S*, which crosses
the line z = y at the point (ps, ps) and consequently
bounds a finite region in the positive quadrant of the
plane. And it is clear that any i.c. inside this area
belongs to a phase curve which is a closed curve
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around the center P*. This concludes the proof of
parts (j) and (jj) of Theorem 1.

To prove part (jjj) let us consider the two other
branches of phase curve issuing from the saddle S*.
Being x; > —a the saddle S* is located above the
two prefocal lines §(Q) and §(Q’) of T and T~ ! re-
spectively. Thus, one branch issuing from S* must
cross 0(Q') in a point [see the arc v in Fig. 3(a)]
and consequently its image T'(y) must cross Q' its
image T2 () must cross through T(Q’) = (0, —1) €
§s and, as a consequence, T3(y) must be an un-
bounded arc, doubly asymptotic to the line of equa-
tion y = —1. A similar reasoning applies to the
other branch of phase curve issuing from S* (sym-
metric of the previous ones). That branch includes
an arc 7 which crosses 6(Q), so that T~(n) crosses
through the focal point Q, T~2(n) crosses the point
T71Q) = (~1, 0) € 4,, which means that T—3(n)
is unbounded and doubly asymptotic to the line of
equation x = —1. These unbounded branches of the
phase curve through S* are shown in Fig. 3(b).

Of course, other phase curves must cross the
lines §(Q) and §(Q'), thus giving those with un-
bounded arcs the same properties as the phase
curves through S* as described above. This is true
for the sequences generated starting from any point
of the positive half-plane external to the closed
curve of homoclinic orbits of S*. For example, let
us consider an initial condition taken at the points
(¢, q) with ¢ > ps; an invariant curve through
(¢, q¢) must cross the prefocal §(Q’) at a point, say
(¢, —a), and the prefocal §(Q) in the symmetric
point (—a, ¢). Indeed, such curves fill up the plane



1846 L. Gardini et al.

-0.24

&(Q")
8,
1(n)
£ - 2
.[ f
21 l {7 a=-024 [
) \"‘\__
I,
.-//‘-
1 | >
1.5
=1.5 -1 X %

Fig. 4.

(x, y) (just a few of them are shown in Fig. 4). By
the above arguments we have proved that all these
phase curves cross through the four points

Q= (07 _a) )
QI = (_a7 0)7

50[

-50
-50 : 5
RN
r,
y|
I.A'\
-50
=0 x50
and are asymptotic to the lines of equation x = —1
and y = —1. But more, we now show that these

phase curves are also asymptotic to another line,
of equation = + y 4+ ¢ = 0, where ¢ < a, so that
these invariant curves must include at least three
unbounded branches, thus proving part (jjj) of The-
orem 1. This is a consequence of the fact that each



of the following lines:

(r1): z=-1,
(re): z4+y+a=0, (11)
(rs): y=—1

is mapped into itself by the third iterate of the
map, T3. In fact, let (=1, u) be a point belong-
ing to (r1), then T'(—1, u) = (u, —a — u) € (r2),
T?(—1, u) = (—a—wu, —1) € (r3), and T3(—1, u) =
[—1, (1—a)/(a+u))] € (r1). Moreover, the restric-
tion of T2 to any one of these lines is represented
by the one-dimensional map:

flu) = =2 (12)

a—+u

The function f(u) has very simple properties (the
graph of f(u) is an hyperbola with vertical asymp-
tote in u = —a). There are two fixed points of f(u),
u = —1 (attracting for a < 0 and repelling for
a > 0, with f/(-1) = 1/(a—1)),and u =1 —a
(attracting for a > 0, repelling for a < 0, with
f'(1—a) = a—1). The stable fixed point is globally
attracting for f(u). Moreover, by using the function
h(z) = (z+1)/(z — (1 — a)) we have that f(u) is
conjugate to the function g(y), where

1 1

o) =tofon = (17)

is linear, so that we can easily write the analytical
solutions of the iterates of g(y), and thus of f(u),

-0.24

Fig. 5.
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obtaining, ¥ ug # —a, the following trajectory:

(a—1)"(up—14+a)—(a—1)(up+1)

up = f"(up)= —(a—1)"(ug—1+a)+(ug+1)

It is also straightforward to see that the fixed points
of f(u) belong to a cycle of period 3 of T, say Cs,
given by:

(_17 1—&), (1—(1, _1)a (_L _1) (13)
and the eigenvalues of T2 on each periodic point are
given by

)\1:(@—1), )\2:—

so that the three-cycle of T', Cj3, is of saddle type,
its stable set being constituted by the three lines,
cyclical for T (and invariant for T'3), given in (11).
These three lines constitute the phase curve associ-
ated with H(—1, —1) (or with any other point on
the lines), so that they cannot be crossed by any
other invariant phase curve of the plane, except at
the points of nondefinition of 7" and T, that is, at
the intersections of the lines §,, of equation x = 0,
and 0., of equation y = 0, with the three cyclical
lines in (11), i.e. the four points given in (9). As
a consequence, the unbounded arcs which we have
proved to be asymptotic to the lines x = —1 and
y = —1 are also doubly asymptotic to x+y+a =0

50

-50
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a=-0.24|

or to one line parallel to it, equation x +y + ¢ = 0,
with ¢ < a.

In order to see the qualitative shape of all the
phase curves outside the homoclinic orbit of S*, it
is enough to consider an i.c. (x, x) on varying x
(x < 2% and © > ps) or ic. (—a, &) on 6(Q), or
(&, —a) on 6(Q'), and varying £. As these invari-
ant curves must intersect the prefocal lines §(Q)
and 6(Q’), the same reasoning as above apply, and
we can conclude that they all cross the four points
given in (9), are unbounded, and made up of at
least three pieces, doubly asymptotic to the lines
r=-1,y=—-land x+y+c=0 for some c < a
(their qualitative shape is shown in Figs. 5 and 6).
This completes the proof of Theorem 1. W

We close this section by stressing that the
sequences generated by points belonging to un-
bounded phase curves are unbounded but not diverg-
ing. This means that if we consider an i.c. {zg, yo}
outside the homoclinic loop of S*, then the sequence
{zn, n > 0}, is such that sup{|z,|, n > 0} = +o0
but lim,_, |z,| does not exist. In other words,
these sequences arbitrarily approach the Poincaré
Equator (i.e. the points at infinite distance) along
the cyclical lines given in (11), but further itera-
tion of T gives points which are at a smaller dis-
tance from the origin, a kind of motion which is
frequently observed in iterated maps with denomi-
nator, as shown in [Bischi et al., 2000].

50|

4. Some Results on the Simplest
Recurrence with a > 0

In the previous sections we have shown that for
—0.25 < a < 0 the phase curves of (3) are invariant
closed curves around P* only in a suitable region,
and we can refer to this region by using the points
(z, x), with = € (z}, ps), as defined in the previous
section. As the parameter a — 0, the fixed point
S* (as well as @Q and Q') approaches the origin, so
that the portion of the positive orthant made up of
trajectories oscillating around the center (bounded
by the homoclinic orbit of S*) become wider and
wider as a — 0. A qualitative picture is shown in
Fig. 7.

It is easy to see that the properties of T', and of
the phase curves, as described in Sec. 3 are not due
to the negativity of the parameter a. That is, those
properties continue to hold also for a > 0, with ob-
vious changes in part (jj) of Theorem 1. So, starting
from our Theorem 1 we can extend the results given
in [Kocic et al., 1993; Kocic & Ladas, 1993], in the
sense that we can assume the statements (ii) and
(iii) that were recalled at the beginning of Sec. 2
are not only sufficient but also necessary. Indeed,
we have the following

Theorem 2. Consider (5) with a > 0, then

(j) an ic. (z,y) gives rise to a positive and
bounded trajectory (oscillating around P*) iff
(z,y) € R2.



(3ij)

a=-0.05

Fig. 7.

the trajectory of an i.c. (x, y) ¢ R%r belongs to
an invariant phase curve which crosses through
the four points

Q= (07 —CL), T_l(Q) = (_L 0)7
Ql = (_a7 0)7 T(Q,) (07 _1)

and includes at least three unbounded branches
doubly asymptotic to the lines

r=-1; z4+y+c=0(c<a); y=-1

for each a # 1 there exists a three-cycle C3 of
saddle type, given by:

~1,-1,(1—a),—-1,-1,(1 —a),...

in the plane (xp—1, Tn), the three lines (r;),
1 =1, 2,3, of equation r,,—1 +1 =0, x,_1+
Tp+a =0, and x, +1 = 0 respectively, consti-
tute the stable set of the three-cycle C3 given in
Theorem 1, and their points generate, through
(3), sequences for which an explicit analytic ex-
pression exists, given by:

—1,up, —(ug +a), —1,uy, —(us +a),... (14)

where

(a—1)"(uo—1+a) = (a—1)(ug + 1)
~(a—1)"(uo — L+ a) + (uo + 1)

Yug # —a and n > 0.

n — 3

Lyness Iterative Processes 1849

(S

a=-005

From the structure of the phase curves and
the properties seen above and in the previous sec-
tions, it follows that the cases ¢ = 0 and a = 1,
which according to [Kocic et al., 1993; Csornyei &
Laczkovich, 2001] are associated with periodic re-
currences, correspond to bifurcation cases related
to contacts between singularities of different nature
of the map T.

In fact, for a = 0 the focal points @ and Q’
merge, and both merge with the saddle fixed point
S*. Moreover, the lines of nondefinition of 1" and
T!, given by &5 and &’, respectively, merge with the
two prefocal lines 6(Q) and §(Q’), respectively. The
related changes in the shape of the phase curves can
be seen by comparing Fig. 7 (obtained for a < 0)
and Fig. 8 (obtained for a > 0).

Instead, for ¢ = 1 the focal points @ and Q'
merge with the periodic points of the “degener-
ated” three-cycle (14), and the prefocal lines §(Q)
and §(Q’) merge with the two “degenerated” cycli-
cal lines given in (11). We note that for a = 1 the
i.c. which belong to the lines (11) are not included
in the set E defined in (6) whose points generate
uninterrupted sequences, because such points are
mapped into the point @ = (0, —1) after a finite
number of iterations of 7T'. So, these points do not
generate periodic solutions of period 5. We also note
that in [Kocic et al., 1993; Kocic & Ladas, 1993] it
was proved that for a = 0 the recurrence is periodic,
because all the i.c. in the set E generate periodic
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J

Fig. 8.

sequences of period 6. However, in order to avoid
misunderstanding, it is better to specify that this
statement was not to be intended as “minimum pe-
riod 6”7, because, as we have seen in (14), a cycle
of period 3 exists, given by —1, —1, 1, —1, —1,
1,...

5. Extensions

In the previous sections we have considered the sim-
plest case of the family of recurrences given in (1),
obtained for k& = 2. However, as stated in the in-
troduction, it is natural to conjecture that similar
properties continue to hold, with obvious changes,
even for any k > 2. Let us consider the recurrence
(1) of order k when all the parameters b; are equal,
say b =0bg =b; =--- = bg_o, b # 0, so that, after a
change of variable, the recurrence may be rewritten
as

a—+ Tp—(k—2) +- -t Tp_1+ Ty
= 15
Tn+1 Tn(ho1) ( )

where a = a/b®. Clearly the recurrence of order
k in (15) is equivalent to a system of k equa-
tions of the first order. Identifying (z,—(x—1),---,
Tn—1, Tn) = (Y1,---, Yk—1, Yp) we get a k-

dimensional map T(k) : RF — Rk, (y’l,.--7 y;§—17

Yi) = Ty (W15 - - -5 Yu—1, Yx) Where:

Yy = Y2
16
Vi1 = Uk (16)
;G tYot Yk
Y =

Y1
Some general results on the generic recurrence
(15) are already given in [Kocic et al., 1993; Kocic
& Ladas, 1993] for the case a > 0, such as:

e the function

H(:I:n—(k’—l)a <oy Tn—1, .’Bn)
k—1 k—1 1
=la+ Z Tn_j H <1 + mﬂ_j) (17)
7=0 7=0

is constant along the solutions of (15);
e every positive solution of (15) is oscillating about
the (unique) positive equilibrium P*.

Moreover, concerning the special case of “pe-
riodic recurrences”, in [Kocic & Ladas, 1993] it is
shown that for ¥k = 3 and a = 1 the recurrence
(15) is periodic of period 8, and in [Csornyei &
Laczkovich, 2001] it is proved that for k& = 3 the
same recurrence is periodic iff ¢ = 1 whereas for
k > 3 it cannot be periodic.



But more can be proved on the global dynamics
of the recurrence (15) in the regions of the phase
space having some negative components, or when
the parameter a is negative. We state the following
Theorem, which holds for the recurrence (15) inde-
pendent of the sign of a, and which will allow us
to obtain some new insight into the special cases of
periodic recurrences associated with k = 3.

Theorem 3. Consider the recurrence (15), or
equivalently the map Ty in (16), for any k > 2.
Then

(a) The function given in (17) is constant along the
solutions of the recurrence;

(b) for any a # k—1 there exists a periodic solution
of (15) of period (k + 1) given by

-1, ...,-1, (k—1—-a),...
—_———
(k — times)
18
-1, ...,—-1, (k—1-a),... (18)
._/_/
(k — times)

(c) there exist (k+1) cyclical hyperplanes I1; of R¥,
mapped one into the other by the map Ty, in-
variant for the map T(’;:)rl, given, in their cycli-

cal order, by:

(Iy) y+1=0

(I): a+yi+-+y=0

(Hg): yk—l-l:O

(M) : yp—1+1=0
(Hk+1)2 y2+1 =0

Proof. The statement in (a) is straightforward,
being H(T(k)(yla sy Yk—1, yk)) = H(yl7 sy Yk—1,
yx). To prove the existence of the periodic orbit of
period (k 4 1) let us start with the i.c. made up of

k times the value —1 : (zp_(k—1)s---» Tn-1, Tn) =
(—=1,..., —1). Then
— (k-1
-1
and
e+ (k—l-a)—(k—1—-j)—(—1)
Tn+145 = 1
=-1

for j=1,..., k, so that

Tpyir(t) =k —1—a
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and we have the (k + 1)-cycle in (18).
To prove (c) let us consider a point p € 11y,

p:(—l, 29, Z3,...,Zk)EH1

then

Ty (p) = (22,23, -, 21, —(at+22+23+ - +21)) € 2

its image

T&:)rl (p) = (z3,...

e Il3

, 2k, —(@+ 20+ 234+ + 25), —1)

has a “—1” in the last position, so that T(%,:)rj (p) has

a “—1” in the position (k — (j — 1)), and

T (p) = (1.

This complete the proof of Theorem 3. N

) e Iy

We observe that from the construction given
above it is possible to also get the explicit formu-
lation of the (k — 1)-dimensional map which repre-
sents the restriction of T(ll:)rk to each of the cyclical
hyperplanes. The case k = 2 was already given in
the previous sections, with 7" = Ty, so, as a further
example, let us consider now the case k = 3.

6. The Recurrence with £ = 3 and
the Equivalent 3-D Map

In this section we consider the Lyness recurrence
(1) with k& = 3, which reads

a+Tp_1+x
Tpyg = ——n-t o (19)
Tn—2
and can be rewritten as an iterated three-
dimensional map T(3) : (Zn—2, Tn-1, Tn) — (Tp-1,
T, xn—i—l)? where T(S)(yb Y2, y3) - (yi, yév yg) is
given by:

Y1 =142

Yy = Y3
TS: (20)
®) ;AT Y+ Y3

Y3 =

where, as usual, the variables (y1, y2, y3) are defined
by (y1, y2, y3) = (Tn—2, Tn_1, Tp). As stated in
Theorem 3, four cyclical planes of R? exist on which
the fourth-iterate of the map (20), T’ é), can be iden-
tified with a two-dimensional map. After a straight-
forward computation, it is easy to see that the
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explicit formulation of this two-dimensional map
Z : (u, v) — (v, V') = Z(u, v) is given by:

u,:_1+u+v
v
Z: , vl —a)+(1+u+v) (1)
v v(a+u+v)

This explicit relation allows us to see that the peri-
odic points of T(3) of period 4 are much more than
those described in Theorem 3 (b). Indeed, the two-
dimensional map Z in (21) has a line of fixed points,
which are necessarily periodic points of period 4 for
T(3). They are given, Vu # 1 — a, by:

(-Lu,-1), (u,—1,1—a—u),
(-Ll1-a—-u,—-1), 1—a—u,—1u)

Stated with other words, for any value u # 1 — a
the sequence

—lLu—-1,1—a—u,

—lLu—-1,1—a—u,...

is one of the infinitely many (uncountable) solutions
of period 4 of the recurrence (15) with £ = 3. No-
tice that this holds for any value of a, in particular
for a = 1, at which the recurrence (19) is periodic
with period 8, as proved in [Kocic & Ladas, 1993;
Csornyei & Laczkovich, 2001]. So, like in the pre-
vious section, our results help to clarify that the
term “periodic of period 8” is not to be intended
as “minimum period 8” since infinitely many peri-
odic sequences of period 4 exist. This confirms our
previous remark given at the end of Sec. 4.

We close this section by stating the results given
above in the form of the following Theorem:
Theorem 4. Consider the recurrence (19). For any
value of a infinitely many periodic sequences of pe-
riod 4 can be generated, given by

—lLu-1,1-a—u,—-1,u,—1,1 —a—u,—1,...

for each u #1— a.
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