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Hicks’ trade cycle revisited: cycles and bifurcations
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Abstract

In the Trade Cycle, Hicks introduced the idea that endogenous fluctuations could be coupled with a growth process
via nonlinear processes. To argue for this hypothesis, Hicks used a piecewise-linear model. This paper shows the need
for a reinterpretation of Hicks’ contribution in the light of a more careful mathematical investigation. In particular,
it will be shown that only one bound is needed to have non explosive outcome if the equilibrium point is an unstable
focus. It will also be shown that when the fixed point is unstable the attracting set has a particular structure: It
is a one-dimensional closed invariant curve, made up of a finite number of linear pieces, on which the dynamics
are either periodic or quasi-periodic. The conditions under which the model produces periodic or quasi-periodic
trajectories and the related bifurcations as a function of the main economic parameters are determined.
© 2003 Published by Elsevier B.V. on behalf of IMACS.
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1. Introduction

The accelerator-multiplier class of models in economics dates back to[1] (the origin of these models
is described by[2]). Samuelson’s article, which is very short and formal, provides a linear second-order
difference equation that produces either stable or diverging trajectories, but no self-sustained business
cycles except at very particular values of the parameters, and in such cases it produces cycles of fixed
period and amplitude. Something which is at odds with the empirical evidence. In[38], Hicks makes
some important changes to the model: by adding a floor and a ceiling to a linear model, he formulates
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a piecewise-linear framework that can produce bounded oscillations. Moreover, the model shows how
a growth process can be coupled with the business cycles. Hicks’ piecewise-linear model attracted a
plethora of comments (see. e.g.[3–13]). Recent literature (e.g.[11,12,14]) has shown that “quasi-periodic
attractors” can occur in the basic Hicks model, but its mathematical properties have not been fully
investigated.

The use of piecewise-linear models is not new in the applied context, specially in economics (see
e.g.[15,16]), but also in engineering (see e.g.[17–23]). The phenomena and bifurcations occurring in
piecewise-linear maps are close related to those occurring in piecewise-smooth maps. The main fea-
ture, as it will appear also in the model studied in this paper, is that the bifurcations are of so called
“border-collision” type (following the terminology introduced in[24] (see also in[25]), or “C-bifurcation”
following an earlier definition (see for example in[26]). Applied models are often described also by
piecewise-smooth maps, and their study is widely increased in the last years (see e.g.[27–29]).

In the following, having introduced the basic ideas of Hicks’ trade cycle model, we will deal in more
detail with its mathematical properties. InSection 3we shall review the properties of the basic linear
model. InSection 4we shall consider the piecewise-linear model with only a “floor”, showing for which
parameter values bounded and economically feasible oscillations (periodic and quasi-periodic) occur and
demostrating the stucture of the attracting set and the involved bifurcations as a function of the parameters
of the business cycle. The equivalent dynamical investigation is performed inSection 5for the case of
a piecewise-linear model with only a “roof”. InSection 6we shall consider the piecewise-linear model
with two constraints, a “floor” and a “roof”, putting to evidence the stucture of the attracting set and its
bifurcations, as descibed by the bifurcation diagram.

2. The model

In the Samuelson–Hicks business cycle model, investment is determined by the growth in income,
through the principle of acceleration. More precisely, investment is taken to be proportional to the rate
of change in income, orIt = k(Yt−1 − Yt−2), whereIt denotes investment in time periodt, Yt−1 and
Yt−2 income one and two periods back, respectively, and the parameterk (>0) is the accelerator (this
parameter is the technical coefficient for capital, it is the volume of capital needed to produce one unit
of goods during one time period). In past empirical measurement a realistic estimate was considered
to be about 2–4. Obviously, this numerical value depends on the choice of the length of the basic time
period for the model. It is important in this context to realize that economics distinguishes between
concepts of stocks and flows. Stocks are variables which are meaningful by reference to a point of time,
such as a stock of capital or the labour force. Flows, on the other hand, are concepts referring to time
periods, defined by a beginning and a finishing point on the time scale. To the flows belong investments,
consumption, and income/production. A produced quantity, given inputs in form of capital and labour
stocks, obviously depends on the length of the time period. During half the period chosen, output is half,
during double the period it double that for a period. In some economic models the period length may be
a bit ambiguous. This is, however, not the case in macro economic models, which arose in connection
with Keynesian theory and national accounting in the 1930’s. The reference period is always one year,
and whenever accounts or forecasts are made for shorter periods, they are always evaluated to a yearly
basis. Hence, the time period in macro economic models such as the present is always the calendar
year.
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As for the consumption function, a Robertsonian formulation is assumed,Ct = bYt−1 where 0< b <

1 is the marginal propensity to consume (realistic values belongs to the range (0.6, 1)). Any additional
constant term is absorbed in the autonomous expenditure term to be introduced below. This is composed
of all the expenditures not dependent on the business cycle, i.e. government expenditures, non-induced
investments, due to for instance innovations, and any non-income dependent consumption expenditures.
It is common knowledge that consumers need to consume something to survive even if they earn nothing.
When population/labour force grows, then the autonomous expenditures for this minimum subsistence
consumption must grow along with the labour force.

The Keynesian income formation identityYt = Ct + It, allows us to obtain a simple recurrence relation
in the income variable:Yt = (b+k)Yt−1−kYt−2. This has a closed form solution and models the business
cycles mechanism. The solution is the product of an exponential growth, or decline factor, and, in case of
complex roots to the characteristic equation, a harmonically varying cyclic function. The cyclical element
provides a possibility for explaining recurrent cycles, but the exponential factor poses a problem. As it is
an unlikely coincidence for the exponential factor to become a constant, the cycles are either exponentially
increasing or decreasing in amplitude. If they are decreasing, there is no dynamic theory at all, because
the theory only explains how the system goes to eternal equilibrium.[30] suggests that external shocks
have to be introduced to keep an oscillating system going, even when it is damped. The dynamical
system itself would then provide for a periodicity. Hicks chooses another possibility: to introduce bounds
for the linear accelerator. At the same time[31] tries to model a growth process within the Keynesian
tradition. As it is well known, the Harrodian equilibrium growth path is unstable, and so is the business
cycles mechanism in the empirically relevant parameters space of the multiplier-accelerator mechanism.
Hicks therefore develops a Harrodian multiplier-accelerator framework with ceilings and floors, thereby
constraining the instability problems and producing cyclical behaviour (technically he moves from a
linear to a piecewise-linear system). According to Hicks, when income decreases with fixed proportions
technology, more capital could be dispensed with than normallywhat disappears during one period through
natural wear. As the capitalists are assumed not actively to destroy capital, just abstain from reinvesting,
there is a lower bound to disinvestments, the floor (i.e. net investment cannot be negative). Likewise,
if income is rising, other factors of production, labour force or raw materials, become limiting, then
there would be no point in pushing investment any further, so there is also a ceiling to investments (full
employment, e.g.). Accordingly, a lower and an upper bound to investment limit the action of the linear
acceleration principle. This in fact makes the investment function piecewise-linear, i.e. nonlinear. The
result could be self-sustained oscillations of limited amplitude. In his book, Hicks introduces autonomous
expenditures which are not constant, but may be growing exponentially, i.e.At = A0(1+ g)t, whereg is
a given growth rate andA0 a positive constant. Summarizing we have:

Yt = Ct + It

Ct = bYt−1

It = I ′
t + I ′′

t = k(Yt−1 − Yt−2) + A0(1 + g)t

so that

Yt = bYt−1 + k(Yt−1 − Yt−2) + A0(1 + g)t (1)

In order to obtain a sensible model, also the floor and ceiling must be regarded as shifting in time, and
likewise labour force and other resources are supposed to increase. Hicks does not present a complete
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formal model for the case with growth in autonomous expenditures, as well as in the bounds in terms of
floor and ceiling. The point of departure for the present study is the by now largely accepted interpretation
suggested by[9] (cf. also[7,11,12]). In this version, the lower limit (the floor) applies to the induced
investment while the upper limit is applied to total expenditures (and related to full employment). Hence,
we consider the ceiling: ifbYt−1+k(Yt−1−Yt−2)+A0(1+g)t > B0(1+g)t thenYt = B0(1+g)t, and the
floor: if k(Yt−1 −Yt−2) < −at = −a(1+g)t thenI ′

t = −a(1+g)t, that is,Yt = bYt−1 + (A0 −a)(1+g)t,
whereB0 anda are positive constants.

Let us introduce the following definitions for the three parts of the model, namely, for the “ceiling”,
main model and “floor”:

U
def=B0(1 + g)t− − −the upper bound,or “ceiling”;G(Yt−1, Yt−2)

def=bYt−1 + k(Yt−1 − Yt−2)

+A0(1 + g)t− − −the main model;L(Yt−1)
def=bYt−1

+ (A0 − a)(1 + g)t− − −,the lowerbound,or “floor” . (2)

Thus, in the last section we shall consider a family ofnon-autonomous second-order piecewise-linear
continuous difference equations given by:

Yt =


U, if G(Yt−1, Yt−2) > U;
G(Yt−1, Yt−2), if L(Yt−1) ≤ G(Yt−1, Yt−2) ≤ U;
L(Yt−1), if G(Yt−1, Yt−2) < L(Yt−1);

(3)

which depends on six real parametersA0, B0, a, b, k, g, such thatB0 > A0 > a > 0, k > 0,0 < b < 1,
and 0< g < 1. We are only interested in positive values of the independent variable, i.e.Yt > 0. To
prepare for this analysis, we shall investigate the dynamic behavior of the main model when only the
floor or only the ceiling is present.

3. Linear model

Let us first consider the main linear model:

Yt = G(Yt−1, Yt−2), (4)

where the functionG(Yt−1, Yt−2) is given in(2). The model(4) is anon-autonomous second-order linear
difference equation. By using the change of variable:

Zt = Yt

(1 + g)t
, (5)

we get anautonomous second-order linear difference equation, i.e.

Zt = b + k

1 + g
Zt−1 − k

(1 + g)2
Zt−2 + A0, (6)

whoseequilibrium point is given by:

Z∗ = A0(1 + g)2

(1 + g)2 − b(1 + g) − kg
. (7)
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This means that the originalEq. (4)has the growing solution:

Yt = Z∗(1 + g)t.

Clearly, the linear second-order difference equation can also be written as a two-dimensional linear system
of equations, by defining:

xt = Zt−2; yt = Zt−1. (8)

Using the symbol “′” to denote the unit-time advancement operator, we get a two-dimensional mapF2 of
the form:

F2 :


x′ = y;

y′ = −kx

(1 + g)2 + ((b + k)y/(1 + g)) + A0
; (9)

whose fixed point isE2 = (Z∗, Z∗) (7). The stability of the equilibrium solution can be studied considering
the solution of the characteristic equation associated with(6), or with the eigenvalues of the Jacobian
matrixJ2 of (9). It is easy to check that the eigenvaluesλ1,2 of the characteristic equation:

λ2 −
(

b + k

1 + g

)
λ + k

(1 + g)2
= 0 (10)

are both less then 1 in modulus if

detJ2 = λ1λ2 = k

(1 + g)2
< 1.

Thus, we can state the following:

Proposition 1. Let

0 < k < k∗def=(1 + g)2, (10)

then the fixed point E2 = (Z∗, Z∗) of the map F2 is stable.

It is also easy to see that the eigenvaluesλ1,2 are complex conjugate as long as:

b < 2
√

k − k
def=ϕ(k). (11)

Thus, we can draw the two curvesk = k∗ (10)andb = ϕ(k) (11) in the(b, k)-parameter plane with fixed
values of the other parameters of the model, noticing that if(11)holds then the fixed pointE2 is a focus,
either stable (fork < k∗) or unstable (fork > k∗), otherwise it is a node. Clearly, fork = k∗ andb < ϕ(k)

the fixed pointE2 is a center (seeFig. 1).
As it is well known (see e.g.[9,32]), for the linear model(6) we can write the analytic solutionZt

making use of the eigenvaluesλ1,2 of the Jacobian matrixJ2, and in terms of the income variable we have
Yt = Zt(1 + g)t.
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Fig. 1. Stable and unstable regions for the fixed pointE2 in the(b, k)-parameter plane.

4. Piecewise-linear model with a lowed bound

The dynamic behavior of a linear system is well known, so thatZt becomes explosive (divergent to
infinity) when Z∗ is unstable. For this reason we introduce a constraint to the dynamics, as already
explained inSection 2. Let us start with a lower bound, i.e. a “floor”. As we shall see, this constraint is
enough to give bounded dynamics when the fixed point becomes unstable. So, let us assume that:

Yt = G(Yt−1, Yt−2), if G(Yt−1, Yt−2) > L(Yt−1);
otherwise we have:

Yt = L(Yt−1),

where the functionsG(Yt−1, Yt−2) andL(Yt−1) are given in(2).
By using, as before, the variable transformations(5) and (8), we get a two-dimensional piecewise-linear

mapTL given by:

TL :

{
(x′, y′) = F2(x, y), if (x, y) ∈ R2;
(x′, y′) = F3(x, y), if (x, y) ∈ R3;

whereF2 is given in(9), and

F3 :


x′ = y;

y′ = by

(1 + g) + A0 − a
; (12)

R2 = {(x, y) : x > 0, y > 0, y ≥ r2(x)}; R3 = {(x, y) : x > 0,0 < y < r2(x)};
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r2(x) = x

1 + g
− a(1 + g)

k
. (13)

We note that for the economic interpretation of the model we require the state vector(x, y) to belong to
the positive quadrant of the phase plane, i.e.x > 0, y > 0. The following conditions on the parameters
are also to be fulfilled:B0 > A0 > a.

The straight liney = r2(x) (13) separates the two regionsR2 andR3 where the mapTL is defined by
two different linear maps,F2 andF3, respectively. The straight liney = r2(x) intersects the vertical axis
in a point(0,−a(1 + g)/k) and has slopemL with 0 < mL < 1, so that the fixed pointE3 of the linear
mapF3 (x = y = (A0 − a)/(1− b/(1+ g)) which belongs to the diagonal inside the regionR2) is not a
fixed point ofTL. We conclude that the only fixed point ofTL is the fixed pointE2 of the mapF2, which
is stable for 0< k < k∗ (10).

Clearly, at the bifurcation valuek = k∗ (10) the fixed point becomes a center. Fork > k∗ andb < ϕ(k)

(11), the fixed point is an unstable focus, but now, due to the “floor”, the dynamics are bounded. Initial
conditions in a neighborhood ofE2 spiral away (iterated byF2), and enter the regionR3. To the points in
the regionR3 the linear mapF3 applies. The eigenvalues of the Jacobian matrix ofF3 are given by:

λ3
1 = 0; λ3

2 = b

1 + g
, 0 < λ3

2 < 1.

The zero eigenvalue entails thatF3 maps certain straight lines into points. The image byF3 of the whole
regionR3 is a half line which is the image underTL of the constrainty = r2(x), x > 0. Let us redefine
such particular lines as follows:

LCL
−1 = {(x, y) ∈ R

2 : y = r2(x)};

LCL
0 = TL(LCL

−1) =
{
(x, y) ∈ R

2 : y = bx

(1 + g) − a + A0

}
; (14)

calling the straight line LCL0 critical line of TL (seeFig. 2a) . As we shall see, the line LCL0 , as well as
its images LCLi = T i

L(LCL
0 ), i > 0, (also called critical lines) play an important role in the description of

the dynamics ofTL.
The linear mapF3 maps the critical line LCL0 into itself. Thus, once a point has entered the regionR1,

it will be mapped onto LCL0 and then in a few applications ofF3 it will enter the regionR2 again, where
the mapF2 comes to apply.

Moreover, it is easy to check that any trajectory ofTL with initial point in the positive quadrant of the
phase plane belongs to the positive quadrant (i.e. it never enters the negative quadrants). In fact, as it
was already mentioned,TL(R3) = {LCL

0 , x > 0}. The trajectory of any point(x0, y0) ∈ R2 spirals away
aroundE2 in the clockwise direction and, after a finite number of iterations, enters the regionR3. So, it
is enough to show that the border lines ofR2, i.e. the segmentS1 and the half line{x = 0, y > 0} (see
Fig. 2a) are mapped into the positive quadrant:F2(S1) = S2 ⊂ {x = 0, y > 0}, F2({x = 0, y > 0}) =
{y = ((b + k)x/(1 + g)) + A0, x > 0} ⊂ R2.

WhenE2 is an unstable node then the trajectories are all divergent. When the fixed pointE2 is an
unstable focus, using the properties of the critical lines (see[33], and references therein) we can define
an invariant closed bounded areaA in the positive quadrant of the phase plane, whose boundary∂A is
made up by a finite numberm of segments of critical lines LCLi , i = 0, . . . , m. Invariant means that
TL(A) = A. The setA is called anabsorbing area which means that any point of the positive quadrant
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Fig. 2. (x, y)-phase plane of the mapTL for a = 2, A0 = 3, b = 0.2, g = 0.01 andk = 1.144: (a) an absorbing areaA (grey
region) made up by seven segments of LCL

i , i = 0,1, . . . ,6; (b) the boundary∂A of A is ∂A = ∪7
i=1T

i
L(P1Q1), whereP1Q1 is

the segment of LCL−1 belonging toA; (c) an attracting cycle of high period belonging to∂A.

is mapped intoA in a finite number of iterations. Moreover, as we shall see in our particular model, the
attracting set of the mapTL belongs to the boundary∂A of A.

An example of the determination of such an absorbing area is given inFig. 2a. Here six images of a
segment of LCL0 are shown so that using seven segments (of LCL

i , i = 0,1, . . . ,6) we obtain an absorbing
areaA. We remark that the areaA intersects the line LCL−1 (the “floor” y = r2(x)) in a segment, say,
P1Q1, and we have that the boundary is∂A = ∪7

i=1T
i
L(P1Q1) (seeFig. 2b).

The attracting set ofTL must belong to the boundary ofA. This is due to the fact that the mapTL is
linear and invertible in the regionR2, where the fixed point is a repelling focus and thus no attracting
sets can belong to the interior ofA. The only points in which the mapTL is noninvertible belong to the
critical curve LCL

0 and its images. The trajectory of any initial condition in the positive quadrant rapidly
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Fig. 3. Temporal variation ofZt (a) and ofYt (b) for a trajectory having the initial condition close to the unstable fixed point.
Herea = 2,A0 = 3, b = 0.2, g = 0.01 andk = 1,144.

converges to a unique attracting set of the mapTL, which belongs to∂A. In Fig. 2cwe show the trajectory,
which is a periodic orbit of a high period. It is clear that such a bounded solution forZt (see the trajectory
in time inFig. 3a) becomes a growth path in the true variableYt (seeFig. 3b), and similar behavior occurs
for other values of the parameters.

Let us now describe different kinds of attracting sets (belonging to∂A) and their bifurcations which
can occur in the system depending on the parameters. Note that the most important parameters arek
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andb. Variations of other parameters in their specified ranges have only a scaling effect. So, we can fix
A0 = 3, a = 2 andg = 0.01, and study a two-dimensional bifurcation diagram of the mapTL in the
(b, k)-parameter plane.

We will show that fork > k∗ an attracting set of the mapTL can be either an attracting cycle of
some period, or a quasi-periodic trajectory belonging to∂A. The dynamics ofTL are restricted to a
one-dimensional invariant set (∂A, which is homeomorphic to a circle), so that we can use arotation
number for the mapTL similar to the rotation number for the circle maps[32]: It can be rational, sayp/q,
or irrational, being the average rotation of any initial point on∂A around the repelling fixed pointE2.

Let us denote an attracting cycle with rotation numberp/q by γp/q, whereq denotes the period of the
cycle andp denotes how many turns must be done around the fixed point in order to have the whole
periodq.

In Fig. 4 we show in the(b, k)-parameter plane the so-calledtongues of periodicity in which the
piecewise-linear mapTL has attracting cyclesγp/q, 6 ≤ q ≤ 45: each degree of grey corresponds to a
different period. The curveb = ϕ(k) (11)is also shown, such that forb > ϕ(k) the fixed pointE2 becomes
an unstable node and all the trajectories (except for the fixed point) go to infinity. The white region below
the curveb = ϕ(k) corresponds either to attracting cycles of period large then 45, or to quasi-periodic
trajectories.

The number of different tongues we may get is infinite (countable). For example, the tongues of period
q, q = 6,7, . . . ,12, are clearly visible inFig. 4. The tongues of periodicity follow the Farey sequence

Fig. 4. Two-dimensional bifurcation diagram of the mapTL in the (b, k)-parameter plane fora = 2, A0 = 3 andg = 0.01.
Tongues of different degrees of grey correspond to the attracting cycles of different periods indicated by the numbers. For some
tongues the corresponding rotation number of the mapTL is written. The curveψU indicates a contact of the attracting set with
the upper boundy = B0; k = k∗ is the line of stability loss of the fixed point;b = ϕ(k) is the curve of divergence to infinity.
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rule (see[20,34,35]), according to which between ap1/q1-tongue and ap2/q2-tongue a (p1 + p2)/

(q1 + q2)-tongue also exists. Some of such tongues are indicated inFig. 4, with the corresponding
rotation numbers.

Let us now describe how the tongues of periodicity (and, therefore, corresponding attracting cycles)
are born. That is, we have to consider what occurs in the phase plane at the bifurcation valuek = k∗ (10).
As it was stated above, the fixed pointE2 is a center, thus we have, locally, aroundE2, trajectories which
belong to closed invariant curves (ellipses aroundE2). Let us first assume that the rotation number of
F2 is rational, sayp/q. Then, following the reasoning used in[16], we can prove that in the phase plane
there exists a closed invariant polygonA whose boundary∂A is made up byq pieces of critical curves
LCL

i , i = 0, . . . , q− 1, such that all the orbits inside the areaA are periodic of periodq, while any initial
condition outsideA converges to a cycle of periodq belonging to the boundary∂A (seeFig. 5awhere
p/q = 1/8).

When the rotation number ofF2 is irrational, then a closed invariant areaA exists, whose external
boundary is an ellipseE tangent to LCL0 (and thus, tangent toT i

L(LCL
0 ) for any i ≥ 1), such that any

trajectory insideA is quasi-periodic covering densely an ellipse, while any initial condition outsideA
converges to a quasi-periodic trajectory belonging toE (seeFig. 5b).

In particular, for the linear mapF2 it is easy to define the parameter valueb = bp/q at which the
rotation number ofF2 is rational and associated with the numberp/q. As described in[32], to obtain the
bifurcation valuebp/q it is enough to consider the real part of the eigenvalues of the Jacobian matrix of
F2, which is Reλ1,2 = (b + k)/(2(1+ g)). Equating this value to cos(2πp/q) at the bifurcation, that is:

bp/q + k∗

2(1 + g)
= cos

2πp

q
,

and substituting the expression ofk∗ from (10), we get the bifurcation value:

bp/q = 2(1 + g)cos
2πp

q
− (1 + g)2. (15)

For example, forg = 0.01 we havek∗ = 1.0201,b1/7 ≈ 0.23935,b1/8 ≈ 0.40826, and so on. Thus, at
k = k∗ andb = bp/q ap/q-tongue is born. To summarize what occurs at the bifurcation valuek = k∗ we
can state the two following propositions:

Proposition 2. If k = k∗ (10) and b = bp/q (15) then in the phase plane there exists a closed invariant
polygonA twhose boundary ∂A is made up by q segments of the critical lines LCL

i , i = 0, . . . , q−1,such
that any point (x, y) ∈ A is periodic with rotation number p/q, while any point (x, y) /∈ A is mapped by
TL in finite number of iterations into a point of a p/q-cycle belonging to ∂A.

Proposition 3. If k = k∗ (10) and b �≡ bp/q (15) then in the phase plane there exists a closed invariant
area A bounded by an ellipse E tangent to LCL

0 such that any point (x, y) ∈ A is quasi-periodic on an
ellipse, while any point (x, y) /∈ A is mapped by TL in a finite number of iterations into a quasi-periodic
trajectory on E.

As k increases from the bifurcation valuek∗ (keeping fixed all the other parameters), several tongues of
different periodicity are crossed in the parameter plane. For example, let us fixb = 0.2 and increasek. At
k = k̃1 � 1.145 a tongue of period 7 is crossed (seeFig. 4). At the bifurcation valuek = k̃1 an attracting
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Fig. 5. (a) Closed invariant polygonA of the mapTL ata = 2,A0 = 3, g = 0.01,k = k∗ = 1.0201 andb = 0.4082557≈ b1/8;
the boundary∂A is made up by eight pieces of critical curves LCL

i , i = 0, . . . ,7; any point(x, y) ∈ A is periodic of period 8,
while any(x, y) /∈ A converges to a eight-cycle belonging to∂A. (b) Closed invariant areaA of the mapTL ata = 2, A0 = 3,
g = 0.01, k = k∗ = 1.0201 andb = 0.2. The external boundary ofA is an ellipseE tangent to LCL0 , such that any point
(x, y) ∈ A is quasi-periodic covering densely an ellipse, while any(x, y) /∈ A converges to a quasi-periodic trajectory belonging
to E.
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Fig. 6. (a) The first border-collision (and saddle-node) bifurcation of the attracting cycleγ1/7 = {n1, . . . , n7} and the saddle
cycleγ ′

1/7 = {s1, . . . , s7}: ni = si, i = 1, . . . ,7, ata = 2,A0 = 3,g = 0.01,k = 1.145 andb = 0.2. (b) Increasingk (k = 1.3),
the periodic points ofγ1/7 andγ ′

1/7 move on∂A; the unstable set ofγ ′
1/7 forms the boundary∂A of the absorbing areaA. (c) A

second border-collision (and saddle-node) bifurcation atk = 1.4663.

cycleγ1/7 = {n1, . . . , n7} and a saddle cycleγ ′
1/7 = {s1, . . . , s7} appear by a so-calledborder-collision

bifurcation (see[24]) which is also asaddle-node bifurcation: At the bifurcation (lower boundary of the
tongue) we haveni = si, i = 1, . . . ,7, and, in particular, one periodic point isn1 = s1 = LCL

−1 ∩ LCL
0

(seeFig. 6a). As k increases, the periodic points move on∂A, and at the end of the 1/7-tongue in the
parameter plane, fork = k̃2 � 1.4663, we have one more border-collision (and saddle-node) bifurcation
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(seeFig. 6c). For any value ofk, k̃1 < k < k̃2, the unique attractor is the attracting cycleγ1/7, and the
boundary∂A is a saddle-connection, that is, the unstable set of the saddle cycleγ ′

1/7 also belonging to
∂A (Fig. 6b).

To summarize the results of this section we state the following:

Proposition 4. For k > k∗ and 0 < b < ϕ(k), in the phase plane there exists an invariant absorbing
area A whose boundary ∂A is made up by m segments of critical lines LCL

i , i = 0, . . . , m − 1, where m

depends on the parameters. The attractor of the map TL is either a cycle γp/q ∈ ∂A of period q (if the
rotation number of TL on ∂A is rational, p/q), or the invariant set ∂A with quasi-periodic trajectories
on it (if the rotation number of TLon ∂A is irrational).

We remark that ask increases, the width of the invariant areaA increases rapidly, and probably it
becomes too wide for an economic interpretation of the statesZt andYt. A criterion to detect when
this occurs is the following. LetP1 be the point of intersection of LCL−1 and LCL

0 , i.e. LCL
−1 ∩ LCL

0 =
P1. We need to check if after a finite numberi of iterations we have a pointPi = T i

L(P1) which is
above an upper boundy = B0, in which case we say that the model becomes unrealistic. InFig. 4
the black lineψU indicates such a limit. That is, for(b, k) below the curveψU the attracting set
remains below the liney = B0, which means thatZt never reaches the valueB0, while for (b, k)

above the curveψU the attractor has also valuesZt ≥ B0. Thus, in order to get values which are also
bounded from above, not only from below, it is necessary to introduce a “ceiling”, as we shall see in the
Section 6.

We end this section noticing that the bifurcation diagram inFig. 4shows a particular structure of the bi-
furcation tongues, which we may call “sausages-structure”. This occurrence is typical in piecewise-linear
maps, as shown in the two-dimensional parameter plane of a one-dimensional map in Hao[36]. Inside
each portion of the sausages-structure the period is the same, but the sequence of linear functions giving
the cycle changes. The shrinking points of such a structure correspond to a change of type of the periodic
orbit (i.e. cycles of different type but of the same period merge). A similar structure is described in[16]
for a piecewise-linear two-dimensional map, showing how the critical lines are involved in the shrinking
points. In piecewise-smooth systems a similar structure is described in[28].

5. Piecewise-linear model with an upper bound

In this section we get bounded dynamics for our linear model(4) when the fixed pointE2 is a repelling
focus, by adding an upper bound instead of a lower bound, to the values of the state variable, that is a
“ceiling” instead of a “floor”.

Let us define:

Yt = G(Yt−1, Yt−2), if G(Yt−1, Yt−2) < U,

otherwise, we have:

Yt = U,

whereG(Yt−1, Yt−2) andU are defined in(2).
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With such a definition our model becomes a piecewise-linear continuous system which, by using the
variable transformations(5) and (8), is given by:

TU :

{
(x′, y′) = F1(x, y), if (x, y) ∈ R1;
(x′, y′) = F2(x, y), if (x, y) ∈ R2;

whereF2 is given in(9) and

F1 :

{
x′ = y;
y′ = B0;

(16)

R1 = {(x, y) : x > 0, y > r1(x)}; R2 = {(x, y) : x > 0, y ≤ r1(x)};
r1(x) = k

(1 + g)(b + k)
x + (B0 − A0)(1 + g)

b + k
. (17)

Let us denote by LCU−1 the straight liney = r1(x) separating the two regionsR1 andR2 in which the
piecewise-linear mapTU has different definitions. Its image is the critical line:

LCU
0 = {(x, y) ∈ R

2 : y = B0}. (18)

Note that the model is meaningful as long as the fixed pointE2 = (Z∗, Z∗) (7) of the mapF2 belongs to
the regionR2. This requires that the following inequality must be fulfilled:

Z∗ ≤ B0, (19)

from which we get a straight line in the(b, k)-parameter plane

k = χ(b)
def= (B0 − A0)(1 + g)2 − B0b(1 + g)

B0g
, (20)

such that fork ≤ χ(b) we haveE2 ∈ R2 and the model is meaningful. Otherwise, ifZ∗ > B0, the only
fixed point of the mapTU is the fixed pointE1 = (B0, B0) of the mapF1 which is globally attracting,
but the model becomes economically uninteresting. InFig. 7 the linek = χ(b) (10) is shown together
with the bifurcation linek = k∗ and the tongues of periodicity in different colors. We can see that for
k close to the bifurcation valuek∗ infinitely many tongues exist. Note that for some parameter region a
trajectory ofTU can enter the negative quadrants which is unrealistic from an economic point of view.
Such a region is also indicated inFig. 7. Its boundary corresponds to a contact of the attracting set of the
mapTU (i.e. of∂A) with the linesy = 0 orx = 0. Thus, we have defined a region in the(b, k)-parameter
plane where the model with only upper bound is meaningful.

The qualitative behavior of the trajectories in the phase plane is similar to the one already described in
the previous section. One should only substitute the critical curves LCL

i with LCU
i , i ≥ −1. That is, after

the bifurcation of the fixed pointE2, for k > k∗, a closed invariant absorbing areaA is defined, bounded
by a finite numberm of critical segments of LCUi for i = 0, . . . , m− 1. The attractor ofTU belongs to the
boundary∂A, and is either a periodic orbit (if the parameter values are inside a tongue of periodicity, see
Fig. 7), or a quasi-periodic orbit, dense in∂A, and at the bifurcation valuek = k∗ the same properties, as
described in the previous section, hold (seePropositions 2–4substituting LCUi to LCL

i ).
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Fig. 7. Two-dimensional bifurcation diagram for the mapTU in the(b, k)-parameter plane atA0 = 3, B0 = 10 andg = 0.01.
For some tongues the corresponding rotation number of the mapTU is indicated. The dark grey region is unfeasible because
some values ofYt are negative. The curveψL indicates a contact of attracting set with the lower boundy = r1(x); k = k∗ is the
line of stability loss of the fixed point;k = χ(b) indicates a limit for the economic model to be meaningful.

It is worth to note that the Jacobian matrix of the mapF1 has both eigenvalues equal to 0, which means
that the regionR1 is mapped in one iteration into a straight line (the critical line LCU

0 ), and any point
belonging to LCU0 ∩ R1 is mapped in one iteration into the point(B0, B0) (which is not a fixed point of
TU as long as(B0, B0) ∈ R2). This property implies that any trajectory can have at most two consecutive
points in the regionR1. Whenever two consecutive points, say(xn, yn) and(xn+1, yn+1) = (xn+1, B0),

belong toR1, then(xn+2, yn+2) = (B0, B0) and the trajectory converges to the trajectory of the point
(B0, B0) (either periodic, or quasi-periodic on the boundary of the invariant absorbing areaA). In Fig. 8a
we show a quasi-periodic trajectory belonging to∂A (made up by 13 segments of the critical curves LCU

i ,

i = 0, . . . ,12), and inFig. 8ban attracting cycle of period 27 belonging to∂A, which is the trajectory
of (B0, B0).

As it occurs for the piecewise-linear mapTL, also for the piecewise-linear mapTU ask increases,
the invariant areaA growth rapidly, and crosses the positive quadrant, becoming unmeaningful from an
economic point of view (seeFig. 7). This occurs when the parameters reach the dark-green region in
Fig. 7. However, for our applications, also a lower value ofZt may be not so good. In order to understand
when a low-limit, i.e. a “floor” as we have seen in the previous section, is met and has effects in the
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Fig. 8. (a) A quasi-periodic trajectory of the mapTU belonging to∂A (made up by 13 segments of the critical curves LCU
i ,

i = 0, . . . ,12), atA0 = 6.5, B0 = 10, a = 2, b = 0.2, k = 1.03,g = 0.01. (b) An attracting cycle of period 27 which is the
trajectory of(B0, B0) atk = 1.1.
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attracting sets, inFig. 7we have also shown the curveψL. This curve indicates a contact of the attracting
set (i.e. of∂A) with the straight liney = r2(x) (13).

Thus, in order to have an invariant area which is always positive and bounded (below and above), we
have to introduce both constraints, i.e. a “floor” and a “ceiling”, as we shall do in the next section.

6. Piecewise-linear model with lower and upper bounds

In this section we consider a piecewise-linear map with two constraints, in which we define:

Yt = G(Yt−1, Yt−2), if L(Yt−1) ≤ G(Yt−1, Yt−2) ≤ U;
otherwise, the lower and upper bounds apply, i.e.

Yt = U, if G(Yt−1, Yt−2) > U;
Yt = L(Yt−1), if G(Yt−1, Yt−2) < L(Yt−1);

whereG(Yt−1, Yt−2), L(Yt−1) andU are defined in(2).
That is, by using the variable transformations(5) and (8), we get a two-dimensional piecewise-linear

continuous mapF in the form:

F : (x′, y′) = (y′, f(x, y)),

where

f(x, y) =



B0, if y > r1(x);
−xk

(1 + g)2 + (y(b + k)/(1 + g)) + A0
, if r2(x) ≤ y ≤ r1(x);

yb

(1 + g) − a + A0
, if y < r1(x);

the constraintsr1(x) andr2(x) are given in(17) and (13), respectively.
One can easily check that for the parameter values considered, the slopes of both linesr1(x) andr2(x)

are positive and less then 1. Moreover, the slope ofr1(x) exceeds the slope ofr2(x). The shift constant
of r1(x) is positive while the shift constant ofr2(x) is negative, so these lines intersect in the positive
quadrant of the plane, defining a region which may be considered as the feasible region for the economic
model, that is:

P = {(x, y) : 0 < x < xM,0 < y < yM},
where(xM, yM) is an intersection point ofr1(x) andr2(x).

The mapF is given by three linear mapsFi, defined, respectively, in the regionsRi, i = 1,2,3:

F :


(x′, y′) = F1(x, y), if (x, y) ∈ R1;
(x′, y′) = F2(x, y), if (x, y) ∈ R2;
(x′, y′) = F3(x, y), if (x, y) ∈ R3;

(21)
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where the mapsF1 F2 andF3 are given in(16), (9) and (12), respectively, and

R1 = {(x, y) : x > 0, r1(x) < y < yM};
R2 = {(x, y) : x > 0, r2(x) ≤ y ≤ r1(x), y > 0};
R3 = {(x, y) : 0 < x < xM, y < r2(x)}.

As in the previous section, we have to introduce a parameter constraint

k ≤ χ(b),

whereχ(b) is given in(10), such that fork ≤ χ(b) we haveE2 ∈ R2. Otherwise all the trajectories
enteringR1 are converging toE1 = (B0, B0), fixed point ofF1, in at most two iterations, and thus are
not economically interesting.

Fig. 9shows a two-dimensional bifurcation diagram for the mapF in the(b, k)-parameter plane, where
different colors indicate tongues of periodicity corresponding to attracting cycles of different periods.
It is also shown the straight linek = k∗, given in(10), corresponding to the stability loss of the fixed
pointE2, and the straight linek = χ(b), given in(10), which indicates the parameter restriction for the
economic application of the model, as stated above.

As in the previous sections, we denote the two straight linesy = r1(x) andy = r2(x) as LCU
−1 (an upper

bound) and LCL−1 (a lower bound), respectively. Crossing these lines the mapF changes its definition.
The images of LCU−1 and LCL

−1, that is the straight lines LCU0 = F(LCU
−1) and LCL

0 = F(LCL
−1), are called

critical lines (see(14) and (18)).

Fig. 9. Two-dimensional bifurcation diagram for the mapF at A0 = 3, a = 2, B0 = 10 andg = 0.01. Tongues of different
colors correspond to the attracting cycles of different periods indicated by the numbers. The curveψL (ψU) indicates a contact of
attracting set with the lower (upper) boundy = r1(x) (y = r2(x)); k = k∗ is the line of stability loss of the fixed point;k = χ(b)

indicates a limit for the economic model to be meaningful.



524 M. Gallegati et al. / Mathematics and Computers in Simulation 63 (2003) 505–527

As we have already seen, the images of these critical lines play an important role in the description
of the dynamics of the mapF . In fact, in one iteration the whole phase plane is mapped byF into a
region bounded by LCU0 and LCL

0 . Any point of(x, y) ∈ R1 (respectively,(x, y) ∈ R3) is mapped in LCU0
(respectively, in LCL0 ), while the region between LCU−1 and LCL

−1 (up to the intersection point(xM, yM))

is mapped into the strip between the two critical lines LCU
0 and LCL

0 (up to the pointF(xM, yM)). By
taking two more images of the region bounded by the critical lines LCU,L

0 we obtain an absorbing area
bounded by six segments of the critical lines LCU,L

i , i = 0,1,2, (an example is shown inFig. 10a). Any

Fig. 10. (a) Example of the absorbing area for the mapF bounded by six segments of the critical lines LCU,L
i , i = 0,1,2, at

A0 = 3, B0 = 10, a = 2, b = 0.2, k = 1.65 andg = 0.01. The invariant area is bounded by 10 pieces of critical segments, and
it is shown in (b), together with the attracting set, which is a periodic orbit of period 15 belonging to∂A.
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initial condition in the positive quadrant of the phase plane is mapped into this area in a finite number
of iterations. We remark that this explains why the least period for a periodic orbit ofF is 6. By taking
further images of the critical curve segments, fork > k∗ an invariant areaA is obtained bounded by a
finite number of critical segments,∂A, which also includes the attracting set.

For any point in the(b, k)-parameter plane which is abovek = k∗ and below the curveψU (seeFig. 9),
the dynamics ofF are as those already described in Section 4: the invariant absorbing areaA is ultimately
bounded only by the segments of LCL

i , i ≥ 0 (see the examples shown inFig. 2). As k is increased so
that the parameter point is above the curveψU , then the invariant area has also a segment of the critical
line LCU

0 and, thus, both critical lines LCU,L
0 are involved in the boundary∂A. An example is shown in

Fig. 10b(a periodic orbit of period 15 is shown belonging to∂Amade up by 10 segments of cricial lines
belonging to LCU,L

i ).
Similarly, for any point in the(b, k)-parameter plane which is abovek = k∗ and below the curveψL

(seeFig. 9) the dynamics ofF are as described inSection 5: the invariant absorbing areaA is ultimately
bounded only by the segments of LCU

i , i ≥ 0 (see the examples shown inFig. 8). While crossing the
curveψL the boundary ofA has also a segment on the critical line LCL

0 .
Clearly, as in the previous sections, as long as the fixed pointE2 is stable (i.e. ifk < k∗) it is globally

attracting. At the bifurcation valuek = k∗ the fixed pointE2 becomes a center and the rotation number
of the mapF can be rational or irrational. If it is irrational, then any trajectory either belongs to a closed
invariant curve (an ellipse), or it converges to an ellipse tangent to the one of the constraints, that is tangent
to LCL

−1 (if b < b̄), or to LCU
−1 (for b > b̄), whereb̄ is the intersection point onk = k∗ of the two curves

ψL andψU shown inFig. 9. When the rotation number is rational then the invariant area is a polygon,
with periodic orbits in it, as already described inSection 3.

To summarize the results obtained for the mapF we can state following propositions:

Proposition 5. For k = k∗, if b < b̄, then Propositions 2 and 3hold for the map F given in (21), while
if b > b̄ then these propositions hold substituting LCU

i to LCL
i , i ≥ 0.

Proposition 6. For k > k∗, if (b, k) is below ψU then for the map F Proposition 4holds; if (b, k) is below
ψL then for the map F Proposition 4holds substituting LCU

i to LCL
i , i ≥ 0; if (b, k) is above ψU and

above ψL then an invariant absorbing area A exists, whose boundary ∂A is made up by a finite number
of critical segments of LCU,L

i , i ≥ 0. The attractor of the map F is either a cycle γp/q ∈ ∂A of period q (if
the rotation number of F on ∂A is rational, p/q), or the invariant set ∂A with quasi-periodic trajectories
on it if the rotation number of F on ∂A is irrational).

7. Conclusions

We investigated the mathematical properties of Hicks’ piecewise-linear model. Even if in its simplest
formulation it does not produce complex dynamics, we have shown that only one bound is needed to
have non explosive outcome if the equilibrium point is an unstable focus giving a full description of
the structure of the attracting set both in the cases of only one constraint and when two constraints are
assumed. We have completely characterized the dinamics occurring at the bifurcation value of the fixed
point (which depends on the type of rotation number). We have shown that when the fixed point is unstable
the attracting set is always a one-dimensional closed invariant curve, made up of a finite number of linear
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segments, on which the dynamics are periodic or quasi-periodic. The changes which may occur are due
to sequences of border-collision bifurcations, crossing the boundaries of the bifurcation tongues in the
(b, k) parameter plane. The bifurcation tongues have a sausages-structure as long as the upper constraint
is reached by the invariant attracting set.

While the analysis here performed completely characterizes the simplest form of Hicks’ piecewise-linear
model, which is two-dimensional, the investigation of more complex systems is still an open problem.
For example, the simple introduction of two periods back instead of one leads to a three-dimensional
piecewise-linear map, as shown in[14]. In such a case the border-collision bifurcations still continue to
characterize the transitions, however more complex routes may appear, which will be the object of further
studies.

It is plain that changes of the model towards a smooth formulation are such that the standard Neimark–
Hopf bifurcation is involved. This means that attracting closed curves (or endogenous cycles) appear
around the fixed point when it becomes unstable. Moreover, depending on the nonlinear terms, routes to
complex behaviors may occur (see e.g.[16,37]).
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