
Border collision bifurcations in a two-dimensional piecewise smooth map
from a simple switching circuit
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In recent years, the study of chaotic and complex phenomena in electronic circuits has been widely

developed due to the increasing number of applications. In these studies, associated with the use of

chaotic sequences, chaos is required to be robust (not occurring only in a set of zero measure and

persistent to perturbations of the system). These properties are not easy to be proved, and

numerical simulations are often used. In this work, we consider a simple electronic switching

circuit, proposed as chaos generator. The object of our study is to determine the ranges of the

parameters at which the dynamics are chaotic, rigorously proving that chaos is robust. This is

obtained showing that the model can be studied via a two-dimensional piecewise smooth map in

triangular form and associated with a one-dimensional piecewise linear map. The bifurcations in

the parameter space are determined analytically. These are the border collision bifurcation curves,

the degenerate flip bifurcations, which only are allowed to occur to destabilize the stable cycles,

and the homoclinic bifurcations occurring in cyclical chaotic regions leading to chaos in 1-piece.
VC 2011 American Institute of Physics. [doi:10.1063/1.3555834]

The study of chaotic systems, either to control or to be

used in chaotic regimes, is nowadays of wide interest.

These studies are often associated with the analysis of

switching systems, leading to piecewise smooth models,

either in continuous or in discrete time. An important

result, often difficult to get, is the analysis of the regimes

in which stable dynamics or chaotic dynamics occur.

Sometimes, the results are based on numerical evidence,

which, however, may be not reliable. In the present work,

we propose a switching circuit as chaos generator. This

system is both simple to construct and chaotic. We can

give a rigorous proof of the chaotic behavior, which

occurs in wide regions and is robust: it occurs in a set of

positive measure and is persistent under parameter var-

iations. A peculiarity of the proposed system is that, due

to an intrinsic symmetry, it can be either studied via a

one-dimensional (1D) skew-tent map or via a two-dimen-

sional piecewise smooth map in triangular form, which

has a driving function also strictly related with a one-

dimensional skew-tent map. This allows us to prove our

results, showing that the flip bifurcations of cycles are all

degenerated, which means that the flip bifurcations are

not leading to a cycle of double period close to the bifur-

cating one. We prove that the appearance/disappearance

of k-cycles is due to border collision bifurcations. All the

bifurcations are analytically detected, leading to a com-

plete description of the periodicity regions in the parame-

ters space, as well as of the regions associated with robust

chaotic sets.

I. INTRODUCTION

In the last two decades, a wide interest in the studies of

chaotic and complex phenomena in electronic circuits and

systems has been observed. These studies are associated with

the increasing number of applications that successfully uti-

lize chaotic sequences. Chaos generators are used in several

context: secure communications, noise radar and sonar, sig-

nal processing, industrial electronics, as well as for other

purposes (see Refs. 1–5, to cite a few). Otherwise, vice versa

studies are performed in order to avoid chaotic regimes (as

in chaos control theory6–8). In both cases, the object is the

knowledge of the parameter regions in which chaos occurs.

Moreover, in the case of chaos generators, it is also

important that the generator is easy and simple to construct

and to be sure that the regime is really chaotic, occurring in a

wide set not due to a numerical effect, and such that a small

perturbation cannot lead to the disappearance of the chaotic

sequence. This motivates the present work in the study of

new chaotic systems. The model here proposed satisfies both

the objectives. It is obtained via a simple switching circuit,

and we fully describe the dynamic behaviors, showing pre-

cisely the regions with attracting periodic orbits, as well as

the wide regions of robust chaos (i.e., persistent, or structur-

ally stable, and occurring in a set of positive measure, see

also Ref. 9).

The use of a switching system is quite common nowa-

days. In fact, several applied models are described by switch-

ing system, due to their applicability in a large number of

practical systems, not only in electronics. Many examples

are shown in the survey books.10–12 These systems are

described by piecewise smooth functions, either in continu-

ous or in discrete time, and the study of their dynamics leads

to a new kind of bifurcations, due to the switching manifolds.
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That is, besides the bifurcations occurring in smooth sys-

tems, the new element introduced by the piecewise definition

leads to the so-called border collision bifurcations (BCB for

short). This term is now widely used since its introduction in

Refs. 13 and 14 in discrete systems, to which we are inter-

ested in. A border collision of an attracting set occurs when-

ever the invariant set collides with the border, as crossing the

border the system changes definition. It has been shown that

such bifurcations can lead to atypical transitions; for exam-

ple, a fixed point can directly bifurcate into a periodic orbit

of any period or cyclical chaotic intervals of any period.

Many examples have been studied in the last years. In a

piecewise linear one-dimensional system, the direct transi-

tion of a stable fixed point to a cycle of any period or to

chaos has been shown, for example, in Refs. 15–17, and sim-

ilar bifurcations in one-dimensional piecewise smooth sys-

tems are shown in Refs. 18 and 19. In two-dimensional

systems, the spectrum of dynamic occurrences is much

wider, and the subject is still to be completely studied. A

two-dimensional map in canonical form is investigated in

Refs. 13 and 20–22 and the transitions to torus or mode lock-

ing regimes in Refs. 23–25.

However, the results in piecewise smooth systems are

only a few, and each system to be investigated may lead to

new bifurcation phenomena. This is not the case in our

piecewise smooth system. In fact, in this paper, we shall pro-

pose a quite simple circuit (similar to those proposed in

Refs. 26 and 27), which is ultimately described by a piece-

wise smooth two-dimensional map. A particular case of the

circuit, in which the system becomes piecewise linear, has

been already studied in Ref. 28. Now we consider another

simplified case of the general model, which leads to a piece-

wise smooth map, which is described in Sec. II. In this study,

we give a complete characterization of the possible dynam-

ics, and the analysis here performed may be of help in other

similar models.

The model here considered can be analytically investi-

gated due to the structure of the so-called triangular form

of the system. The systems of this kind, although two-

dimensional, keep many properties as those of the one-

dimensional ones.29–31 Moreover, the driving function is

one-dimensional and piecewise linear so that the complete

analysis of our system can be performed making use of

the results of the skew-tent map, already well studied

since many years.14,15,32 We shall recall these results in

Appendix A, because they are used to find the analytic

expressions of the bifurcations curves occurring in our two-

dimensional piecewise smooth system. In Appendix B, we

also recall some properties of a two-dimensional system in

triangular form, which are used and improved, in our

specific case.

The rest of the paper is as follows. In Sec. II, we illus-

trate the circuit, which is ultimately described by a two-

dimensional model that maps the unit square into itself and

defined via three different continuous functions. We shall

consider the model under a specific assumption, whose

generic properties are described in Sec. II A, and the new

results are presented in Secs. III and IV. In Sec. III, we show

that the analysis of the bifurcations occurring in the piece-

wise smooth map can be performed either reducing the

system to a one-dimensional skew-tent map f or to a two-

dimensional piecewise smooth system in triangular form, in

which the one-dimensional function is topologically conju-

gate to the same skew-tent map f. This allows us to prove all

the main results of the piecewise smooth system. In Sec. IV,

we show that all the stable cycles that the system can have

undergo a degenerate flip bifurcation,36 which also can be

analytically detected. This means that a stable cycle of dou-

ble period is not created close to the bifurcation cycle. We

shall see that apart from the fixed point, any other stable

k-cycle, for any k � 2; bifurcates directly to cyclical chaotic

sets. The ranges in the parameter space at which the dynam-

ics are chaotic are analytically determined, via the homo-

clinic bifurcations leading to chaotic sets in one piece. That

is, we prove rigorously that the attracting chaotic set of

positive measure is robust and in which regions it occurs.

Section V concludes.

II. DESCRIPTION OF THE CIRCUIT

As already remarked in Sec. I, chaotic signals are

very useful in many applications, specially in communica-

tions, and there are many implementations of chaos gener-

ators in the literature. Some of them operate in continuous

time such as systems based on the Chua’s circuit (analog

circuit), while others are discrete time systems that iterate

a chaotic map.

The model here proposed as chaos generator is a quite

simple circuit, very similar to those discussed in Refs. 26

and 27. The main difference is in the use of two coupled

state variables, leading to a two-dimensional map.

The proposed circuit is shown in Fig. 1 and consists of

an R-S flip-flop, which permits to change the position of two

switches simultaneously. Depending on the position “1” or

“0” of the switches, two capacitor–resistance circuits Cx–Rx

and Cy–Ry are supplied with dc voltage sources Vx and Vy,

respectively, or connected to the ground. State variables of

the system are the two voltages across the capacitors vx(t)
and vy(t). At every clock period T, the flip-flop is set and

then the switches position is “1.” When one of the voltages

reaches the reference value Vref, the two switches are turned

FIG. 1. Schematic picture of the circuit, describing an R-S flip-flop, which

permits to change the position of two switches simultaneously.
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toward their position “0.” So, according to the switches posi-

tion, the two capacitors are simultaneously charging or

discharging.

At the nth rising edge of the clock, the two state

variables are given by vx(nT) and vy(nT), and the capacitors

start charging. Then, it requires the duration

tðnÞx ¼ RxCx ln ½Vx � vxðnTÞ� ½Vx � Vref �= Þð to the voltage vx(t)
to reach Vref, and similarly, it requires the duration

t
ðnÞ
y ¼ RyCy ln ½Vy � vyðnTÞ� ½Vy � Vref �

� ��
to the voltage vx(t)

to reach Vref. Then, three cases can happen:

1. None of the two states variables have reached the refer-

ence voltage Vref before the next rising edge of the clock.

This case appears when tðnÞx < T and t
ðnÞ
y < T or, equiva-

lently, when vxðnTÞ < Vx � ðVx � VrefÞeT=RxCx and

vyðnTÞ < Vy � ðVy � VrefÞeT=RyCy . Then no switch has

occurred, and the values of the state variables at the

(nþ 1)th rising edge are

vx nþ 1ð ÞTð Þ ¼ Vx þ vx nTð Þ � Vxð Þe� T=RxCxð Þ

vy nþ 1ð ÞTÞð Þ ¼ Vy þ vy nTð Þ � Vy

� �
e� T=RyCyð Þ

(
: (1)

2. Voltage vx(t) reaches the reference voltage Vref before

vy(t) can do it and before the next rising edge. It happens

when vxðnTÞ � Vx � ðVx � VrefÞeT=RxCx and when

tðnÞx � t
ðnÞ
y . Then the two switches are turned to “0” at time

nT þ tðnÞx , and the values of the state variables at the

(nþ 1)th rising edge are

vx nþ1ð ÞTð Þ¼Vref
Vx�vx nTð Þ

Vx�Vref
e� T=RxCxð Þ;

vy nþ1ð ÞTð Þ¼ Vy
Vx�vx nTð Þ

Vx�Vref

� �RxCx=RyCy

�Vyþvy nTð Þ
 !

e� T=RyCyð Þ:

8>><
>>:

(2)

3. Voltage vy(t) reaches the reference voltage Vref before the

next rising edge. This case is the analogous of the previous

one. It happens when vyðnTÞ � Vy � ðVy � VrefÞeT=RyCy

and when tðnÞx � t
ðnÞ
y . Then the two switches are turned to

“0” at time nT þ t
ðnÞ
y , and the values of the state variables at

the ðnþ 1Þth rising edge are

vx ðnþ1ÞTð Þ¼ Vx
Vy�vyðnTÞ

Vy�Vref

� �RyCy=RxCx

�VxþvxðnTÞ
 !

e� T=RxCxð Þ;

vy ðnþ1ÞTð Þ¼Vref
Vy�vyðnTÞ

Vy�Vref
e� T=RyCyð Þ:

8>>><
>>>:

(3)

The normalized parameters of the model are defined as

a ¼ Vx

Vref

> 1; aq ¼ Vy

Vref

> 1; q > 0; l ¼ RyCy

RxCx
> 0;

d ¼ e� T=RxCxð Þ 2 ð0; 1Þ:
(4)

The normalized state variables are given by

xn ¼
vxðnTÞ

Vref

2 ½0; 1�; yn ¼
vyðnTÞ

Vref

2 ½0; 1�: (5)

The following switching curves in Q ¼ ½0; 1� � ½0; 1�:

x ¼ xb; xb ¼ a� a� 1
d ;

y ¼ yb; yb ¼ aq� aq� 1

d1=l ;

Dðx; yÞ ¼ 0; Dðx; yÞ ¼ aq� y
aq� 1

� �l
� a� x

a� 1
;

(6)

assuming xb � 0 and yb � 0; which occurs for

�d < d < 1; �d ¼ max
a� 1

a
;

aq� 1

aq

� �l	 

; (7)

define three different domains in Q (see Fig. 2):

D1 ¼ ðx; yÞj 0 � x � xb and 0 � y � ybf g;
D2 ¼ ðx; yÞj xb � x � 1 and Dðx; yÞ � 0f g;
D3 ¼ ðx; yÞj yb � y � 1 and Dðx; yÞ � 0f g;

(8)

in which the system is defined by different functions. In

fact, the circuit is modeled by the continuous map

ðxnþ1; ynþ1Þ ¼ Mðxn; ynÞ as follows:

if ðxn;ynÞ 2D1 :

Mðxn;ynÞ¼M1ðxn;ynÞ ¼
aþðxn�aÞd
aqþðyn�aqÞd1=l

(
;

if ðxn;ynÞ 2D2 :

Mðxn;ynÞ¼M2ðxn;ynÞ ¼

a� xn
a�1

d

aq a� xn
a�1

� �1=l
�aqþ yn

� �
d1=l

;

8><
>:

if ðxn;ynÞ 2D3 :

Mðxn;ynÞ¼M3ðxn;ynÞ ¼
a aq� yn

aq�1

� �l
�aþ xn

� �
d

aq� yn
aq�1

� �
d1=l

8><
>: : ð9Þ

It is easy to see that the map is well defined as it is continuous

and maps the square Q (the phase space of interest) into itself.

The analysis of the dynamics of this model as a function

of the four parameters (a; q; d, and l) is not an easy task. The

particular case, with l ¼ 1 fixed, as a function of (a; q, and d)

has been studied in Ref. 25. There it has been shown that map

M becomes piecewise linear, and the bifurcations of the

model and route to chaos could be well determined.

FIG. 2. (Color online) Phase space Q and three different regions Di as defined

in the text, in which the map is described by the different functions Mi or Ti.
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In this work, another special configuration of this circuit

will be studied, the one in which Vx¼Vy, that means, q ¼ 1;
so that the considered circuit, depending on the parameters

(a; d, and l), is modeled by the following piecewise smooth
map ðxnþ1; ynþ1Þ ¼ Tðxn; ynÞ:

if ðxn;ynÞ 2D1:

Tðxn;ynÞ ¼ T1ðxn;ynÞ ¼
aþðxn� aÞd
aþðyn� aÞd1=l

(
;

if ðxn;ynÞ 2D2 :

Tðxn;ynÞ ¼ T2ðxn;ynÞ ¼

a� xn
a� 1

d

a a� xn
a� 1

� �1=l
�aþ yn

� �
d1=l

8><
>: ;

if ðxn;ynÞ 2D3 :

Tðxn;ynÞ ¼ T3ðxn;ynÞ ¼
a a� yn

a� 1

� �l
�aþ xn

� �
d
:

a� yn
a� 1

� �
d1=l ð10Þ

8><
>:

These two cases (the one studied in Ref. 25 and the one here

considered), which are simpler, constitute a first step toward

the understanding of the dynamics of the general model, as a

function of all four the parameters.

A. General properties

Although the map T under study is now piecewise smooth,

we can prove the occurrence of bifurcation structures similar to

those detected in Ref. 28 for the piecewise linear case. We

shall see that, in the phase space Q, only two domains among

the three cases are involved (either D1 and D2 or D1 and D3),

leading to a simplified system whose bifurcation structure can

be fully analyzed in the parameter space, while in the general

model (9), all the three domains can be involved leading to

more complex regions in the parameter space.

The analysis of the bifurcations occurring in the piece-

wise smooth map T given above, depending on three parame-

ters a, d, and l; can be performed in a few steps. In Sec. III,

we shall describe that we can consider three different

regimes, characterized by different values of the parameter

l, that is, l ¼ 1; l > 1, and l < 1.

Fixing l ¼ 1, we shall see that the asymptotic dynamics

of the two state variables (xn, yn) are synchronized, that is,

xn¼ yn, and all the bifurcations [in the parameter plane (a, dÞ]
are completely described by a one-dimensional map f topologi-

cally conjugate to the skew-tent map (recalled in Appendix A).

Then we shall show that the two cases l > 1 and

0 < l < 1 are topologically conjugate to one another. In

Sec. IV, we shall consider the case l > 1, showing that the

dynamics are confined to two regions only, D1 and D2, and

the functions involved, T1 and T2, lead to a map that has a tri-

angular structure (recalled in Appendix B). In fact, as we can

see from their definition, the value of xnþ1 depends only on

xn, and this will lead to a simplified system, whose bifurca-

tions can also be determined via the same one-dimensional

piecewise linear function f conjugate to the skew-tent map

and can be completely determined (for any value of l) in the

parameter plane (a, d).

We shall see that stable cycles of any period can exist,

describing the related route to chaos. As the model is piece-

wise smooth, we could expect flip bifurcations of supercriti-

cal or subcritical type, in which cycles of double period exist

close to the bifurcating cycles. Instead, these properties

described above lead to the unexpected result that all the flip

bifurcations of the existing stable k-cycles are degenerate.

This means that at the flip bifurcation value, in any neighbor-

hood of the bifurcating cycle, we can find a smooth arc with

infinitely many cycles of double period and that, after the

flip bifurcation, a stable cycle of double period does not exist

close to the bifurcating one. Instead, for k¼ 1, a stable

2-cycle appears far from the bifurcating fixed point (with

periodic point in two different regions), while for any k> 1

after the flip bifurcation no stable 2k-cycles exist, instead the

bifurcation leads directly to robust chaos in cyclical sets.

In general, for piecewise smooth maps, it is difficult to

have the analytic expression of the bifurcations curves in the

parameter plane leading to chaos, and also the chaotic regime

is usually proved numerically, often via the Lyapunov expo-

nents. Differently, the main results in this paper are that we can

detect the analytical expression of all the bifurcations (both

associated with the existence of stable cycles and associated

with the transition to chaos in cyclical chaotic sets) and that we

can rigorously prove that the chaotic regime is always purely

chaotic and persistent under parameter variation. These results

are possible due to the triangular structure of the map T under

study in all the cases l ¼ 1, l > 1, and l < 1; coupled with

the one-dimensional map f conjugate to the skew-tent map.

III. ANALYSIS OF THE DYNAMIC PROPERTIES OF T

In this section, we prove the dynamic properties

remarked above, occurring in the circuit modeled by T given

in Eqs. (10) and (8). The model is described by a continuous

piecewise smooth map depending on three parameters a, d,

and l; under the constraints given in Eqs. (4) and (7). Of the

three functions involved in Eq. (10), it is immediate to see

that T1 is linear, and its fixed point, say

X�1 ¼ ðx�1; y�1Þ ¼ ða; aÞ, is outside the square Q (as a > 1),

and thus it is a so-called virtual fixed point. Moreover, the

eigenvalues of T1 are both positive and less than 1, so the vir-

tual fixed point is a stable node. This implies that initial con-

ditions inside the region D1 are mapped toward the virtual

attractor and are forced to enter in a different region, either

D2 or D3, from which the iterated points are kept inside Q.

The fixed points of the system inside Q are given by the

functions T2 and T3, say X�2 and X�3, respectively, and they

never occur simultaneously. In fact, as we shall see below,

for l > 1, the fixed point X�2 exists in the proper region D2

while X�3 is virtual, and vice versa, for 0 < l < 1, the fixed

point X�3 exists in the proper region D3 while X�2 is virtual.

Moreover, we shall see that this distinction in the exis-

tence of the fixed points also persists in the dynamics

occurring in the phase space. When X�2 exists, then the

dynamics involve only the regions D1 and D2 (for l > 1Þ.
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Alternatively, when X�3 exists, then the dynamics involve

only the regions D1 and D3 (for l < 1Þ.
A two-dimensional bifurcation diagram as in Fig. 3 imme-

diately illustrates a qualitative change in the dynamic structure.

Figure 3(a) shows a two-dimensional bifurcation diagram in

the parameter plane ðl; dÞ obtained via numerical computations

at a ¼ 1:01 fixed. Periodicity regions Pk of attracting cycles of

increasing period k are evidenced in different colors. We can

see a difference between the region in l > 1 and that in l < 1.

This different dynamic behavior in the two regimes l > 1 and

that in l < 1 will be explained below in Proposition 2.

Let us first analyze what occurs at the separating value

l ¼ 1: From the definition of the model, we can see that the

value l ¼ 1 is particular, as the map from piecewise smooth

becomes piecewise linear. Moreover, we can prove that both

the state variables tend to synchronized states, as both tend

to be equal, thus belonging to the diagonal D of the phase

space Q. The restriction of the map to the diagonal D is a

piecewise linear map topologically conjugate to the skew-

tent map. We prove the following result:

Proposition 1: Let l ¼ 1: Then the dynamics of the
model in the phase space Q converges to the diagonal, and
the dynamics of xn¼ yn are topologically conjugate to those
of the skew-tent map

f : X 7!f ðXÞ ¼
fLðXÞ ¼ dX þ 1; X � 0

fRðXÞ ¼ � d
a� 1

X þ 1; X � 0

(
(11)

via the change of variable X ¼ dðx� xbÞ ½= ða� 1Þð1� dÞ�.

The proof of Proposition 1 comes via the following

steps.

(i) The fixed point of the map is given by X�2 ¼ X�3
¼ ad ð= aþ d� 1Þ;ð ad ð= aþ d� 1ÞÞ, which belongs

to the diagonal. The switching set Dðx; yÞ ¼ 0 also

belongs to the diagonal, so that the fixed point is on the

boundary of the regions D2 and D3.

(ii) The regions below (respectively, above) the diagonal

are invariant. In fact, the diagonal itself is invariant,

being the eigenvector of the linear maps. While

considering a point ðx; yÞ 2 D1 below (respectively,

above) the diagonal, it is mapped in a few iterations in

the region D2 (respectively, D3). Now, considering a

point ðxn; ynÞ 2 D2; thus below the diagonal, satisfying

yn<xn, we get ynþ1 ¼ad ða�xnÞ=ða�1ÞÞ�adð
þynd<ad ðða�xnÞ=ða�1ÞÞ�ad þxnd¼xnþ1; which is

a point still below the diagonal. Similarly, if we con-

sider ðxn;ynÞ2D3, above the diagonal, then also

ðxnþ1;ynþ1Þ is above the diagonal.

(iii) The iterations of the map below the diagonal are such

that xnþ1 � ynþ1ð Þ ¼ d xn � ynð Þ, both applying the

map T1 and the map T2, thus the asymptotic state, as

n!1; belongs to the diagonal. Similarly, for points

above the diagonal, they converge to the diagonal.

(iv) The asymptotic behavior of the map below the diago-

nal is given by the two functions T1 and T2 leading to

xnþ1 ¼
dxn þ að1� dÞ; xn � xb ¼ a� a� 1

d
� d

a� 1
xn þ ad

a� 1
; xn � xb;

(
(12)

and with the change of variable X ¼ dðx� xbÞ ½= ða� 1Þ
ð1� dÞ�, the map in Eq. (11) is obtained. Similarly, the as-

ymptotic behavior of the map above the diagonal is given by

the two functions T1 and T3 leading to the same steps as

above with x replaced by y, which ends the proof. h

The dynamic behaviors of the skew-tent map are well

known, and the results associated with our model are useful

not only in this particular case l ¼ 1 but also in Sec. IV, for

the piecewise smooth model. So the dynamics of this map

are reported in Appendix A for the parameter ranges of inter-

est: 0 < a ¼ d < 1 and b ¼ �d=ða� 1Þ < 0.

Given the benchmark case occurring at l ¼ 1, we shall

see that it is enough to study one case only ðl > 1 or l < 1Þ.
In fact, the following property holds:

Proposition 2: The two cases l > 1 and l < 1 are topo-
logically conjugate.

The proof follows immediately via a change of variable,

substituting ðx; y; d; lÞ with ðy; x; d1=l; 1=lÞ as

T1ðxn; yn; d; lÞ ¼ T1ðyn; xn; d
1=l; 1=lÞ;

T2ðxn; yn; d; lÞ ¼ T3ðyn; xn; d
1=l; 1=lÞ;

(13)

which can be immediately verified.

Due to the topological conjugation of the two different

regimes, in the following, we can restrict our analysis to only

one of them. In Sec. IV, we shall completely describe the

dynamics in the regime l > 1:

IV. PIECEWISE SMOOTH MAP T FOR l > 1

In this section, we consider the parameter l > 1 showing

that the dynamics of the piecewise smooth map T defined in

three pieces are reduced to those of a piecewise smooth map T
defined in two pieces, which is in triangular form, and we

shall prove that the bifurcation structures are strictly related to

those of a one-dimensional piecewise linear map. This will

lead us to determine the analytic expression of the bifurcation

curves associated with the stable cycles as well as those asso-

ciated with the homoclinic bifurcations of repelling cycles

leading to robust chaos, proving that the chaotic regime is

always persistent as a function of the parameters. Thus,

FIG. 3. (Color online) Bifurcation diagram in the parameter plane ðl; dÞ at

a ¼ 1:01 fixed, for the map T in Eq. (10). In (a), the colored regions Pk

denote the existence of stable k-cycles. The white region denotes chaos. In

(b) are shown a few bifurcation curves described in Sec. IV. BCBk are bor-

der collision bifurcation curves for k-cycles, while DFBk denotes a degener-

ate flip bifurcation curve of a stable k-cycle.
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differently from what generally occurs in piecewise smooth

models, we have a complete description in the parameter

space of the values, which are associated with a stable (attract-

ing) cycle or with chaos, whose structural stability is also

proved.

From the definition of T, we can see that, for l > 1,

only two regions of the phase space Q are involved in the as-

ymptotic dynamics. In fact, from the definition of the con-

straints, we have yb> xb, so that the point (xb,yb) is above the

diagonal of Q, as well as the curve of equation Dðx; yÞ ¼ 0

bounding from above the region D2. The fixed point of the

model is given by

X�2 ¼ ðx�2; y�2Þ

¼ ad
dþ a� 1

;
a

dþ a� 1

� �1=l

�1

 !
ad1=l

1� d1=l

 !
2 D2;

(14)

while X�3 is virtual. Any initial condition in the region D3 will

be mapped into D1 [ D2 in a finite number of iterations (as the

points tend to the virtual fixed point X�3, which is either attract-

ing or a saddle). Any initial condition ðxn; ynÞ 2 D1 under the

map T1 is attracted by a virtual fixed point X�1 ¼ ða; aÞ belong-

ing to the diagonal and will be mapped into D2 in a finite

number of steps. Points in D2 are subject to the function T2,

which is a triangular map with a linear

function FðxnÞ ¼ � d=ða� 1½ Þ�xn þ ½ad ð= a� 1Þ� in the

autonomous state variable, while Gðxn; ynÞ ¼ ða½ða� xnÞ
ð= a� 1Þ�1=l � aþ ynÞd1=l is a contraction in the y-direction.

In Subsection IV A, we show that when X�2 is locally sta-

ble, then it is also globally attracting in the phase space Q,

and it becomes unstable via a degenerate flip bifurcation,

which leads to an attracting 2-cycle having the two periodic

points in the two different domains D1 and D2.

Then in Subsection IV B, we prove that when the fixed

point is unstable the dynamics of T, confined in the region

D1 [ D2; are determined by a piecewise smooth map in tri-

angular form, in which the independent variable xn is

related with a one-dimensional piecewise linear map,

which is the same function f determined in Eq. (11). So,

we can prove that all the cycles of f are also associated

with cycles of the piecewise smooth map T (which is not a

common occurrence in triangular maps). In our model, this

is due to the particular form of the second function

depending on (xn, yn). This allows us to say that all the

bifurcations of map T associated with the appearan-

ce=disappearance of a k-cycle are border collision bifurca-

tions, denoted as BCBk, and that a stable cycle can become

unstable only via a degenerate flip bifurcation, denoted as

DFBk. Moreover, we can completely describe the structure

of the chaotic sets. In fact, for any k � 3; crossing the

curve BCBk, a pair of cycles exists, qk and q0k; qk may be

stable and q0k is unstable. Then, decreasing a;

(i) the stable k-cycle qk becomes unstable crossing the

curve DFBk, leading to 2k-cyclical chaotic sets;

(ii) the 2k-cyclical chaotic sets become k-cyclical chaotic

sets at the first homoclinic bifurcation of qk (which

occurs crossing the bifurcation curve Hk);

(iii) the k-cyclical chaotic intervals turn into one-piece

chaotic intervals at the first homoclinic bifurcation of

q0k (which occurs crossing the bifurcation curve H0kÞ.

All the bifurcation curves here involved will be analyti-

cally determined.

We have not mentioned above the 2-cycle. Indeed, it is par-

ticular. Its route is different from those of the k-cycles with

k � 3: In fact, it is not related with an unstable 2-cycle but only

to the fixed point X�2. A 2-cycle can appear only via the degener-

ate flip bifurcation of the fixed point, crossing the curve DFB1,

and on its turn, it becomes unstable via degenerate flip bifurca-

tion crossing the curve DFB2. However, when the 2-cycle

becomes unstable, a stable cycle of double period can never

appear, and the resulting dynamics depend on the crossing point

of the curve DFB2. The widest arc leads the dynamics to 4-

cyclical chaotic sets; nevertheless, it is also possible to get a

transition to any kind of 2m-cyclical chaotic sets, for any m � 2:

A. Fixed point

From the property of the function T2 defined in D2, where

the fixed point X�2 exists, we prove that as long as the fixed

point X�2 is locally stable, then it is also globally attracting in

the phase space Q. As remarked above, T2 is triangular, thus

any cycle of T2 is associated with a cycle of the function

FðxnÞ ¼ � d ð= a� 1½ Þ�xn þ ½ad ð= a� 1Þ� in the autonomous

state variable, while the vice versa is not necessarily true.

However, in our case, the simple structure of the second func-

tion Gðxn; ynÞ ¼ ða½ða� xnÞ ð= a� 1Þ�1=l � aþ ynÞd1=l leads

to the result that also any cycle of the function F(xn) leads to a

cycle of T2. In fact, for any fixed value of x, say �x, the function

G is linear in y:

Gð�x; yÞ ¼ yd1=l þ a
a� �x

a� 1

� �1=l

�a

 !
d1=l; (15)

and a contraction in the y-direction, as k2 ¼ d1=l 2 (0,1).

So, for the fixed point X�2, the eigenvalues of the Jaco-

bian matrix DT2 are given by

k1 ¼ � d
a� 1

; k2 ¼ d1=l ; (16)

where k2 2 (0,1) by assumption, and its associated eigenvec-

tor, the vertical line through the fixed point, is always a sta-

ble eigenspace. While the eigenvalue k1 is negative and a

bifurcation occurs to X�2 when k1 crosses, the value �1 at

a� ¼ 1þ d : (17)

Thus for a > a�, the fixed point X�2 is globally attracting.

We have now to see what occurs at the bifurcation value

a ¼ a�. For a linear one-dimensional map, we know that the

flip bifurcation occurring when k1 crosses the value �1 is a

degenerate flip bifurcation: at the bifurcation, apart from the

fixed point, we have all cycles of period 2, stable but not

asymptotically stable, and divergence after. This is reflected

also in our triangular map T2. In fact, in our case, the first

component F(x) is linear, so that, at the bifurcation value, we

have a segment filled with 2-cycles, and, as proved above,
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any cycle of the function F(x) also leads to a cycle of T2.

That is, if x1; x2f g is a 2-cycle of F(x), then a 2-cycle

x1;Gðx1; y1Þð Þ; x2;Gðx2; y2Þð Þf g (18)

of T2 also exists. We have so proved that the flip bifurcation

occurring at the fixed point X�2 is degenerate.38 This is not a

common occurrence. Moreover, in Subsection IV B, we shall

see that all the attracting k-cycles of the piecewise smooth

map T under study undergo only degenerate flip bifurcations.

In our case, the map T2 is defined in the region D2 and,

at the degenerate flip bifurcation value occurring at a ¼ a�

the whole segment [xb,1], where xb ¼ d; is filled with 2-

cycles of the linear map F(x) so that also the map T2 must

have an invariant smooth arc in the region D2, which is filled

with 2-cycles of the map T, with x ranging in the whole seg-

ment [xb,1] defining the region D2. All these 2-cycles (stable

but not asymptotically stable) have a stable set on the verti-

cal lines through the cycles. An example is shown in Fig. 4.

We have so proved the following:

Proposition 3: Let l > 1 and a > a� ¼ 1þ d: Then
T has the fixed point X�2 globally attracting in the state space
Q. At a ¼ a�, a degenerate flip bifurcation occurs and an arc
of invariant curve crosses the region D2 filled with stable
2-cycles, transversely attracting.

The line of equation a ¼ 1þ d is shown in the bifurca-

tion diagram of Fig. 5, in the two-dimensional parameter

plane ða; dÞ. Note that due to the constraint �d < d < 1, we

necessarily have 1 < a < 2: We also remark that at any fixed

value l > 1, the bifurcation diagram in the parameter plane

ða; dÞ is the same because, as we have seen for a ¼ 1þ d;
also all the other bifurcations curves are independent of the

parameter l: This will be shown in Subsection IV B, together

with the description of the dynamics occurring for a < a�:

B. Stable k-cycles and chaos

It is clear that for a < a� ¼ 1þ d, we can no longer

have an attractor only in the region D2 as points not belong-

ing to the vertical line through the saddle fixed point X�2 are

necessarily mapped into the region D1. Thus, the model

becomes really piecewise smooth: the asymptotic states are

confined in the region D1 [ D2, and the dynamics of the map

T are described by the interaction of the two maps T1 and T2.

That is, for 1 < a < a�, our map T is determined by

if ðxn; ynÞ 2 D1 :

Tðxn; ynÞ ¼ T1ðxn; ynÞ ¼
aþ ðxn � aÞd
aþ ðyn � aÞd1=l ;

(

if ðxn; ynÞ 2 D2 : (19)

Tðxn; ynÞ ¼ T2ðxn; ynÞ ¼

a� xn
a� 1

d

a a� xn
a� 1

� �1=l
�aþ yn

� �
d1=l

:

8><
>:

However, as already remarked, also now we are dealing with a

map in triangular form. In fact, map T is in the form

xnþ1 ¼ FðxnÞ, ynþ1 ¼ Gðxn; ynÞ with the following definitions:

FðxnÞ ¼
dxn þ að1� dÞ; xn � xb ¼ a� a� 1

d ;

� d
a� 1

xn þ ad
a� 1

; xn � xb;

(

(20)

Gðxn;ynÞ¼
d1=lynþað1�d1=lÞ ; xn�xb¼a�a�1

d ;

a a�xn
a�1

� �1=l
�aþyn

� �
d1=l ; xn�xb:

8><
>:

(21)

Thus, for this triangular map, we can appreciate the importance

of the piecewise linear map F(x) in Eq. (20), which is a skew-

tent map with critical point in x¼ xb. Moreover, we can reason

as we have done before for the triangular map T2 because also

now the dependent function G(x, y) is linear with respect to the

variable y, and k2 ¼ ð@=@yÞGðx; yÞ ¼ d1=l is a contraction fac-

tor. It follows that not only any cycle of T is associated with a

cycle of F (which is a generic property of a triangular map) but

also the vice versa holds (which is not a common occurrence),

so that we have the following:

Proposition 4: Let l > 1 and 1 < a < a� ¼ 1þ d: Then
ðxi; yiÞf gi¼1;:::;k is a k-cycle of T iff xif gi¼1;:::;kis a k-cycle of

the skew-tent map F(x) given in Eq. (20).

It is clear that this is an important result that allows us

to completely describe the bifurcations occurring in our

model T. In fact, now we have that any cycle of F (and

related bifurcations) leads to a companion cycle of T (and

FIG. 4. (Color online) Degenerate flip bifurcation of X�2 at the parameter

values d ¼ 0:1, a ¼ a� ¼ 1:1; l ¼ 1:2. Only a few 2-cycles are shown in

the figure, with their transversal stable sets.

FIG. 5. (Color online) Bifurcation diagram in the parameter plane ða; dÞ
(for any l > 1Þ for the map T in Eq. (10). In (a), the colored regions Pk denote

the existence of stable k-cycles. The white region denotes chaos. In (b) are shown

a few bifurcation curves, whose analytic equations are given in Sec. IV B.
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related bifurcations), and the dynamic behaviors of the

one-dimensional map in Eq. (20) are completely known: via

the change of variables

X ¼ d
ða� 1Þð1� dÞ ðx� xbÞ

¼ d
ða� 1Þð1� dÞ x� aþ ða� 1Þ

d

� �
;

Y ¼ d1=l

ða� 1Þð1� d1=lÞ
ðy� ybÞ

¼ d1=l

ða� 1Þð1� d1=lÞ
y� aþ ða� 1Þ

d1=l

� �
;

(22)

we get the piecewise smooth system ðXnþ1; Ynþ1Þ
¼ T ðXn; YnÞ ¼ f ðXnÞ; ~GðXn; YnÞ

� �
, where

f ðXnÞ ¼
dXn þ 1; Xn � 0;

� d
a� 1

X þ 1; Xn � 0;

(
(23)

~GðXn;YnÞ¼ d1=lYnþ1 ; Yn�0;
B 1�ð1�dÞXð Þ1=lþd1=lYþ1�B ; Yn�0;

	
(24)

and

B ¼ ad1=l

ða� 1Þð1� d1=lÞ
: (25)

The function in Eq. (23) is now the skew-tent map with slopes

a ¼ d 2 ð�d; 1Þ and b ¼ � d ð= a� 1½ Þ� < 0 already defined in

Eq. (11), whose dynamics and bifurcation curves are recalled

in Appendix A. For values of b 2 ð�1; 0Þ, we get the dynam-

ics already described: the map has the fixed point on the right

side (corresponding to X�2Þ globally attracting. At b¼�1, the

degenerate flip bifurcation of the fixed point occurs. Now we

can state that this bifurcation leads, for b<�1 (i.e., for

a < a� ¼ 1þ dÞ to a stable 2-cycle for T with one periodic

point in the region D1 and one in the region D2. From Appen-

dix A, we have the explicit expression of all the stable

k-cycles, which the map f(Xn) can have, and from the first

equation in Eqs. (22), via the reverse function

x ¼ ða� 1Þð1� dÞ
d

X þ a� ða� 1Þ
d

; (26)

we get the explicit expressions for the x-coordinates of cycles

for our map T in the region D1 [ D2: For the 2-cycle, we have

X2
R ¼
ð1þ dÞða� 1Þ

d2 þ a� 1
; X2

L ¼
a� 1� d

d2 þ a� 1
; (27)

and thus

x2
D2
¼ a� aða� 1Þd

d2 þ a� 1
; x2

D1
¼ ad2

d2 þ a� 1
: (28)

These are the x-coordinates of the 2-cycle of f(Xn), but it is

clear that we have to recover the second coordinate y of the

cycle from our map T, and we obtain

y2
D2
¼
 

ad2=l

 
a�x2

D2

a�1

 !1=l

�1

!
það1�d1=lÞ

!�
ð1�d2=lÞ;

y2
D1
¼ad2=l a�x2

D1

a�1

 !1=l

�1

0
@

1
A,ð1�d2=lÞ:

ð29Þ

The flip bifurcation of the fixed point and transition to a sta-

ble 2-cycle is shown in the one-dimensional bifurcation dia-

gram of Fig. 6(a), obtained at fixed d ¼ 0:4 and l ¼ 2 [see

the arrow in Fig. 5(a)], illustrating the x-variable as a func-

tion of a.

We remark that while the informations related with the

coordinates of the stable k-cycles are only partially covered

by the one-dimensional skew-tent map in (23) (as the y-coor-

dinate is to be determined via the two-dimensional map T),

the informations associated with the bifurcations are com-

plete. Thus, all the bifurcations occurring in Fig. 6 as well as

in Fig. 5 are analytically detected. In fact, from Proposition

4, we have that the bifurcations are only those occurring in

the cycles of the map in Eq. (23). We have so proved (by

using Appendix A) the following result:

Proposition 5: Let l > 1 and 1 < a < a� ¼ 1þ d: Then

(i) The stable 2-cycle of T undergoes a degenerate flip
bifurcation, at the bifurcation curve given by

DFB2 : a ¼ 1þ d2; (30)

which may lead to m-cyclical chaotic sets of any
even period m, which undergo bifurcations, merging
in pair, up to a one-piece chaotic set.

(ii) For any k � 3 pairs of k-cycles, one of which may be
locally stable and one unstable, appear via border
collision bifurcation crossing the bifurcation curve
BCBk given by

BCBk : a ¼ 1þ ð1� dÞdk�1

1� dk�1
; (31)

which are maximal cycles; the stable one has one
periodic point in D2 and (k�1) points in D1; the
unstable one has two periodic points in D2 and (k�2)
points in D1.

(iii) For any k � 3 the stable k-cycle undergoes a degen-
erate flip bifurcation at the bifurcation curve given by

DFBk : a ¼ 1þ dk; (32)

FIG. 6. (Color online) One-dimensional bifurcation diagram showing the

x-coordinate as a function of the parameter a; at l ¼ 2 and d ¼ 0:4 fixed

[see the arrow in Fig. 5(a)].

023106-8 Gardini, Fournier-Prunaret, and Chargé Chaos 21, 023106 (2011)
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so that the stability region of the k-cycle (colored
regions in Fig. 5) is given by ða; dÞ 2 Pk where

Pk ¼ ða;dÞj 1þ dk < a< 1þð1� dÞdk�1

1� dk�1
; �d< d< 1

	 

:

(33)

(iv) Crossing the degenerate flip bifurcation DFBk there
is the appearance of 2k-cyclical chaotic sets, which
merge into k-cyclical chaotic sets at the homoclinic
bifurcation occurring at the bifurcation curve Hk

given by

Hk : a� d2k

ða� 1Þ2
¼ 0; (34)

which in turn merge into one-piece chaotic sets at the
homoclinic bifurcation occurring at the bifurcation
curve H0k given by

H0k : a� dk

ða� 1Þ ¼ 0: (35)

The shape of the periodicity region Pk with stable k-cycles

is shown in Fig. 5. In Fig. 5(b) are reported a few bifurcation

curves determined analytically via the equations given

above. We can see that fixing any value of d; as a decreases

from a� ¼ 1þ d; a finite number of periodicity regions are

crossed, and the lower is the d, the higher the number of peri-

odicity regions that are crossed. One transition is showed

in Fig. 6. In Fig. 6(a), we can see that the bifurcation of the

2-cycle is followed by chaotic sets, 4-cyclical first, then

2-cyclical, and then in one piece. In the enlargement of

Fig. 6(b), we can see the stable k-cycles, for k¼ 3, 4, 5, and

6, which are appearing via border collision from a chaotic

set as a decreases, and all are followed by the same kind of

route: 2k-cyclical chaotic sets, then k-cyclical chaotic sets

and a chaotic set in one piece, at the homoclinic bifurcation

values determined in Proposition 5.

Also fixing a value of a and increasing the parameter d,

a finite number of periodicity regions may be crossed. A

route to chaos associated with the 2-cycle at fixed value of a
and increasing the parameter d is illustrated in Fig. 7. Figure

7(a) shows the degenerate flip bifurcation of the 2-cycle,

which is followed by the transition to four-piece, two-piece,

and one-piece chaotic attractors for the map T.

The occurrences of a six-piece chaotic attractor follow-

ing the degenerate flip bifurcation of the stable 3-cycle is

shown in Fig. 8.

Now we prove that, due to the linearity of the function

T1, we can also explicitly determine the coordinates of the

maximal k-cycles, for any k � 3, appearing in pairs via bor-

der collision bifurcation (at the bifurcation BCBk given in

Proposition 5), one of which may be locally stable while one

is necessarily unstable. It is clear that the x-coordinates can

be obtained via the equations given in Appendix A and con-

verting them to the original coordinates, by using the inverse

function given in Eq. (26). Then, we have to find the y-coor-

dinates of the k-cycles, which depend on the function

Tkðxn; ynÞ. In order to find one periodic point of such cycles,

we consider the one that is closest to the switching value

FIG. 7. (Color online) Phase space of T at the parameters a ¼ 1:1 and

l ¼ 1:2 fixed and d ¼ 0:316227766 in (a), at the degenerate flip bifurcation

of the 2-cycle, when infinitely many 4-cycles exist, some of which are

shown, and the stable set of one 4-cycle is also plotted: d ¼ 0:323 in (b);

d ¼ 0:331 in (c); d ¼ 0:332 in (d).

FIG. 8. (Color online) A six-piece chaotic attractor at a ¼ 1:1, l ¼ 1:5, and

d ¼ 0:47.

FIG. 9. (Color online) Bifurcation structure for the general model (9) in the

parameter plane (l; d), at a ¼ 1:053 and q ¼ 0:95 fixed.
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x¼ xb on the right side (in the region D2). So, let us denote

by ðxk;s
1 ; y

k;s
1 Þ the periodic point of the k-cycle, which may be

stable, then it is obtained by solving the following equation:

Tk�1
1 � T2ðxk;s

1 ; y
k;s
1 Þ ¼ ðx

k;s
1 ; y

k;s
1 Þ: (36)

While denoting by ðxk;u
1 ; yk;u

1 Þ, the periodic point of the k-

cycle is always unstable, then it is obtained by solving the

following equation:

Tk�2
1 � T2

2ðx
k;u
1 ; yk;u

1 Þ ¼ ðx
k;u
1 ; yk;u

1 Þ: (37)

By simple computations we have, for any n � 1,

Tn
1ðx; yÞ ¼

dnxþ að1� dnÞ
dn=lyþ að1� dn=lÞ

	
(38)

and the composite functions of Tk that we need are explicitly

given as follows:

Tk�1
1 � T2ðx; yÞ ¼

� dk

ða� 1Þ xþ
adk

ða� 1Þ þ að1� dk�1Þ

adk=l a� x
a� 1

� �1=l
�1

� �
þ dk=lyþ að1� dðk�1Þ=lÞ

;

8>><
>>: ð39Þ

Tk�2
1 � T2

2ðx; yÞ ¼

dk

ða� 1Þ2
x� adk

ða� 1Þ2
þ adk�1

ða� 1Þ þ a 1� dk�2
� �

adðk�1Þ=l aða� 1Þ � dða� xÞ
ða� 1Þ2

� �1=l

�1

 !
þ adk=l a� x

a� 1

� �1=l
�1

� �
þ dk=ly� adðk�1Þ=l

8>>><
>>>:

: (40)

So, by using the expressions in Eqs. (39) and (40), we have the following:

Proposition 6: Let l > 1 and 1 < a < a� ¼ 1þ d: Then for any k � 3, the coordinates of the k-cycles appearing via bor-
der collision bifurcation crossing the bifurcation curve BCBk are given by

xk;s
1 ¼

aða� 1Þð1� dk�1Þ þ adk

a� 1þ dk
; yk;s

1 ¼
�adk=l a� xk;s

1
a� 1

� �1=l

�1

 !
þ a 1� dðk�1Þ=l
� �

1� dk=l
;

(41)

xk;u
1 ¼

a a� 1ð Þdk�1 þ a a� 1ð Þ2 1� dk�2
� �

� adk

a� 1ð Þ2�dk
;

yk;u
1 ¼

adðk�1Þ=l
a a� 1ð Þ � d a� xk;u

1

� �
a� 1ð Þ2

0
@

1
A

1=l

� 1

0
B@

1
CAþ adk=l a� xk;u

1

a� 1

 !1=l

� 1

0
@

1
Aþ a 1� dðk�2Þ=l

� �

1� dk=l :

(42)

FIG. 10. (Color online) Two-dimensional bifurcation diagram of the skew-tent map given in Eq. (43).
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V. CONCLUSIONS

In this work, we have considered the bifurcations occur-

ring in a two-dimensional piecewise smooth map describing

a circuit proposed in Sec. II as chaos generator. The original

results are given in Secs. III and IV, where we have shown

how the system is topologically conjugate to one having a

particular triangular structure, whose dynamics (characteriz-

ing one of the state variables) are strictly related with the

piecewise smooth one-dimensional skew-tent map. This par-

ticular structure of the model leads to the analytical descrip-

tion of the bifurcation curves, which correspond to border

collision bifurcations and to homoclinic bifurcations involv-

ing maximal cycles. A peculiarity of the piecewise smooth

map is the occurrence of only degenerate flip bifurcations

and the direct transition to a robust chaotic regime, which

can change in structure only via the cyclic chaotic compo-

nents. These transitions are due to homoclinic bifurcations,

which are also analytically determined. The system here

investigated is only a particular case of the circuit described

in Sec. II, and we have seen that the dynamics lead to robust

chaos. Together with the other particular case, considered in

Ref. 28, we are confident that these results are of some help

in the analysis of the general case, i.e., of map M defined in

Sec. II, in which the parameter q is not fixed (here taken

equal to 1). In the general model, we obtain more compli-

cated bifurcation structures, as shown in Fig. 9 at q ¼ 0:95.

However, a similarity exists with the phase space of the

particular model considered in this work. We leave the

analysis of the bifurcations of the general circuit for

further studies, for which the present work may be of some

help.
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APPENDIX A: SKEW-TENT MAP

In this appendix, we recall the bifurcations curves of the

1D piecewise linear map f given by two linear functions and

defined as

f : x 7! f ðxÞ ¼ fLðxÞ ¼ axþ 1; x � 0;
fRðxÞ ¼ bxþ 1; x � 0;

	
(A1)

where a, b are real parameters with 0< a< 1 and b< 0,

the so-called skew-tent map, because we are interested in

these values via the parameters of our map as given in

Eq. (11):

a ¼ d 2 ð0; 1Þ; b ¼ � d
a� 1

< 0:

The case here considered, increasing=decreasing with maxi-

mum in 1, is topologically conjugate to the case decrea-

sing=increasing with minimum in �1 as considered for

example in Ref. 32, from which we recall here some results

[to be used in our map in Eq. (11)], noticing that the rich dy-

namics in this range have already been studied by many

authors (see, e.g., Refs. 33, 34, 15, 14, and 35).

The critical point x¼ 0 is the point of maximum, and the

absorbing interval I is given by I ¼ f 2ð0Þ; f ð0Þ½ � ¼ bþ 1; 1½ �.
For a< 1, f has a unique fixed point x�R ¼ 1=ð1� bÞ > 0;
which is globally attracting for b>�1 and repelling for

b<�1. The degenerate flip bifurcation of x�R at b¼�1 leads

to an attracting 2-cycle having one periodic point in x< 0

and one in x> 0.

In Fig. 10, it is shown the two-dimensional bifurcation

diagram of the (a, b)-parameter plane in the interesting

region.

When the fixed point x�R is unstable, the map f can have

an attracting cycle qk of any period k � 2, as well as cyclical

chaotic intervals Qk of any period k � 1: Let us first describe

the routes associated with the cycles of period k � 3. We

shall describe below the effects of the degenerate flip bifur-

cation of the 2-cycle.

The cycles having period k � 3 (also called principal
cycles or maximal cycles) appear in pairs, one stable qk (with

the symbolic sequence RLk�1) and one unstable q0k (with the

symbolic sequence R2Lk�2). In Fig. 10, we can see that the

curve BCB3 corresponds to the “saddle-node” BCB, which

gives rise to the attracting cycle q3 and the repelling cycle

q03: The right boundary of the stability region PðqkÞ of q3 is

the curve DFB3 corresponding to the degenerate flip bifurca-

tion of the attracting cycle q3, which becomes repelling,

leading to cyclical chaotic intervals of double period, Q6. All

these cycles of period k � 3 undergo the same bifurcation

sequence (increasing a), that is, the degenerate flip bifurca-

tion qk ) Q2k is followed by the transitions of cyclical cha-

otic intervals Q2k ) Qk ) Q1. The boundary between the

region Q2k and the region Qk is the curve Hk corresponding

to the first homoclinic bifurcation of the cycle qk, while the

right boundary of the region Qk is the curve H0k related to the

first homoclinic bifurcation of the cycle q0k; leading to a one-

piece chaotic interval Q1 ¼ I ¼ bþ 1; 1½ �: In the portion of

the parameter plane shown in Fig. 10, only the stability

region of the cycle q3 is observable, but in the strip

a 2 ð0; 0:5Þ, all the regions PðqkÞ exist where k!1 as b
tends to �1: The bifurcation curves can be detected

analytically using the coordinates of the points of the

cycles.

In order to find the periodic points of such cycles, we

consider the periodic point that is closest to zero on the right

side. So, the periodic point xk;s
1 of the cycle qk is obtained by

solving the following equation: f k�1
L � fRðxk;s

1 Þ ¼ xk;s
1 , which

leads to the point

xk;s
1 ¼

1� ak

ð1� aÞð1� bak�1Þ ; (A2)

while the periodic point xk;u
1 of the cycle q0k is obtained by

solving the following equation: f k�2
L � f 2

Rðx
k;u
1 Þ ¼ xk;u

1 , which

leads to the point

xk;u
1 ¼

bak�2ð1� aÞ þ 1� ak�1

ð1� aÞð1� b2ak�2Þ ; (A3)
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and the BCB occurs when the periodic point xk;u
1 collides

with the border, xk;u
1 ¼ 0; that is, for

BCBk: b ¼ � 1� ak�1

ð1� aÞak�2
: (A4)

Thus, crossing the BCB curve denoted BCBk, a pair of cycles

appears, a repelling one, q0k [a periodic point of which is

given in Eq. (A3)] and a cycle qk [a periodic point of which

is given in Eq. (A2)], which is attracting for b< bk, where bk

is defined below, while both cycles are repelling if b> bk.

The eigenvalue of the stable cycle qk is given by k ¼ bak�1

so that it loses stability via degenerate flip bifurcation when

DFBk : b ¼ � 1

ak�1
: (A5)

Thus, the stability region of the cycle qk is given by

ða; bÞ 2 PðqkÞ, where

PðqkÞ ¼ ða; bÞ : � 1

ak�1
� b � � 1� ak�1

ð1� aÞak�2

	 

; (A6)

and it is bounded by the two bifurcation curves BCBk and

DFBk given in Eqs. (A4) and (A5), which intersect at the

point ðak; bkÞ; where ak is the root of the equation

ak� 2aþ 1¼ 0 in the interval (0.5, 1) and bk ¼ �1=ak�1
k :

The degenerate flip bifurcation of qk for k � 3 leads to

cyclical chaotic intervals of double period 2k, denoted by

Q2k. The boundaries of the chaotic interval are always given

by the point x¼ 1 and its iterates. The attracting 2k-cyclical

chaotic intervals Q2k exist in the parameter region bounded

by the curves BCBk and DFBk [given in Eqs. (A4) and (A5),

respectively] and by the curve denoted Hk related to the first

homoclinic bifurcation of the cycle qk, given by

Hk : a2ðk�1Þb3 � bþ a ¼ 0: (A7)

The transition Q2k ) Qk takes place crossing the curve Hk,

while the transition Qk ) Q1 occurs crossing the curve

denoted H0k corresponding to the first homoclinic bifurcation

of the cycle q0k; given by

H0k : ak�1b2 þ b� a ¼ 0: (A8)

Now let us consider the 2-cycle. It is possible to see in Fig.

10 that the DFB of the 2-cycle q2 is particular. The 2-cycle is

in fact a particular one because it does not appear by border

collision bifurcation (in pair with a repelling one) as it occurs

for the other k-cycles. Instead, the 2-cycle appears after the

degenerate flip bifurcation of the fixed point x�R occurring at

b¼�1. With the equation given in (A2) for k¼ 2, we get the

right coordinate of the 2-cycle q2, which is without a com-

panion repelling 2-cycle. We have

x2
R ¼

1þ a

1� ab
; x2

L ¼
1þ b

1� ab
; (A9)

and its degenerate flip bifurcation occurs when ab¼�1, thus

giving the bifurcation curve shown in Fig. 10. Differently from

the cycles qk for k � 3 described above, the DFB of q2 may lead

to m-cyclical chaotic intervals of any even period m. That is, we

can have the transition q2 ) Q02m ; where m � 2; moreover,

m!1 as b!�1 and a ¼ �1=b! 1. Two contiguous

regions Q0
2i and Q0

2iþ1 are separated by the curve corresponding

to the first homoclinic bifurcation of the 2i-cycle given by

H2i : bdiþ1 adi þ ð�1Þiðb� aÞ ¼ 0; (A10)

where dm; m¼ 0,1,…, are the solutions of the difference

equations diþ1 ¼ 2di þ ð1þ ð�1ÞiÞ=2; i¼ 1, 2, …, with

d0 ¼ 1 (see Ref. 15 for further details). The bifurcation curve

H1 corresponds to the homoclinic bifurcation of the fixed

point x�R occurring when f 3ð0Þ ¼ x�R; that is,

H1 : ab2 þ b� a ¼ 0: (A11)

APPENDIX B: TRIANGULAR MAP

A dynamical system of the form

T :
xnþ1 ¼ FðxnÞ
ynþ1 ¼ Gðxn; ynÞ

	
; (B1)

where F(xn) gives an autonomous state variable, whose dy-

namics is independent of the values of the other variable,

while Gðxn; ynÞ depends on both state variables, is called

map in triangular form. Here we recall a property that holds

for any triangular map:

Property 1: Let T ðx; yÞ be a triangular map with auton-
omous variable x0 ¼ FðxÞ:

(1) If ðxi; yiÞf gi¼1;:::; k is a k-cycle of T , then xif gi¼1;:::;k is a
k-cycle of F(x).

(2) If xif gi¼1;:::; k is a k-cycle of F(x), then the vertical lines
x ¼ xif gi¼1;:::; k give an invariant set of T .

(3) The Jacobian matrix DT associated with any cycle of T
is a diagonal matrix whose diagonal terms are the real
eigenvalues.

(4) The kth iterate is also triangular, of the form
T kðx; yÞ ¼ ðFkðxÞ;:::Þ.

The proof is immediate, and it states that all the cycles

of the two-dimensional map T are associated with cycles of

the one-dimensional map F (while the vice versa is not nec-

essarily true) and the dynamics of a point belonging to the

vertical lines associated with the cycles cannot exit from

such vertical lines. The eigenvalues are always real, for any

cycle. In particular, for a fixed point ðx�; y�Þ of T , the eigen-

values are k1 ¼ d=dxð ÞFðxÞjx� , k2 ¼ @=@yð ÞGðx; yÞjðx�;y�Þ.
The eigenvector associated with k2 is the vertical line

through the fixed point while the eigenvector associated with

k1 is the line through the fixed point with slope

m ¼ @=@xð ÞGðx; yÞjðx�;y�Þ
.

k1 � k2ð Þ. h
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