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The present work describes a family of polynomial noninvertible maps of the plane shared within
two open regions: (i) (denoted by Z0) each point having no real preimage, and (ii) (denoted by
Z2) each point having two real preimages. The regions Z0, Z2 are separated by the critical curve
LC, locus of points having two coincident preimages. Z2 is made up of two sheets (giving rise to
a plane foliation) joining on LC, each being associated with a well-defined inverse of the map.
The considered maps family is structurally unstable. For a wide choice of the parameter space
it generates a singular foliation in the sense that the region Z2 is separated into two zones, Z ′

2

and Z ′′

2
, inside which the two preimages do not have the same qualitative behavior. Moreover,

the boundary between Z ′

2
and Z ′′

2
is made up of points having only one real preimage at finite

distance, the second one being at infinity. This situation gives rise to a nonclassical homoclinic
bifurcation. The maps of the family have another important feature: their inverses present a
denominator which vanish along a line of the plane. This has a great consequence on a chaotic
attractor structure, when it exists. The imbedding of the map into a wider structurally stable
family, generating regions Zk (k = 1, 3 being the number of real preimages), permits to under-
stand the foliation nature when the imbedding parameter cancels leading to the structurally
unstable map.

Keywords : Noninvertible maps; Riemann foliation.

1. Introduction

The object of the paper is to describe the dy-
namic behavior associated with a family of two-
dimensional maps having a particular Riemann

foliation of the phase plane. The family we con-
sider comes from an applied model (to economic

and finance, see [Foroni, 2001; Foroni & Gardini,

2003]. This model is not structurally stable. So

an explanation of its nonstandard behavior is

obtained by imbedding the map into a larger family,

which transforms the foliation into one of standard

type.
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The two-dimensional noninvertible map family
is given by

T :

{

x′ = cx(y − a)

y′ = x2(b − y)
(1)

It is of so-called “Z0 − Z2” type, i.e. the plane is
divided into two regions: Z2 a point having two real
rank-one preimages, Z0 a point having no real rank-
one preimages [Mira et al., 1994, 1996a, 1996b].
Commonly inside Z2 the plane can be considered
as made up of two sheets: one related to the first
preimage, the other related to the second one. The
two sheets join at a critical curve LC, locus of points
having two coincident preimages on the curve LC−1,
T (LC−1) = LC. With respect to this common situ-
ation described in [Mira et al., 1994, 1996a, 1996b]
the map (1) gives rise to a particular organization of
the sheets associated with each of the two preimages
generated by the map. So for c > 0 and b > a > 0
the resulting plane foliation is singular in the sense
that the region Z2 is separated into two zones Z ′

2

(the y < 0 part of Z2) Z ′′
2

(y > 0) inside which the
two preimages do not have the same qualitative be-
havior. Moreover, the boundary (y = 0) between Z ′

2

and Z ′′
2

is made up of points having only one real
preimage at finite distance, the second one being at
infinity. On the line (x = 0) the Jacobian determi-
nant of T vanishes, but its image reduces to a single
point (the fixed point O = (0, 0)), and we shall see
that it is a degenerate focal point of the inverses of
T . In the region Z ′′

2
the two distinct preimages are

separated by the line x = 0 in which the Jacobian
determinant is vanishing.

The imbedding of the map into a wider struc-
turally stable family Tε, generating regions Zk (k =
1, 3 being the number of real preimages), permits
to understand the foliation nature (i.e. the sheets
structure of the plane) when the imbedding parame-
ter cancels leading to the structurally unstable map.

The plan of our work is as follows. Section 2
describes some peculiar properties of the map T ,
their dependance on the parameters a, b and c is
considered in subsections. In particular, Sec. 2.1

(c > 0 and b > a > 0) illustrates the route giving
rise to chaotic attractor, by crossing through the
first homoclinic bifurcation of the saddle fixed point
O. The existence here of a line mapped into a point
is associated with a vanishing denominator of the
two inverses of the map, which often leads to spe-
cific bifurcation cases for a chaotic attractor [Bischi
et al., 1999]. Section 3 is devoted to the imbedding
of T into a wider family Tε (ε being the imbedding
parameter) generating regions Zk (k = 1, 3). The
evolution of the foliation when ε → 0 permits to
identify the sheets organization of the plane at the
limit ε = 0. The persistence of the homoclinic bi-
furcation of the saddle fixed point in the perturbed
map Tε is discussed in Sec. 3.1.

2. Properties of the Family T

2.1. Some general properties

In Sec. 2 we describe some features (sometimes very
particular) of the two-dimensional map T given in
(1). In the next subsection we shall remark on the
dynamic behavior of T when the parameter c has
positive values, and b > a > 0. In Sec. 2.2 we shall
see the case c > o and 0 < b < a while in Sec. 2.3 the
case a = b. The case c < 0 is considered in Sec. 2.4.
Let us describe here some properties which hold in
all the cases except for a = b.

It is immediate to see that the origin O = (0, 0)
is a fixed point of T (not unique as we shall see be-
low), and that the whole line x = 0 is mapped into
the origin in one iteration. As evidenced in the pa-
per [Bischi et al., 1999], the existence of a line which
is mapped into one point denotes the existence of
a vanishing denominator in at least one of the in-
verses of the map. In fact, looking for the preimages
of a point (x′, y′), we have y = (x′/cx) + a where x
is the solution of the following equation

c(b − a)x2 − x′x − cy′ = 0 (2)

so that we may have no solution or two dis-
tinct solutions, called rank-one preimages of (x′, y′),
given by

T−1

1
(x′, y′) :























x =
x′ −

√

x′2 + 4c2y′(b − a)

2c(b − a)

y =
2(b − a)x′

x′ −
√

x′2 + 4c2y′(b − a)
+ a

T−1

2
(x′, y′) :























x =
x′ +

√

x′2 + 4c2y′(b − a)

2c(b − a)

y =
2(b − a)x′

x′ +
√

x′2 + 4c2y′(b − a)
+ a

(3)

which exist when x′2 + 4c2y′(b − a) > 0. Thus we have the following two regions, which characterize the
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foliation of the plane:

Z0 = {(x, y) ∈ R
2|x2 + 4c2y(b − a) < 0} (4)

Z ′
2

= {(x, y) ∈ R
2|x2 + 4c2y(b − a) > 0 , y < 0}

Z ′′
2 = {(x, y) ∈ R

2|x2 + 4c2y(b − a) > 0 , y > 0} (5)

The boundary y = 0 separating the two regions Z ′
2

and Z ′′
2

is particular because its points have only one
of the two distinct rank-one preimages at finite dis-
tance. Indeed a point belonging to y = 0 with x > 0
is such that T−1

1
(x′, 0) = (0,±∞) and T−1

2
(x′, 0) =

(x′/c(b − a), b) which belongs to the line y = b,
while if x < 0 then T−1

1
(x′, 0) = (x′/c(b − a), b)

belongs to the line y = b and T−1

2
(x′, 0) = (0,±∞).

Clearly, also from the relation given in (2) we have
that the inverses of a point with x′ 6= 0 and y′ = 0
are (0,±∞) and (x′/c(b − a), b). Thus the x-axis
y = 0 behaves as a particular set Z̃1, the points of
which have only one real preimage at finite distance.

The boundary separating the two regions Z0

and Z ′
2

is the classical critical curve LC defined by:

LC : y =
1

4c2(b − a)
x2 (6)

Each point belonging to LC, except the origin, has
two merging preimages on the locus LC−1, which
necessarily is a set of points in which the Jacobian
determinant of T vanishes. In fact, from (3) we have
immediately that the locus of merging preimages
has the equation

LC−1 : y = (2b − a) (7)

and T (LC−1) = LC. On the other hand, the
Jacobian determinant of T is given by:

det J(x, y) = cx2(y − (2b − a))

thus the Jacobian determinant vanishes on LC−1

given in (7) and also on the y-axis x = 0. How-
ever, as noticed above, this set (the vertical axis) is
here a particular singular set, because it is mapped
into a single point (the fixed point O = (0, 0)), and
it is associated with the vanishing denominator of
at least one of the inverses. In fact, as can be seen
from the explicit expressions given in (3) (and al-
ready remarked above), the half-axis x′ ≥ 0 and
y′ = 0, (resp. x′ ≤ 0 and y′ = 0) is a vanishing de-
nominator for the second component of T −1

1
(resp.

of T−1

2
). Reminds that a map having a vanishing de-

nominator possesses a set of points, called the pre-
focal set, whose preimages are related with a single
point called the focal point (for more details refer
to the paper [Bischi et al., 1999], see also [Bischi

et al., 2001, 2002]. In the present case the inverse
T−1 = T−1

1
∪ T−1

2
of T has a vanishing denomina-

tor, and so the image of x = 0 (the prefocal set) is a
point (x = y = 0) (the focal point), for the inverse
map T−1. Indeed this is the case, i.e. arcs through
the origin are mapped by T−1

1,2 into arcs through the
point (0, a) or into arcs issuing from two suitable
points of the y-axis (which depend on the chosen
arc through O). From the properties of the focal
point we have that an arc through the origin has
both the two preimages at finite distance, issuing
from a point of the prefocal set. In our case we have
to consider different arcs through the origin. First
consider an arc γ in the following parametric form:

x(τ) = ξ1τ + ξ2τ
2 + · · ·

y(τ) = η1τ + η2τ
2 + · · ·

with ξ1 6= 0 and η1 6= 0, taking the images T−1

1,2 (γ)
by using the explicit expression given in (3), and
letting τ → 0, then we get two arcs issuing from
the single point (0, a) of the y-axis. The quali-
tative picture of Fig. 1 shows the preimages of
two such arcs, labeled γ and η. Then consider a
“parabolic”arc γ given by:

x(τ) = ξ1τ + ξ2τ
2 + · · ·

y(τ) = η2τ
2 + · · ·

with ξ1 6= 0 and η2 6= 0, and its images T−1

1,2 (γ).
When τ → 0, we get two arcs issuing from two dis-
tinct points of the y-axis:
(

0,
2(b − a)ξ1

ξ1 −
√

ξ2

1
+ 4c2(b − a)η2

+ a

)

with T−1

1
(γ) ,

(

0,
2(b − a)ξ1

ξ1 +
√

ξ2

1
+ 4c2(b − a)η2

+ a

)

with T−1

2
(γ) .

Thus varying ξ1 and η2, i.e. the curvature of such
“parabolic” arcs tangent to y = 0 at the origin, the
whole y-axis can be obtained, which satisfies the
definition of prefocal set of the inverses of T . This
property clarifies the geometric structure of the at-
tracting set occurring for particular choices of the
parameters, as described in the next subsections.
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Fig. 1. The preimages of arcs issuing from the origin and belonging to the region Z ′′

2 , as shown in (b), are two arcs issuing
from the point (0, a), below the line y = b, as shown in (a).

Summarizing, as seen above, the two rank-one
preimages of a point P ∈ (y = 0), P 6= O, are
one at the point (0,±∞) and the other on the line
y = b. Thus if P is taken close to the line (y = 0),
then one of the two preimages is close to infinity
and the other is close to the line y = b. Arcs cross-
ing through the origin have two distinct rank-one
preimages crossing through the single point (0, a) or
through two suitable points of the y-axis (prefocal
set of T−1

1,2 ).
Besides the elements seen up to now, there is

also another peculiarity in the dynamics of the map
T : the straight line of equation y = a is mapped
into the line x = 0 so that its second iterate is the
fixed point O, T 2({y = a}) = (0, 0). Clearly, from
the property of the line x = 0 for T , we can de-
duce that of the line y = a for the map T 2. That is,
y = a is the prefocal set associated with the focal
point O for the map T−2. This means that the rank-
two preimages of an arc through the origin are arcs
which cross the line y = a.

The properties described above will have con-
sequences also on the foliation of the plane, as we
shall see in the following subsections. It is also worth
noting a symmetry property of the map. From
T (−x, y) = (−x′, y′) we have that an invariant set of
T is either symmetric with respect to the y-axis, or
the symmetric one also exists. So pairs of period-k
cycles, k odd or even, the points of which permute

in the same way, have this symmetry. This prop-
erty has consequences on the position of the cycles
of T . Looking for the possible fixed points (x∗, y∗)
of T we see that besides the origin two more fixed
points may exist, when (ac + 1)/(c(b − a) − 1) > 0,
given as

y∗ = a +
1

c
, x∗ = ±

√

y∗

b − y∗
(8)

while a period-2 cycle with points {P1, P2} =
{(−x1, y1), (x1, y1)} exists when (ac − 1)/(c(b−a)+
1) > 0, given by

y1 = a −
1

c
, x1 = ±

√

y1

b − y1

. (9)

2.2. Case c > 0 and b > a > 0

From the analysis of the two inverses given in (3), it
is easy to see that in the case c > 0, b > a the foli-
ation associated with the map T is very particular.
The critical set is the parabola LC belonging to the
half-plane y < 0, however the portion of plane which
is “folded” on LC is only the portion above the line
y = b, that is, the whole half-plane y > b (which in-
cludes LC−1, being (2b−a) > b), is mapped (twice)
in the region Z ′

2
, as shown in the qualitative draw-

ing of Figs. 1(a) and 1(b). Stated in other words,
each point belonging to the region Z ′

2
has one rank-

one preimage belonging to the strip bounded by the
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Fig. 2. Structure of the foliation of the map T in the case c > 0, b > a > 0. The image of an arc γ issuing from the line y = b

and crossing LC−1 as shown in (a) is folded along LC in an arc T (γ) as shown in (b), tangent to LC and belonging to Z ′

2.

straight lines y = b and LC−1, while the other rank-
one preimage belongs to the half-plane above LC−1,
in the region y > (2b − a).

Figure 2 shows that each region Z ′
2
and Z ′′

2
has a

symmetric part with respect to the y-axis, labeled
left (L) and right (R). Due to the symmetry we
can consider only one side, the symmetry giving
the behavior on the other side. By analyzing the
two preimages given in (3), it is easy to see that
any point P belonging to the region Z ′′

2,L has the

preimage T−1

1
(P ) belonging to the left part of the

strip bounded by the straight lines y = a and y = b,
while T−1

2
(P ) belongs to the right half-plane x > 0

below the line y = a (see Fig. 1). Roughly speaking,
any point P ∈ Z ′′

2,L has one of the two preimages on
the left, and the other on the right of the vertical
axis x = 0, one above and one below the straight
line y = a. Thus we see that these two lines (x = 0
and y = a) play a special role in the foliation of the
plane associated with the map T . In the present case
the foliation seems related to the properties of the
focal point O for the inverses of T and T 2. From
the properties of the focal point we have that an
arc through the origin has both the two preimages
at finite distance, issuing from a point of the pre-
focal set. As we have seen in the previous section,
in our case these preimages are either issuing from
the same point (0, a) (intersection between the two
lines x = 0 and y = a), or issuing from two different

points of the axis x = 0 (prefocal set of the inverses
T−1

1,2 ). And y = a is the prefocal set of the focal

point O for T−2.
This section shows how the particular foliation

is involved in explaining some properties of the dy-
namic behaviors of the map, associated with the
basin boundaries and associated with the attract-
ing sets. At low values of the parameter c the only
fixed point is the origin O. It is a stable node for
0 < c < 1/a one of its two eigenvalues (or multipli-
ers) always being S1 = 0, the other being S2 = −ca.
The value ac = 1 (S2 = −1) corresponds to a flip
bifurcation giving rise to c > 1/a for the period-
2 cycle (9) (stable when ac is not too far from
1), O becoming a saddle. The periodic points, say
P1 = (−x1, y1) and P2 = (x1, y1), which are fixed
points of the map T 2, give us the opportunity to ob-
serve the stable set W S(O) of the saddle O (which
is also related to the basins of T in the case c < 0, as
we shall see in Sec. 2.4). W S(O) is the frontier sepa-
rating the basins B(P1) and B(P2) for the map T 2,
it is made up of the line x = 0 and its rank-n preim-
ages, n = 1, 2, 3, . . . , W S(O) = ∪n≥0T

−n({x = 0}),
T−1({x = 0}) = ({y = a}).

Figure 3(a) shows these two basins in green and
dark gray, and the frontier separating them (i.e. the
stable set W S(O)) has arcs in the region Z0 which
are approaching the critical curve LC. The light
gray part is the basin B(∞), set of points having
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Fig.3
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Fig. 3. Green and dark gray points denote the basins of the points P1 and P2 for the map T 2 at a = 0.75, b = 1.3 and
c = 1.85 in (a), c = 2 in (b). The light gray points belong to the basin B(∞).
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a

b
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*
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P

*

R
P

Fig.4
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0

Fig. 4. Green and dark gray points denote the basins of the attractors A1 and A2 for the map T 2 at a = 0.75, b = 1.3 and
c = 2.5. The light gray points belong to the basin B(∞), whose boundary includes the fixed points P ∗

L and P ∗

R.

divergent trajectories. As the parameter c increases
(a, b remaining constant), a contact of the frontier
with the critical curve LC, followed by a transversal
crossing, occurs. This situation causes a qualitative
change in the stable set of O and a qualitative
change in the structure of the two basins [Mira
et al., 1994, 1996a]. It results in the creation of two
new portions of the basins [Fig. 3(b)], made up of
areas on opposite sides of LC−1, both on the right
and on the left of the y-axis (by the symmetry).
The frontier ∂B(∞) is a limit set for W S(O), and
so belongs to its closure. It is asymptotic to the line
y = a and to all its preimages of any rank. It also
includes the stable set of some cycles. For example,
when c > 1/(b − a) two more fixed points of T exist
and belong to ∂B(∞). These fixed points appear (as
c increases) due to a nonstandard bifurcation occur-
ring at c = 1/(b − a), which involves the improper
point (i.e. at infinity) of the line y = a + (1/c) and
no other cycle at finite distance. In fact, at this bi-

furcation value, the two fixed points given in (8),
called

P ∗
L =









−

√

√

√

√

√

√

a +
1

c

b −

(

a +
1

c

) ,

(

a +
1

c

)









,

P ∗
R =









√

√

√

√

√

√

a +
1

c

b −

(

a +
1

c

) ,

(

a +
1

c

)









(10)

are the points at infinity on the line y = a + (1/c),
i.e. (−∞, a+(1/c)) and (+∞, a+(1/c)). This means
that for c = 1/(b − a) they constitute the same
point on the Poincaré’s equator, while after the bi-
furcation they belong to the frontier ∂B(∞). Then
we may consider this bifurcation as a pitchfork-

bifurcation of a fixed point on the Poincaré equa-

tor. The characteristic polynomial associated with
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Fig. 5. Chaotic attractor of T for a = 0.75, b = 1.3 and c = 2.545 in (a). The light gray points belong to the basin B(∞).
(b) Show an enlargement of the region in (a) around the fixed point.
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the Jacobian matrices of J(P ∗
L) and J(P ∗

R) are the
same, so that they have the same eigenvalues. At the
bifurcation value c = 1/(b − a), roughly speaking,
we can say that the two eigenvalues are S1 = −∞
and S2 = 1, while for c > 1/(b − a), as long as some
attracting set at finite distance can be observed, the
fixed points P ∗

L and P ∗
R are two unstable nodes, with

S1 � −1 and S2 > 1 (|S1| > |S2|), giving rise to
two cusp points of the frontier, and cusps for their
increasing rank preimages. These two fixed points
on ∂B(∞) can be seen in Fig. 4.

This figure also shows an attracting set, say A1,
of the map T 2, which with its symmetric (with re-
spect to x = 0) part A2 constitutes a period-2 at-
tractor A = A1 ∪ A2 for T . The attractor A ap-
pears from a Neimark bifurcation undergone by the
period-2 cycle {P1, P2} giving rise to a period-2 in-
variant closed curve turning into chaotic sets when
c increases. Figure 4 shows that for c = 2.5 the two
symmetric disjoint attractors of T 2 are very close to
the stable set W S(O), boundary separating B(A1)
and B(A2). The two attractors belong to the closure
of the unstable set of the origin, W U (O). A contact
between the attractor A and the basin boundaries
∂B(A1) and ∂B(A2) corresponds to the appearance
of the first homoclinic orbits of the saddle O. After
the tangential contact at the bifurcation, a transver-
sal crossing of the stable and unstable sets occurs,
W S(O) ∩ W U(O) 6= ∅. With the values of a and b
used in the figures of this section, this bifurcation
occurs at a value c∗ such that c∗ ∈ (2.522, 2.523).
It is worth noticing that perhaps also for c < c∗,
c close to c∗, the disjoint attracting sets of T 2 are
weakly chaotic rings (see [Mira et al., 1996a; Frouza-
kis et al., 1997]. However, it is certain that the at-
tracting set of T has a chaotic (fractal) structure
after the homoclinic bifurcation of O, for c > c∗.
This is due to the fact that the attracting set nec-
essarily includes infinitely many loops issuing from
the origin. An example is shown in Fig. 5.

The images of the sets which seem like arcs in
Fig. 5 (but really they are part of a weakly chaotic
ring, as it will be clear below) crossing (after the ho-
moclinic bifurcation of O) the straight line y = a,
denoted by γ1 and γ2 in Fig. 5(a), are mapped by
T into two symmetric “arcs” issuing from the verti-
cal axis [see the points A and B in Fig. 5(a)], then
T 2(γi) for i = 1, 2 are two symmetric “arcs” issuing
from the origin, and thus also T k(γi) for i = 1, 2
and k > 2 are two symmetric “arcs” issuing from
the origin [see some enlargements in Fig. 5(b)]. And

further images of these “arcs” will necessarily cross
again the line y = a in other smaller “arcs”, whose
images will show again loops issuing from the ori-
gin, whose images . . . , and so on recursively, in a
self-similar way. Due to the prefocal property of
x = 0 related to T−1, mentioned in Sec. 2.1, the
images of arcs intersecting the y-axis are arcs with
a “parabolic”contact with the x-axis at the focal
point O. The inner structure of the chaotic attrac-
tor of T can be better observed at a higher value of
c, as shown in Fig. 6. The geometric shape of the
chaotic attractor at the origin (as shown in Figs. 5
and 6) is clearly explained via the property of the
focal point O for the inverses of T−1 and T−2, which
give, for the forward iterations of T , a particular
point (also called knot point in [Bischi et al., 2001]).

Up to now we have not commented on the
absorbing regions of the map, bounded by arcs of
critical curves LCk = T k(LC), k = 1, 2, 3, . . . . The
attracting sets belong to the strip bounded by the
straight lines y = 0 and y = b, inside which no
branch of LC−1 or LC exists. However, the critical
curve LC1 = T (LC) belongs to the half-plane y > 0
and taking the images of a small segment of LC−1

around x = 0 a closed absorbing area [Mira et al.,
1996a] can be obtained, which includes the attract-
ing sets, bounded by an arc of LC2, as shown in
Fig. 7 with the hatched area (the behavior is qual-
itatively similar at any value of c > 0). We can
also get the external boundary of a chaotic area, as
shown in Fig. 8(a), by using a few images of a very
small segment of LC−1 around x = 0. This external
boundary of the chaotic attractor, shown in Fig. 6,
is obtained by a few arcs of LC2, . . . , LC5. With fur-
ther images of the same arc we get the shape of the
chaotic area in a very few iterations, up to LC16, as
shown in Fig. 8(b) (compare this figure with Fig. 6).

It is also clear that increasing c the chaotic area
approaches the boundary of its basin, frontier of
B(∞), as shown in Fig. 9, where the value of c is
very close to the contact bifurcation, after which
only a chaotic repeller survives at finite distance.

2.3. Case c > 0 and a > b > 0

From the analysis of the two inverses given in (3),
it is easy to see that in the case c > 0 and a > b > 0
the foliation of the phase plane is simpler with re-
spect to the previous case. The curve LC−1 (line
y = 2b − a) is below the line y = b which in turn
is below the line y = a, and the critical curve LC,
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0

Fig. 6. Chaotic attracting set of the map T for a = 0.75, b = 1.3 and c = 2.7. The light gray points belong to the basin
B(∞).

Fig.7
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LC1

LC2 LC2

0

γ

( )

Fig. 7. Forward images of the small arc γ of LC−1 for the map T at a = 0.75, b = 1.3 and c = 2. Portions of LC2 bound an
absorbing area.
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Fig. 8. (a) The external boundary of the attractor shown in Fig. 6 is obtained with arcs of LC2, . . . , LC5, images of a small
arc of LC−1. (b) Further images of the same arc of critical curves put in evidence the qualitative shape of the attracting set.
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0

Fig. 9. Chaotic attracting set of the map T for a = 0.75, b = 1.3 and c = 2.842. The light gray points belong to the basin
B(∞).

the parabola given in (6), belongs to the half-plane
y > 0. The region Z ′′

2
is the half-plane y < 0, while

the region Z ′
2

is the portion of plane between the
parabola and the x-axis (see the qualitative picture
in Fig. 10). The region Z ′′

2
still exists which is not

crossed by the critical curve LC, and whose preim-
ages are one on the right and another on the left
of the line x = 0, as well as one above and another
below the line y = a (see Fig. 10), but not on the
opposite side with respect to LC−1. However, now
this region is less interesting from a dynamical point
of view (with respect to the case b > a > 0) because
the attracting sets of T belong to the region Z ′

2
.

2.4. Case c > 0 and a = b > 0

The transition from the foliation of the plane in the
case b > a to that of the case b < a occurs via an-
other peculiar families of maps which are obtained
from T when a = b. In this case the map becomes

T :

{

x′ = cx(y − a)

y′ = −x2(y − a)

The two straight lines y = a and x = 0 are mapped
into the origin O in one iteration, and no other point
can be mapped on the two axes x = 0 and y = 0.
Any other point (x′, y′) of the plane has a unique
preimage given by

T−1(x′, y′) :



















x = −
cy′

x′

y = a −
(x′)2

c2y′

(11)

Thus the map becomes invertible (i.e. with a unique
inverse) except for the points on the two axes x = 0
and y = 0. The two lines y = a and x = 0 represent
the locus of points in which the Jacobian determi-
nant of T vanishes, being det J(T ) = cx2(y − a),
and also represent the locus of points in which the
inverse has a vanishing denominator.

For ac > 1 there exists a two-cycle given in (9)
(clearly with a = b), bifurcated from the origin via

a flip bifurcation, while for ac < −1 there exist two
fixed points given in (8), i.e. in (10) (clearly with
a = b), bifurcated from the origin via a pitchfork
bifurcation.
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Fig. 10. Critical curves of the map T in the case c > 0, a > b > 0. The two preimages of a point belonging to Z ′

2 are on
the opposite side with respect to the line LC−1, while the two preimages of a point belonging to Z ′′

2 are above LC−1, on the
opposite side with respect to the line x = 0 as well as to the line y = a.

We note that the existence of the two lines in
the set S = {{y = a}, {x = 0}} mapped into the
origin makes the iteration properties of this two-
dimensional map T very different with respect to
the behavior of the maps with a unique inverse in
the whole phase plane. For example, any arc cross-
ing twice this set S is mapped into an arc with
a loop in the origin. When the origin O is a sad-
dle, S belongs to the stable set W S(O). In its turn
W S(O) is given by the preimages of any rank of
the line y = a. The invariant set constituting the
frontier of the set of divergent trajectories B(∞)
is the limit set of W S(O), boundary between the
basins of the two disjoint attractors (of T 2 if ac > 1,

or of T if ac < −1), say B(A1) and B(A2)). See
Fig. 11(a), where the attractor is the period-2 cycle
of T and the basins shown are those generated by
the map T 2. The stable set of the origin is shown
in Fig. 11(b), obtained with a few preimages of the
line y = a.

The peculiar role of the set S becomes evident
for the forward iterations of T after the homoclinic
bifurcation of O, giving rise to a chaotic attrac-
tor which intersects the line y = a in infinitely
many arcs with self-similar structure, and conse-
quently loops issuing from the origin. Because of
T (y = a) = O we have that the origin is a particu-
lar focal point for the inverse T−1 and the straight
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Fig.11

a=b
P1

P2

0

P1
P2

0

a=b

(a)

Fig.11

a=b
P1

P2

0

P1
P2

0

a=b

(b)

Fig. 11. Map T in the case a = b = 0.75 and c = 2.6. (a) Basins of attraction of the points P1 and P2 for the map T 2. The
light gray points belong to the basin B(∞). (b) Stable set W S(O).
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a

Fig.12

0

Fig. 12. Chaotic attracting set of the map T for a = b = 0.75 and c = 2.94. The light gray points belong to the basin B(∞).

line y = a plays the role of its prefocal set [Bis-
chi et al., 1999, 2001]. This justifies the attractor
loops issued from O after crossing through the line
y = a. An example is shown in Fig. 12, in which
the chaotic attractor is close to its final bifurcation,
due to a contact with the frontier of its basin.

2.5. Case c < 0

From the definition of the map Tc(x, y) in (1) where
we have evidenced the dependence on the parameter
c, it is immediate to see that T 2

−c(x, y) = T 2
c (x, y).

Thus the case with the parameter c negative comes
immediately from that with the parameter c posi-
tive. For example, let us consider the case b > a. As
c decreases from zero the stable fixed point O (at-
tracting node) loses stability at c = −1/a for which
a pitchfork bifurcation occurs, giving rise to two
stable fixed points, given in (8), i.e. in (10). Then
the phase-plane behavior corresponding to the case
considered in Fig. 3 with c negative, but with the
same absolute value (i.e. c = −1.85 and c = −2), is
exactly the one shown in Fig. 3 (which now repre-
sents the basins of T and not of T 2). Similarly the
case with a = 0.75, b = 1.3 and c = −2.5 is shown in
Fig. 4 where the periodic points on the frontier now

belong to a two-cycle, that is, at c = −1/(b − a), a
period-2 cycle given in (9) appears from a bifurca-
tion of the point at infinity on the line y = a−(1/c).

3. Perturbed map Tε

This section considers a map obtained as a pertur-
bation of the map T , showing how the particular
foliation associated with the map T , seen in the
previous section, may be the result of a bifurcation
of another family of maps, given by

Tε :

{

x′ = cx(y − a) + εy

y′ = x2(b − y)

in which T0 corresponds to T .
The Jacobian determinant is given by

det(J(Tε)) = −x(cx(y − a) + 2(b − y)(cx + ε))

It vanishes on the set LC−1 made up of an hyper-
bola and the vertical axis. The hyperbola

LC−1,a,b : y =
xc(2b − a) + 2bε

2ε + cx

is made up of two symmetric branches LC−1,a and
LC−1,b [see Fig. 13(a)], with asymptotes x = −2ε/c
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Fig. 13. Critical curves of the map Tε for a = 0.75, b = 1.3, c = 2 and ε = 0.7. LC−1 in (a), LC in (b).



May 28, 2004 11:31 01025

On a Particular Foliation Associated with a Polynomial Family 1617

and y = (2b − a). The third branch is:

LC−1,c : x = 0 .

The locus LC−1 is LC−1 = LC−1,a ∪ LC−1,b ∪
LC−1,c. For the sake of simplicity, we only com-
ment the case c > 0 and b > a > 0 (the other cases
are straightforward). The rank-one image of LC−1

is LC made up of three branches, Tε(LC−1,a) =
LCa, Tε(LC−1,b) = LCb, and Tε(LC−1,b) = LCb =
(y = 0) [see Fig. 13(b)]. These branches of LC
separate the phase plane into open regions Zi, i =
1, 3 (as will be explained below), i being the number
of distinct rank-one preimages of a point Zi. Cross-
ing through a branch of LC the number of distinct
rank-one preimages changes. The preimages (x, y)
of a point (x′, y′) of the phase plane are not easily
computable, depending on the real solutions of the
cubic equation:

c(b − a)x3 + (εb − x′)x2 − cy′x − εy′ = 0

y = b −
y′

x2
(x a solution of the cubic equation)

(12)

Thus the distinct preimages of a point (x′, y′) inside
the open regions Z1 (or Z3) are either one (or three).
It is easy to verify that whenever a point (x′, y′)
crosses through a branch of LC−1 the number of its
distinct preimages changes as qualitatively shown
in Fig. 13(b) so that, following the notation used
in [Gumowski & Mira, 1980] and in [Mira et al.,
1996a, 1996b], all these curves belong to the critical
set denoted by LC.

The foliation of the phase plane associated with
the map Tε (for ε 6= 0) is qualitatively shown in
Fig. 14(a). This figure shows the disposition of the
“sheets” (one or three), each one being related to
a rank-one preimage of a point P ′ = (x′, y′), say
pi = (ri, yi). Each sheet is related to one of the real
roots of the cubic equation given in (12), denoted
as ri, i = 1, 2, 3, r1 < r2 < r3 when they are three,
while in the case of only one root it may be neg-
ative (r1 < 0) or positive (r3 > 0). The branch of
critical curve LC denoted by LCa has a cusp point
in C (in which we have r1 = r2 = r3) and the two
branches issuing from the cusp point are denoted
by NC and MC. The branch LCb has a smooth
point in the turning point V . A cusp point exists
at the intersection with the other critical branch
LCc at the point P on the x-axis (in which we have
r1 = r2 = r3 = 0). The two branches issuing from
the cusp point are denoted by PR (on the x-axis)
and PQ. While the branch PQ of LCb is associated

with the reunion of two sheets belonging to y < 0
[see Fig. 14(a)], the other part of LCb, the arc PV U ,
is associated with the reunion of two sheets belong-
ing to y > 0. Similarly a different role occurs on the
critical branch LCc: the segment PR is associated
with the reunion of two sheets belonging to y < 0,
the other part of LCc, the segment PT , is associated
with the reunion of two sheets belonging to y > 0.
The regions with a single root are the portion Z1

belonging to y < 0 (in which we have one negative
root), and the region Z1 belonging to y > 0, the one
bounded by a branch of LCc (PR) and a branch of
LCb (PV U) (in which we have one positive root).

As the parameter ε → 0 the branch CN of the
critical curve LCa approaches the branch OT of
the critical curve LCc (for ε = 0 the cusp point C
merges with the origin O), while the branch PV U
of the critical curve LCb approaches the branch PR

of the critical curve LCc (for ε = 0 the cusp point
P merges with the point V and with the origin O).
See Fig. 15(a) obtained with a low value of ε.

For ε = 0 the cubic equation in (12) reduces to

x(c(b − a)x2 − x′x − cy′) = 0 (13)

so that whichever is the point (x′, y′), one root is
x = 0, and the remaining quadratic equation in
(13) is the same as the one given in (2), but the root
associated with x = 0 is not real (having y = ∞).
So that the map T0 loses one root at finite distance
at each point of the plane, becoming a map with
either two real preimages or zero, and the foliation
of the plane (which loses one sheet) is qualitatively
shown in Fig. 14(b) and fully explains the particular
structure of the map T of type “Z0, Z2” considered
in the previous section (see Fig. 1).

For ε < 0 the foliation of the phase plane as-
sociated with the map Tε has a structure similar to
that existing for ε > 0. The only change is in the
geometrical position of the two branches of hyper-
bola LC−1,a,b and thus of their image LCa,b giving
the foliation qualitatively shown in Fig. 15(b). In
spite of the position of the critical branches with
cusp points the structure of the foliation is clearly
similar to that of Figs. 15(a) and 14(a).

The perturbed map Tε has an increased number
of preimages with respect to the map T0. This may
clearly give rise to differences of behaviors in the
basins of attraction generated by the two maps, the
preimages playing a fundamental role. It is not the
case for the structure of the attracting sets which
may not be strongly influenced. An example will be
shown in the next subsection.
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Fig. 14. Qualitative structure of the Riemann foliation of the plane for the map Tε in the case c > 0, b > a > 0. For ε > 0
in (a), for ε = 0 in (b).
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Fig. 15. Critical curves and zones Z1 − Z3 for the map Tε in the case c > 0, b > a > 0. For ε > 0 in (a), for ε < 0 in (b).
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Fig. 16. Basins of attraction of the points P1 and P2 for the map T 2
ε for a = 0.75, b = 1.3, c = 2 and ε = 0.1 in (a), ε = 0.2

in (b).
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Fig. 17. Basins of attraction of the chaotic attractors A1 and A2 for the map T 2
ε for a = 0.75, b = 1.3, c = 2.52 and ε = 0.2.

(b) Shows an enlargement of the region in (a) around the fixed point.
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Fig. 18. Chaotic attracting set of the map Tε for a = 0.75, b = 1.3, c = 2.521 and ε = 0.2. (a) The green points are those
which visit the right side of the attracting set in less than 100 iterations of Tε. (b) Shows an enlargement of the region in (a)
around the fixed point.
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3.1. Some attractors of Tε

This subsection gives some examples of the attract-
ing sets and their basins generated by the map Tε

as ε increases from 0, starting from the case already
described in Fig. 3. An example of perturbation is
shown in Fig. 16(a), where the parameter ε is very
small.

The attracting set of Tε is a cycle of period-2,
which corresponds to a couple of fixed points for the
map T 2

ε . This gives us the possibility to show the
structure of the stable set of the origin O (now a
saddle fixed point). This set W s(O) is the frontier
of the two basins (in white and green) in Fig. 16(a).
Differently from what occurred in Fig. 3 the lo-
cal stable set of O is no longer the whole x-axis,
and the symmetry is broken. Figure 16(b) shows
the same basins for a higher value of ε, the change
in the basin structure being more evident. Increas-
ing the parameter c the Neimark-bifurcation of the
two-cycle occurs (as expected) and the basins main-
tain the same qualitative structure. The two disjoint
attracting sets (for the map T 2

ε ) grow in size ap-
proaching the frontier of their basins, as shown in
Fig. 17(a). An enlargement of the attracting set on
the right is shown in Fig. 17(b), showing that the
attracting set is already a weakly chaotic ring. The
origin O is still a saddle without any homoclinic
orbit (as no intersection exists between its stable
and unstable sets).

Nevertheless the attracting sets are quite close
to their frontier, and as c is further increased
the homoclinic bifurcation of O occurs when the
attracting sets have a contact with the frontiers.
Figure 18(a) shows the attracting set after the
homoclinic bifurcation of O. Also for the map T 2

ε

the attracting set is now unique [see the enlarge-
ment in Fig. 18(b)]. The basin in Fig. 18(a) is of a
unique color (being a unique attracting set), but we
have shown the occurrence of the transverse cross-
ing through the stable and unstable sets of O by
coloring in green the points which visit the right
side of the attracting set in less than 100 iterations
of Tε.

4. Conclusions

The present work has described a family T of poly-
nomial noninvertible maps of the plane, which is
structurally unstable. Except for the case in which
the parameters a and b are equal, the plane is shared
within open regions: Z0, whose points have no real
preimage, while two real preimages exist in the re-

gion Z2. For a wide choice of the parameter space T
generates a singular foliation in the sense that the
region Z2 is separated into two zones, Z ′

2
and Z ′′

2
, in-

side which the two preimages do not have the same
qualitative behavior. Moreover the x-axis, bound-
ary between Z ′

2
and Z ′′

2
, is made up of points having

only one real preimage at finite distance, the second
one being at infinity. This situation gives rise to a
nonclassical homoclinic bifurcation. We have seen
that imbedding the map into a wider structurally
stable family, Tε, we get regions Zk (k = 1, 3 be-
ing the number of real preimages) which permits
to understand the foliation nature when the imbed-
ding parameter cancels leading to the structurally
unstable map.

It is worth emphasizing the essential role,
played by the inverse map having a vanishing
denominator, on the chaotic attractor structure,
as appearing in Figs. 5 and 6. This is due to the
fact that the attractor contains the focal point of
the inverse (here unique knot because it is a fixed
point). Figure 37 of the papers [Bischi et al., 1999,
2003] shows an equivalent situation, but with a fo-
cal point which is not fixed, so that its increasing
rank images are knot points of the attractor. The
“dual situation” occurs when a map itself has van-
ishing denominators, which leads to lobes of basins
at the focal points and their increasing rank preim-
ages [Bischi et al., 1999, 2003].
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