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a  b  s  t  r  a  c  t

In several  situations  the  consequences  of  an  actor’s  choices  are  also  affected  by  the actions  of
other  actors.  This  is  one  of  the  aspects  which  determines  the  complexity  of  social  systems
and make  them  behave  as  a whole.  Systems  characterized  by such a trade-off  between
individual  choices  and  collective  behavior  are  ubiquitous  and  have  been  studied  extensively
in different  fields.  Schelling,  in his  seminal  papers  (1973,  1978),  provided  an  interesting
analysis  of binary  choice  games  with  externalities.  In  this  work  we  analyze  some  aspects
of actor  decisions.  Specifically  we  shall  see  what  are  the  consequences  of  assuming  that
switching  decisions  may  also  depend  on  how  close  to each  other  the payoffs  are.  By  making
explicit  some  of  these  aspects  we  are  able  to  analyze  the  dynamics  of  the population  where
the  actor  decision  process  is made  more  explicit  and  also  to characterize  several  interesting
mathematical  aspects  which  contribute  to the  complexity  of  the  resulting  dynamics.  As  we
shall see,  several  kinds  of  dynamic  behaviors  may  occur,  characterized  by  cyclic  behaviors
(attracting  cycles  of any  period  may  occur),  also  associated  with  new  kinds  of  bifurcations,
called  big-bang  bifurcation  points,  leading  to  the  so-called  period  increment  bifurcation
structure  or  to  the  period  adding  bifurcation  structure.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

One of the aspects which determines the complexity of social systems and makes them behave as a whole is that in several
situations the consequences of an actor’s choices are also affected by the actions of other actors. The trade-off between
individual choices and collective behavior is ubiquitous and has been studied extensively in different fields. For example,
Schelling (1973, 1978) provided an interesting analysis of binary choice games with externalities. Although his approach
was qualitative, its depth and the number of examples to real life situations made his contributions seminal, and showed
how this kind of games can describe several important situations which characterize social dynamics. Recently, Bischi and
Merlone (2009) gave a quantitative formalization of this kind of dynamics. The resulting mathematical formalization have
been examined by Bischi et al. (2009a,b).  Finally, Bischi and Merlone (2010a) provided a generalization of the binary choice
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model in which interactions are considered both in a single large group as in Schelling (1973) and small groups as in Galam
(2003); for a review of these model the reader may  see Bischi and Merlone (2010b).

In Schelling (1973, 1978) and the other contributions we  have cited, agents’ behavior depends on the number of people
choosing one way or the other. In fact Schelling (1973, p. 383) assumes that “Everybody’s payoffs, whichever way  he makes
his choice, depend only on the number of people who choose one way  or the other”. In other words each actor’s decision
process is assumed to be a sort of “black-box” for which input are payoff values and output are decisions.

Although it is possible to reduce decisions simply to payoff comparison, several other aspects are important to determine
how decisions are made (see for example Bazerman, 2006).

In this paper we analyze some other aspects of actor decisions. In fact in the model analyzed in Bischi et al. (2009a,b)
impulsive agents are considered. Impulsive agents are defined as agents for which the switching decision depends only on
the sign of the difference between payoffs no matter how much they differ. There, depending on the switching fractions of
agents, the dynamics are analyzed and the bifurcation diagrams are studied. By contrast, in this paper we  take into account
also the difference between payoffs; in other words, we  consider agents whose switch depends not only on the sign of
the difference payoffs, but also takes into account the relative difference between payoffs. As we  shall see, similarly to the
previous case, the dynamics will be characterized by stable cycles of any period.

The structure of the paper is the following. In Section 2 the model we consider is described and the behavior of agents
is formalized. In Section 3 the map  is analyzed for linear payoff functions and depending on the payoff structure two cases
are identified. These two cases are analyzed in Sections 4 and 5 where several kinds of dynamic behaviors of the system
are studied. In particular, we show that breaking the continuity an attracting fixed point may  lead to an attracting cycle of
any period, and the period of the cycles depends on the two  key parameters of the model. We  shall see that changing such
parameters, different border collision bifurcation curves are crossed, leading to cycles of different periods. Moreover, new
kinds of bifurcation points are evidenced in the two-dimensional parameter plane, characterizing particular regions always
associated with cycles of different periods. Following Avrutin and Schanz (2006),  Gardini et al. (submitted for publication),
and Avrutin et al. (2010b, submitted for publication), they are called big-bang bifurcation points,  and are associated with
particular bifurcation structures, following the so-called period increment structure or to the period adding structure. These
terms are used in Avrutin and Schanz (2006) as well as the recent literature. Roughly speaking, an adding structure means
that when we have two cycles of different periods p and q, then for suitable values of the parameters, also a cycle with period
(p + q) exists, and this applies iteratively, and bistability cannot occur. While an increment structure means that we may
have only an infinite sequence of cycles with increasing periods (incremented by a fixed constant), and they may  coexist in
pair. Finally, Section 6 is devoted to the conclusions and further research.

2. The model

Several contributions analyze and extend the mathematical formalization of Schelling (1973).  In particular, Bischi and
Merlone (2009) propose a model where a population of agents is assumed to be engaged in a game where they have to
choose between two strategies, say A and B respectively. In their formalization, the set of agents is normalized to the interval
[0, 1] and the real variable x ∈ [0, 1] denotes the fraction of agents choosing strategy A. The payoffs are functions of x, say
A : [0, 1] → R, B : [0, 1] → R, where A(x) and B(x) represent the payoff associated to strategies A and B respectively. Since
binary choices are considered, when fraction x is playing A, then fraction 1 − x is playing B. Therefore x = 0 means that the
whole population of agents is playing B and x = 1 means that all the agents are playing A. The basic assumption modeling the
dynamic adjustment is that x will increase whenever A(x) > B(x); on the contrary, it will decrease when the opposite inequality
holds.

This assumption, together with the constraint x ∈ [0, 1], implies that equilibria are located either in the points x = x∗ such
that A(x∗) = B(x∗), or in x = 0 (provided that A(0) < B(0)) or in x = 1 (provided that A(1) > B(1)). These results are consistent to
Schelling (1973).  Bischi and Merlone (2009) consider a process of repeated binary choices in which the agents update their
binary choice at each time period t = 0, 1, 2, . . .,  and xt represents the number of agents playing strategy A at time period t. At
time (t + 1)xt becomes common knowledge, hence each agent is able to either compute or observe payoffs B (xt) and A (xt).
Agents are homogeneous and myopic, that is, their aim is to increase their own  next period payoff.

A discrete-time model is obtained: at time t if xt agents are playing strategy A and A(xt) < B (xt) then a fraction of the xt

agents that are playing A will switch to strategy B in the following turn. Analogously, if A(xt) > B (xt) then a fraction of the
(1 − xt) agents that are playing B will switch to strategy A. In Bischi and Merlone (2009), Bischi et al. (2009a,b) agents are
assumed to be impulsive, that is, agents immediately switch their strategies even when the difference between payoffs is
extremely small. In this case the dynamics can be formalized as

M : x′ =
{

f (x) = x + ıA(x)(1 − x) if A(x) > B(x)
x if A(x) = B(x)
g(x) = (1 − ıB(x))x if A(x) < B(x)

(1)

where the parameters ıA and ıB represent how many agents may  switch to A and B respectively. When ıA = ıB, there are no
differences in the propensity to switch to either strategies. The case with ıA and ıB constant parameters varying in [0, 1) is
the one already investigated in the cited literature. Now they are assumed to be functions depending on fraction x of agents.
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It is worth noticing that depending on the functions involved in its definition, the map  M may  be continuous or discon-
tinuous, and even if f(x) and g(x), as well as B(x) and A(x), are smooth functions, the map  M in general is not differentiable
where the payoff functions intersect.

In this paper we assume that agents are concerned not only about the sign difference in payoffs but also on the relative
difference. That is, the smaller the absolute difference between payoffs the less likely are agents to switch choices. We
consider two polar behaviors. On one side agents are impulsive and switch to the higher payoff choices whatever is the
difference. On the other side, agents’ decision depends on the magnitude of payoffs difference and not just on the sign. We
consider also agents who decide to switch according to a combination of these behaviors. This can be formalized as follows.
Assume that when x ∈ ]0, 1[ agents are playing A, the payoffs are A(x) and B(x) with B(x) < A(x). Then let ıA(x) be the fraction
of the 1 − x agents playing B who in the next turn will switch to A; we assume that

ıA(x) = min
{

kA + (1 − kA) [A(x) − B(x)] , 1
}

(2)

with kA ∈ [0, 1). Analogously for B(x) > A(x) we define

ıB(x) = min
{

kB + (1 − kB) [B(x) − A(x)] , 1
}

(3)

with kB ∈ [0, 1).
The function upper bound 1 rules out results in which more than existing agents switch choice.
When kA,B = 0, agents decide taking into account the absolute value of the difference between the payoffs. That is, the

fraction of those switching decision is proportional to the relative difference between payoffs.
Therefore the resulting map  is M,  x′ = M(x) defined above in (1) with ıA(x) and ıB(x) defined in (2) and (3),  respectively,

with kA and kB are constants belonging to the interval [0, 1).

3. The analysis of the map  with linear payoffs

With impulsive agents as in Bischi and Merlone (2009) and Bischi et al. (2009a,b) the relative difference between payoff
is not important, therefore they considered only the number of intersections between payoffs functions. On the contrary,
when agents switching choices depend on the relative difference between payoffs, their expression is important. For the
sake of simplicity, in the following we consider the case in which A(x) and B(x) are linear functions:

A(x) = mAx + qA

B(x) = mBx + qB
(4)

in which the offsets qA and qB as well as the slopes mA and mB may  be of any kind, in sign and modulus.
Let us define as d the solution of the equation

A(x) = B(x) (5)

that is, assuming mB /= mA:

d = qA − qB

mB − mA
(6)

We are interested in the case with the intersection point d ∈ [0, 1] which implies the following constraints in the param-
eters:

0 ≤ qA − qB

mB − mA
≤ 1 (7)

so that we have two cases: either (I) qA < qB and mB < mA or (II) qA > qB and mB > mA, and this leads to the following conditions,
respectively:

Case (I):  When qA < qB and mB < mA, then it must be

qA < qB < qA + mA − mB (8)

Case (II): When qA > qB and mB > mA, then it must be

qB < qA < qB + mB − mA (9)

In our specific model. We  have A(x) ≥ B(x) for (mA − mB)x ≥ (qB − qA). Thus in Case (I) we  have mA > mB, so that A(x) ≥ B(x)
occurs for x ≥ d, where d is defined in (6).  As a consequence the map  M to investigate becomes as follows:

MI : x′ =
{

g(x) = (1 − ıB(x))x if x < d
x if x = d
f  (x) = x + ıA(x)(1 − x) if x > d

(10)
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By contrast, in Case (II) we have mA < mB, and A(x) ≥ B(x) occurs for x ≤ d. Thus the map  M to investigate becomes as
follows:

MII : x′ =
{

f (x) = x + ıA(x)(1 − x) if x < d
x if x = d
g(x) = (1 − ıB(x))x if x > d

(11)

As it concerns the function ıA(x), we have that the constraint kA + (1 − kA)(A(x) − B(x)) < 1 occurs for A(x) − B(x) < 1 that is

(mA − mB)x < 1 − (qA − qB) (12)

in which case

ıA(x) = [kA + (1 − kA)(qA − qB)] − (1 − kA)(mB − mA)x (13)

otherwise ıA(x) = 1. Notice that if ıA(x) = 1 then we have f(x) = 1.
For the function ıB(x) we have that the constraint [kB + (1 − kB)(B(x) − A(x))] < 1 occurs for B(x) − A(x) < 1 that is for

(mB − mA)x < 1 + (qA − qB) (14)

in which case

ıB(x) = [kB − (1 − kB)(qA − qB)] + (1 − kB)(mB − mA)x (15)

otherwise ıB(x) = 1. Notice that for ıB(x) = 1 then we  have g(x) = 0.
The properties of the single functions f(x) and g(x) in the two different cases under study, leading to the two  different

maps MI and MII defined above, are considered in the next sections. Here we  only prove the following:

Proposition 1. In both Cases (I) and (II) the map M is continuous in x = d for kA = kB = 0.
In fact, from g(d) = (1 − ıB(d))d and ıB(d) = kB we  have g(d) = (1 − kB)d ≤ d and g(d) ∈ (0, 1). Thus for kB = 0 we have g(d) = d

(while g(d) < d for kB ∈ (0, 1)).
Similarly from f(d) = d + ıA(d)(1 − d) and ıA(d) = kA we  have f(d) = d + kA(1 − d) ≥ d and f(d) ∈ (0, 1). Thus for kA = 0 we have

f(d) = d (while f(d) > d for kA ∈ (0, 1)).

4. Case (I): dynamics of the map  MI

In this case we have

qA < qB < qA + (mA − mB), (mA − mB) > 0

then for x < d = (qB − qA)/(mA − mB) the constraint (14) is satisfied for (mA − mB)x > − 1 + (qB − qA). Therefore, for x > x̄ = (−1 +
(qB − qA))/(mA − mB) the function g(x) is defined as follows:

g(x) = (1 − ıB(x))x
= x − x[kB − (1 − kB)(qA − qB)] − (1 − kB)(mB − mA)x2

= x[1 − kB + (1 − kB)(qA − qB)] − (1 − kB)(mB − mA)x2

= x(1 − kB)[1 − (qB − qA)] + (1 − kB)(mA − mB)x2

(16)

so that

g′(x) = (1 − kB)[1 − (qB − qA)] + 2(1 − kB)(mA − mB)x
g′′(x) = 2(1 − kB)(mA − mB) > 0

(17)

and from g′(x) = (1 − kB)[1 − (qB − qA) + 2(mA − mB)x] we  have g′(x) ≥ 0 for x ≥ xg,c =(− 1 + (qB − qA))/(2(mA − mB)). Assuming
that the critical point xg,c of g(x) is negative, which occurs for 0 < (qB − qA) < 1, we have that in the range of its definition the
function g(x) is increasing and convex,  with

g′(0) = (1 − kB)[1 − (qB − qA)] ∈ (0,  1) (18)

Regarding the function f(x), we have that the constraint (12) is satisfied for x < (1 + (qB − qA))/(mA − mB) in which case the
function f(x) is defined as follows:

f (x) = x + ıA(x)(1 − x)
= x + (1 − x)[kA + (1 − kA)(qA − qB)] − (1 − kA)(mB − mA)x(1 − x)
= −˛1x2 + ˇ1x + �1

(19)

where

˛1 = (1 − kA)(mA − mB)
ˇ1 = (1 − kA)[1 + (qB − qA) + (mA − mB)]
�1 = kA + (1 − kA)(qA − qB)

(20)
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Fig. 1. qA = 0.2, qB = 0.5, mA = 0, mB = − 0.5. In (a) kA = kB = 0. In (b) kA = 0.4, kB = 0.2.

and its first and second derivative are given by:

f ′(x) = −2(1 − kA)(mA − mB)x + (1 − kA)[1 + (qB − qA) + (mA − mB)]
f ′′(x) = −2(1 − kA)(mA − mB) < 0

(21)

We have f ′(x) ≥ 0 for x ≤ xf,c = (1 + (qB − qA) + (mA − mB))/(2(mA − mB)). Assuming that the critical point xf,c of f(x) is greater
than 1, which occurs for (mA − mB) < 1 + (qB − qA), we have that in the range of its definition the function f(x) is increasing and
concave, and (by using the assumption, in (8))  with

f ′(1) = (1 − kA)[1 + (qB − qA) − (mA − mB)] ∈ (0,  1) (22)

Summarizing, the explicit expression of the map  MI is the following:

MI : x′ =
{

g(x) = x(1 − kB)[1 − (qB − qA)] + (1 − kB)(mA − mB)x2 if 0 ≤ x < d
x if x = d
f (x) = −˛1x2 + ˇ1x + �1 if d < x ≤ 1

(23)

We remark that the critical points of f(x) and g(x) are independent of the values of the two  parameters kA and kB.
Then for kA = kB = 0MI(x) is a continuous function, with three fixed points: x∗

0 = 0, x∗
1 = 1 and x∗

d
= d. The continuity in the

end points of the interval is immediate. The continuity in x = d comes from Proposition 1.
The derivatives in the fixed points are given by g′(0) = [1 − (qB − qA)] ∈ (0, 1); f ′(1) = [1 + (qB − qA) − (mA − mB)] ∈ (0, 1). In

the fixed point d we have g′(d) = 1 + (qB − qA) > 1 and f ′(d) = 1 − (qB − qA) + (mA − mB) > 1 so that x∗
0 and x∗

1 are both locally stable
(from the side of interest), while x∗

d
is a repelling fixed point, and separates the two basins of attraction: B(0) = [0,  d) and

B(1) = (d, 1]. An example is shown in Fig. 1(a). Now considering any value for the parameters kA and kB different from
0 and smaller that 1, we have that map  F becomes discontinuous in d, and the kind of continuity breaking is, let us say,
increasing/increasing with positive jump, being g(d) = (1 − kB)d < d and f(d) = d + kA(1 − d) > d. Then the dynamics of the map
F persists to be of the same kind. In fact, as noticed above, also now we have g′(0) ∈ (0, 1) and f ′(1) ∈ (0, 1) thus we still have
two coexistent fixed points x∗

0 = 0 and x∗
1 = 1, whose basins of attraction are separated by the point x = d. That is, as in the

continuous case, we still have B(0) = [0,  d) and B(1) = (d, 1]. As example is shown in Fig. 1(b).
Summarizing we have proved the following

Proposition 2. Let 0 < (qB − qA) < 1 and 0 < (mA − mB) < 1 + (qB − qA). Then g(x) is increasing and convex and f(x) is increasing
and concave. For any value of the parameters kA and kB in [0, 1], the map MI has the fixed point x∗

0 = 0 which attracts the points
in [0, d) and the fixed point x∗

1 = 1 which attracts the points in (d, 1].

This result confirms and extends the findings of Schelling (1973, p. 403). In fact, in his analysis, Schelling concludes that,
depending on the payoff curves position, there may  exist two stable equilibria, namely x = 0 and x = 1, where everybody is
respectively choosing one of the choices, whereas the inner equilibrium x∗

d
is unstable. While the conclusion by Schelling

is based on the qualitative properties of the system, the same results are confirmed by Bischi and Merlone (2009) in their
quantitative model. As the model we present in this paper extends the behavior by agents considered in the literature it is
important to remark that even when agents consider difference between payoff not just in terms of sign, there are situations
in which the population converge to one of the two choices.

As described in the next section, the dynamics occurring in the second case are much different, and leads to attracting
cycles of any period.
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5. Case (II): dynamics of the map  MII

Let us now consider Case (II) and the related map MII. The parameters satisfy

qB < qA < qB + mB − mA, (mB − mA) > 0 (24)

so that for the function ıA(x) we have that (12) holds for (mB − mA)x > − 1 + (qA − qB). Thus for

x > x̄ = −1 + (qA − qB)
(mB − mA)

(25)

it is ıA(x) = [kA + (1 − kA)(qA − qB)] − (1 − kA)(mB − mA)x and the function f(x) is defined as follows:

f (x) = x + ıA(x)(1 − x)
= x + (1 − x)[kA + (1 − kA)(qA − qB)] − (1 − kA)(mB − mA)x(1 − x)
= ˛2x2 + ˇ2x + �2

where

˛2 = (1 − kA)(mB − mA)
ˇ2 = (1 − kA)[1 − (qA − qB) − (mB − mA)]
�2 = kA + (1 − kA)(qA − qB)

(26)

We also have

f ′(x) = 2(1 − kA)(mB − mA)x + (1 − kA)[1 − (qA − qB) − (mB − mA)]
f ′′(x) = 2(1 − kA)(mB − mA) > 0

(27)

and f ′(x) ≥ 0 for x ≥ xf,c =(− 1 + (qA − qB) + (mB − mA))/(2(mB − mA)).
Two cases may  occur, that is, the critical point xf,c of f(x) may  be smaller than d or not. As we  shall see, these two cases

qualify different kinds of dynamic behaviors. We  have

xf,c < d for (mB − mA) < 1 + (qA − qB) (28)

otherwise the critical point is xf,c > d. Summarizing:

(a) for (mB − mA) < 1 + (qA − qB) we have xf,c < d and f(x) is increasing and convex for x in a left neighborhood of d;
(b) for (mB − mA) > 1 + (qA − qB) we have xf,c > d and f(x) is decreasing and convex for x in a left neighborhood of d.

Regarding the second function g(x), we have that (mB − mA)x < 1 + (qA − qB) occurs for

x < x∗ = 1 + (qA − qB)
(mB − mA)

(29)

so that for x > x∗ the function ıB(x) = 1 leads to g(x) = 0, while for x < x∗ we have
ıB(x) = [kB − (1 − kB)(qA − qB)] + (1 − kB)(mB − mA)x and

g(x) = x(1 − kB)[1 + (qA − qB)] − (1 − kB)(mB − mA)x2 (30)

its derivatives are as follows:

g′(x) = (1 − kB)[1 + (qA − qB)] − 2(1 − kB)(mB − mA)x
g′′(x) = −2(1 − kB)(mB − mA) < 0

(31)

From g′(x) = (1 − kB)[1 + (qA − qB) − 2(mB − mA)x] we have g′(x) ≥ 0 for x ≤ xg,c = (1 + (qA − qB))/(2(mB − mA)). Notice that

xg,c > d for (qA − qB) < 1 (32)

Thus we can distinguish two cases also here:

(a′) for (qA − qB) < 1 we have xg,c > d so that for d < x < x∗ the function g(x) defined in (30) is locally increasing and concave in a
right neighborhood of d;
(b′) for (qA − qB) > 1 we  have xg,c < d so that for d < x < x∗ the function g(x) defined in (30) is locally decreasing and concave in
a right neighborhood of d.

Now notice that

x̄ = −1 + (qA − qB)
(mB − mA)

> 0 for (qA − qB) > 1 (33)
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Fig. 2. In (a) the region of interest for parameters kA and kB; in (b) regions R1, R2, R3, and R4.

and that

x∗ = 1 + (qA − qB)
(mB − mA)

< 1 for (mB − mA) > 1 + (qA − qB) (34)

Summarizing, the explicit expression of the map  MII is the following:

MII : x′ =

⎧⎪⎪⎨
⎪⎪⎩

f (x) = 1 if x ≤ x̄
f  (x) = ˛2x2 + ˇ2x + �2 if x̄ < x < d
x if x = d
g(x) = x(1 − kB)[1 + (qA − qB)] − (1 − kB)(mB − mA)x2 if d < x < x∗

g(x) = 0 if x ≥ x∗

(35)

and it is continuous in the points x = x̄ and x = x∗.
We remark that the critical points xf,c and xg,c of f(x) and g(x) respectively, do not depend on the parameters kA and kB as

well as all the other conditions which distinguish between the cases described above.
In all the possible cases, for kA = kB = 0 the map  MII is continuous in x = d (from Property 1) and in x = d the local attractivity

or instability is determined from the derivatives of the functions on the two  sides of d, where we  have

f ′(d) = (1 − kA)[1 + (qA − qB) − (mB − mA)] (36)

which is positive in case (a) and negative in case (b); in both cases its modulus may  be smaller or higher than one.
Similarly also

g′(d) = (1 − kB)[1 − (qA − qB)] (37)

which is positive in case (a′), negative in case (b′), and its modulus may  be smaller or higher than one. However, we notice
that when the critical point xf,c is close to d then the derivatives f ′(d) is close to zero, and thus the fixed point d is locally
attracting on the left side of the discontinuity, and this local stability existing for kA = 0 is the same for any value kA ∈ (0, 1).
Similarly when the critical point xg,c is close to d then the derivatives g′(d) is close to zero, and thus the fixed point d is locally
attracting on the right side of the discontinuity, and this local stability existing for kB = 0 is the same for any value kB ∈ (0, 1).
In particular, for | f ′(d) |<1 and | g′(d) |<1, at kA = kB = 0 the continuous map  MII has an attracting fixed point in x = d.

As already remarked, we can have all the possible combinations (a)–(a′), (b)–(a′), (a)–(b′), (b)–(b′). For the sake of sim-
plicity, they are summarized in Fig. 2(b) in the parameter plane ((qA − qB), (mB − mA)) leading to the regions R1, R2, R3, and
R4, respectively. In Fig. 2(a) we show schematically the parameter region of interest. In Fig. 2(b) we also show for kA,B ∈ (0, 1)
the qualitative behavior of the functions in a neighborhood of x = d in the related regions. In fact, for values of the parameters
kA and kB not both zero, the map  MII has a discontinuity in x = d, with

f (d) = d + kA(1 − d) > d and g(d) = (1 − kB)d < d (38)
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This continuity breaking has a strong effect on the dynamic behaviors. In fact, except for the occurrence of cases (b) and
(b′), we have that for values of (kA, kB) in any neighborhood of (0, 0) we  can have attracting cycles of any period, as stated in
the following

Proposition 3. (1) Let 0 < (qA − qB) < 1 and (qA − qB) < (mB − mA) < 1 + (qA − qB) (region R1). Then in the two-dimensional positive
parameter plane (kA, kB) the point (0, 0) is a big-bang bifurcation point for the map MII, from which infinitely many BCB curves
are issuing, following the period adding scheme.

(2) Let 0 < (qA − qB) < 1 and 1 + (qA − qB) < (mB − mA) < 2 + (qA − qB) (belonging to region R2). Then in the two-dimensional pos-
itive parameter plane (kA, kB) the point (0, 0) is a big-bang bifurcation point for the map MII, from which infinitely many BCB
curves are issuing, following the period increment scheme.

(3) Let 1 < (qA − qB) < (mB − mA) < 1 + (qA − qB) < 3 (belonging to region R3). Then in the two-dimensional positive parameter
plane (kA, kB) the point (0, 0) is a big-bang bifurcation point for the map MII, from which infinitely many BCB curves are issuing,
following the period increment scheme.

(4) Let 2 < 1 + (qA − qB) < (mB − mA) < 2 + (qA − qB) < 4 (belonging to region R4). Then for (kA, kB) in the two-dimensional positive
parameter plane close to the point (0, 0) there exists an attracting cycle of period 2.

The proof is reported in Appendix A.

Remark 1. We  notice that the conditions given in Proposition 3 are sufficient, but not necessary. In fact, as we shall see in
the examples in the next subsections, the condition of local stability for f ′(d) and g′(d) are quite strong, and the results of
the big-bang bifurcation points can be seen also when these conditions are not satisfied.

Remark 2. The results of the continuity breaking are local, i.e., these hold for values of the parameters (kA, kB) close to the
point (0, 0), but relevant results also exist in large, for values of the parameters (kA, kB) far from the point (0, 0). These are
related with the global shapes of the functions f(x) and g(x) (while the previous result is only due to the local shape, close to
the discontinuity point x = d). These further bifurcations are due to the intersection of BCB curves, whose equations will be
given in implicit form. The existence of intersections leads to other big-bang bifurcation points (analogous to the origin (0,
0) of the parameter plane), from which infinitely many curves issue, following the period adding structure.

In the next subsections we shall illustrate several examples. In particular, in the last one, we  shall see that the result for
parameter values in the region R4 holds in large.

5.1. Increasing/increasing case

Let us consider the parameters of the map  MII belonging to the region R1. As remarked above, we  have that when MII is
continuous (kA = kB = 0), the fixed point x∗

d
= d is attracting on both sides and locally attracting for T. When the continuity is

broken and a jump in x = d occurs, the parameters in this region R1 lead to a discontinuous map  with an increasing branch
on the left of x = d, above the diagonal, and an increasing branch on the right, below the diagonal, so that the fixed point
disappears and no fixed points are left in a neighborhood of x = d. Locally the map  has the qualitative shape shown in Fig. 2
(region R1). The jump in x = d is determined by f(d) (upper value) and g(d) (lower value). These values determine an absorbing
interval I = [g(d), f(d)] from which the dynamics cannot escape. We recall that this increasing/increasing case was already
considered by Keener (1980) in a remarkable paper, and we know that, as long as the map  is uniquely invertible in I, only
stable cycles can exist, and only one at each fixed parameters (i.e., bistability cannot occur). Moreover, the structure of all
the possible existing cycles has been recently described in Avrutin et al. (submitted for publication) showing also how to
obtain also the BCB curves of the period adding structure. Locally, for (kA, kB) in a neighborhood of (0, 0), the functions may
be approximated by the linear parts in x = d, leading to a piecewise linear map with a discontinuity point. The linear case has
been fully described in Gardini et al. (2010a), Avrutin et al. (2010a), for which not only the structure can be explained, but
also the bifurcation curves can be determined analytically. We  notice that inside the absorbing interval I the only possible
bifurcations are due to a collision with a periodic point with the discontinuity point, that is, only border collision bifurcations
(BCB) can occur.

In Fig. 3 we show an example of continuity breaking in this region. When the map  is discontinuous, Fig. 3(b) shows the
convergence to a stable 2-cycle. However the period of the attracting cycle existing in the discontinuous map  MII depends
on the relative values of the parameters kA and kB. A picture in the whole parameter plane (kA, kB) where both variables
range between 0 and 1 is shown in Fig. 4(a), while Fig. 4(b) shows an enlarged part, close to the point (0, 0). There, it can be
appreciated the BCB structure related with a piecewise linear discontinuous map, for which the boundaries of the periodicity
regions (BCB curves) can also be detected analytically. There are periodicity regions associated with cycles of first complexity
level (following the notation introduced by Leonov (1959, 1962) and used also in Gardini et al. (2010a), which are also known
as principal cycles or maximal cycles. Below we give the equation in implicit form of the BCB curves bounding the regions.
Between any pair of consecutive periodicity regions of the first level, two infinite families of periodicity regions can be found,
following the Farey summation rule in the period and rotation number (Hao, 1989), called of second complexity level, and the
process continues for any level of complexity.
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Fig. 3. qA = 0.7, qB = 0.2, mA = 0, mB = 0.9. In (a) kA = kB = 0. In (b) kA = 0.2, kB = 0.1, a 2-cycle is attracting.

The cycles can be identified using a symbolic sequence, in which we use the letter L (resp. R) to denote a periodic point on
the left (resp. right) side of the discontinuity point. We  recall that a sequence is cyclically invariant, as it represents periodic
points of the same cycle. For example, maximal cycles have the symbolic sequence LRn or RLn for any n ≥ 1.

In our map  MII, the periodicity regions of maximal cycles of symbolic sequence LRn for any n ≥ 1 have as limit set the
axis kA, of equation kB = 0. The unique periodic point on the left side of x = d of these cycles can be determined by using the
equation gn ◦ f(x) = x. The boundaries of the periodicity regions in which these cycles exist are given by the BCB curves of
implicit equation as follows:

gn ◦ f (d) = d, gn−1 ◦ f ◦ g(d) = d (39)

On the contrary, the periodicity regions of maximal cycles of symbolic sequence RLn for any n ≥ 1 have as limit set the
other axis, of equation kA = 0. The unique periodic point on the right side of x = d of these cycles can be determined by using
the equation fn ◦ g(x) = x. The boundaries of the periodicity regions in which these cycles exist are given by the BCB curves of
implicit equation as follows:

f n ◦ g(d) = d, f n−1 ◦ g ◦ f (d) = d (40)

Similarly we  can write the implicit equations of the BCB curves for any level of complexity.
As already remarked, this structure certainly occurs locally, close to (0, 0). On the other hand, when (kA, kB) are changed

more in large, the qualitative shape of the map  is no longer only increasing/increasing. That is, in the absorbing interval
inside which the dynamics of the map  are confined, the nonlinear functions f(x) and g(x), modify their shape, and other

Fig. 4. qA = 0.7, qB = 0.2, mA = 0, mB = 0.9. BCB in the parameter plane (kA , kB). In (b) the enlarged part of the small square close to (0, 0).
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Fig. 5. qA = 0.4, qB = 0.2, mA = 0, mB = 0.9. In (a) kA = kB = 0. In (b) kA = 0.58, kB = 0.4444; the initial point x = 0.5 converges to the 3-cycle, the initial point x = 0.6
converges to the 2-cycle.

bifurcations may  occur. An example is illustrated in the particular point P∗ shown in Fig. 4(a). This particular bifurcation
point, as well as the origin (0, 0), is a big-bang bifurcation. In order to provide a better illustration of this bifurcation point
we consider a different example, where this particular point is better observable.

In Fig. 5 we show the continuity breaking at other parameters always belonging to the region R1, while in Fig. 6 we can
see that the periodicity regions having as limit set the kA axis are wider, so that we  can better observe that the BCB curves
of the 2-cycle and the 3-cycle intersect in a point P∗

2 illustrated in Fig. 6(a). Locally the behavior of the periodicity tongues is
the one qualitatively drawn in Fig. 6(b). That is, on the right of such a point there is a region of overlapping, inside which we
can see coexistence of a 2-cycle and of a 3-c  ycle. A numerical example is shown in Fig. 5(b), for a parameter point taken inside
this overlapping region: taking an initial condition close to the left of the discontinuity point x = d we have convergence to
the 2-cycle, whose periodic points have been drawn on the bisectrix of Fig. 5(b), while taking an initial condition close to
the right of the discontinuity point x = d we have convergence to the 3-cycle, whose periodic points have been drawn on the
graphs of the functions of Fig. 5(b). It is clear that this big-bang bifurcation point is not unique. In fact, we  can see that all
the periodicity regions of the maximal cycles with symbolic sequence LRn for any n ≥ 1 have a region of bistability issuing
from a big-bang bifurcation point in which they are intersecting in pair, that is P∗

n = BCBLRn ∩ BCBLRn+1 exist for any n ≥ 1.

5.2. Decreasing/increasing case

In this section we consider parameters in the region R2. As already remarked, the continuity breaking is characterized by
a locally decreasing branch on the left side of the discontinuity point x = d, and a locally increasing branch on the right side
of it.

Fig. 6. qA = 0.4, qB = 0.2, mA = 0, mB = 0.9. In (a) BCB in the parameter plane (kA , kB). In (b) qualitative picture of the BCB structure leading to a big-bang
bifurcation point P∗ .
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Fig. 7. qA = 0.7, qB = 0.2, mA = 0, mB = 1.9. In (a) kA = kB = 0. In (b) kA = 0.2, kB = 0.1.

An example is shown in Fig. 7 where, besides the point x = d, also the point x = x∗ at which g(x) becomes 0 is shown. In
Fig. 7(b) the attracting set existing after the continuity breaking is a cycle of period 3, and here it is the only attracting set.
However, for different values of the parameters kA and kB, it is also possible to find a case of bistability between a 3-cycle
and a 2-cycle. In fact, we  are in a regime in which the results provided in Gardini et al. (submitted for publication) applies,
as shown in Fig. 8. That is, in a neighborhood of (kA, kB) = (0, 0) we have the period increment structure, where the maximal
cycles of symbolic sequence LRn exist for any n ≥ 1. In general, the unique periodic point on the left side of x = d of these
cycles can be determined by using the equation gn ◦ f(x) = x. The boundaries of the periodicity regions in which these cycles
exist are given by the BCB curve of implicit equation already written in (39), that is, gn ◦ f(d) = d and gn−1 ◦ f ◦ g(d) = d. Locally,
in a neighborhood of (kA, kB) = (0, 0), the periodicity regions of the maximal cycles must have a region of bistability (see
Gardini and Tramontana, 2010; Avrutin et al., 2010b, submitted for publication; Gardini et al., submitted for publication). In
Fig. 8(b) a bistability region is illustrated between the periodicity regions of the 2-cycle and the 3-cycle, as well as between
the periodicity regions of the 3-cycle and the 4-cycle. Clearly all the other overlapping regions also exist, although very thin
and not observable in Fig. 8(b). All the periodicity regions of the maximal cycles issuing from (0, 0) with symbolic sequence
LRn for any n ≥ 1 have a region of bistability issuing from (0, 0).

As we know, this structure occurs locally, close to (0, 0). However, when (kA, kB) are changed more in large, the qualitative
shape of the map  is no longer only decreasing/increasing, that is, in the absorbing interval inside which the dynamics of the

Fig. 8. qA = 0.7, qB = 0.2, mA = 0, mB = 1.9. In (a) BCB in the parameter plane (kA , kB), and enlarged part in (b). In (b) a bistability region is emphasized. In (c)
the  qualitative intersection of two  BCB curves leading to a big-bang bifurcation point P∗ .
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Fig. 9. qA = 0.4, qB = 0.2, mA = 0, mB = 2.9. In (a) kA = kB = 0. In (b) kA = 0.1, kB = 0.05.

map  are confined, the nonlinear functions f(x) and g(x), modify their shape, and other bifurcations may  occur. An example is
shown in the particular point P∗ illustrated in Fig. 8(a). Here, in large, the BCB curves defined by the equations in (39) have
one more intersection leading to a big-bang bifurcation point through a different bifurcation mechanism. And this occurs
in pair for all the periodicity regions of the maximal cycles issuing from (0, 0). The structure of all the big-bang bifurcation
points is clearly similar to the one already met  in the previous subsection, and qualitatively shown also in Fig. 8(c). That is,
two periodicity regions are overlapping, leading to a portion of bistability (where both cycles exist), two  regions where a
unique cycle exists, and a region issuing from the intersection point in which these two cycles do not exist. Exactly in this
last region the adding mechanism applies and an infinite number of periodicity regions can be found, following the period
adding structure.

A different example in which the different big-bang bifurcation points P∗
n = BCBLRn ∩ BCBLRn+1 for any n ≥ 1 can be seen

in Figs. 9 and 10.  In Fig. 10(b) we also show a one-dimensional bifurcation diagram of x as a function of kB along the path
shown as a vertical line in Fig. 10(a), where it is possible to see the quick transition from a period to another one for the
attracting set.

5.3. Increasing/decreasing case

When the parameters belong to the region R3, on the two  sides of the discontinuity point the increasing and decreasing
parts are exchanged; nevertheless the reasoning is similar. In the parameter plane (kA, kB) the BCB curves have a similar
shape, although “symmetric” with respect to those described above. That is, in this case we have the periodicity regions of
maximal cycles of symbolic sequence RLn for any n ≥ 1 having as limit set the kB axis, of equation kA = 0. The unique periodic
point on the right side of x = d of these cycles can be determined by using the equation fn ◦ g(x) = x. The boundaries of the

Fig. 10. qA = 0.4, qB = 0.2, mA = 0, mB = 2.9. In (a) BCB in the parameter plane (kA , kB), big-bang bifurcation points are emphasized. In (b) one dimensional
bifurcation diagram at kA = 0.2 fixed, along the vertical path shown in (a).
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Fig. 11. qA = 1.4, qB = 0.2, mA = 0, mB = 2.9. In (a) at kA = 0.05 and kB = 0.02 a local 2-cycle can be seen. In (b) at kB = 0.06 the 2-cycle with periodic points 0 and
1  is to the result of the constraints.

periodicity regions in which these cycles exist are given by the BCB curve of implicit equation fn ◦ g(d) = d and fn−1 ◦ g ◦ f(d) = d,
as already given in (40). And similarly we have that in large these periodicity regions intersect in pair leading to infinitely
many big-bang bifurcation points and related period adding structure between the two  BCB curves involved.

5.4. Decreasing/decreasing case

When the parameters belong to region R4, the dynamic behavior of the map  is very simple. Considering the derivatives
f ′(d) and g′(d) given in (27) and (31), respectively, when we have f ′(d)g′(d) < 1 then a stable 2-cycle exists after the continuity
breaking, as proved (locally) via Proposition 3. However even when this condition is not satisfied, and an absorbing interval
including the discontinuity point does not exist, due to the shape of our functions f(x) and g(x) we  can only have a stable
2-cycle, as stated in the following

Proposition 4. Let 2 < 1 + (qA − qB) < (mB − mA) < 2 + (qA − qB) (region R4). Then for (kA, kB) ∈ (0, 1] × (0, 1] a stable 2-cycle exists.

Proof. When the parameters belong to region R4 the minimum of f(x) is above the discontinuity point, thus f(x) is decreasing
in its region of definition. Similarly the maximum of g(x) is below the discontinuity point, thus g(x) is decreasing in its region
of definition. It follows that a bounded (by construction) decreasing discontinuous function without a fixed point can have at
most cycles of period 2. Here we have that a unique 2-cycle can exist, because the functions f(x) and g(x), when not constant,
are second degree polynomials. �

Two examples are shown in Fig. 11.

6. Conclusions

Recent literature has considered and examined discrete-time dynamic models of repeated binary choices with external-
ities, based on the qualitative properties described by Schelling (1973).  So far (Bischi et al., 2009a,b), the analysis has been
conducted considering impulsive agents, i.e., agents who immediately switch their strategies even when the difference
between payoffs is extremely small. In this paper we considered more realistic behaviors. In fact, we  assumed that agents
may  decide to switch choices taking into account the relative difference in terms of payoffs. This way, we  were able to model
a continuum of behaviors which ranged from agents considering the payoffs in terms of relative differences to impulsive
agents as in previous studies. The results of our analysis confirm Schelling’s findings about stable equilibria and also the
occurrence of cyclic behaviors as described in Bischi and Merlone (2009) and analyzed in Bischi et al. (2009a,b).  Nevertheless,
in the case of cyclic behaviors, the analysis we provided in this paper shows different kinds of dynamics. First, while with
impulsive agents the shape of payoff function is important just in terms of the number of intersections, with non-impulsive
agents, the difference between payoffs values is important. Even in the case of linear payoffs the dynamics can be quite
different depending on the relative difference between the slopes and intercepts of the payoff functions. In fact, depending
on these values, in the origin (0, 0) we can have either a big-bang bifurcation point following the period adding scheme, or a
big-bang bifurcation point following the period increment scheme or an attracting cycle of period 2 in its neighborhood. The
analytic expression of the border collision bifurcation curves issuing from (0, 0) is given in implicit form. Furthermore, there
may  exists bifurcation-points different form the origin; since in the case of impulsive agents big-bang bifurcation points
following the period adding scheme can occur only in the origin, this shows a remarkable difference in terms of dynamics.
The fact that, under some conditions, we may  have several big-bang bifurcation points shows how the dynamics, although
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qualitatively similar, may  be quite different from those analyzed with impulsive agents with respect to the period of the
attracting set. In Bischi and Merlone (2009) the switching propensity was  modeled in terms of the population of agents:
given that one choice gave a larger payoff the parameter described the percentage of switching agents. On the contrary, in
this paper the switching propensity becomes a function of how the agent considered the difference in payoffs. In this sense
the switching propensity becomes a perception parameter instead of a decision parameter. This approach not only allowed
us to describe a less simplified behavior of the agents but also provided more interesting dynamics with bifurcation points
different from the origin.

The case of nonlinear payoff curves is still to be analyzed, and is left for further research. Other interesting cases to
investigate are those with more than a single intersection, as described in Schelling (1973).  Finally it will be interesting to
explore the boundary between small groups and large groups as in Bischi and Merlone (2010a,b).

Appendix A.

Proof of Proposition 3. At the discontinuity point x = d of the map  MII we  have f(d) = d + kA(1 − d) > d and g(d) = (1 − kB)d < d
for ant kA,B ∈ (0, 1). The conditions given in Proposition 3 are such that | f ′(d) |<1 and | g′(d) |<1, from (36) and (37) at kA = kB = 0,
and thus | f ′(d) |<1 and | g′(d) |<1 for any kA,B ∈ (0, 1). This proves that for values of the parameters (kA, kB) close to the point
(0, 0), the map  has bounded dynamics close to the discontinuity point. That is, there exists a trapping region close to the
discontinuity point, from which the dynamics cannot escape.

When the parameters satisfy the conditions of Case (II) and (a)–(b) given above (region R1), then we have point (1) of
Proposition 3. At these parameters’ values we have f ′(d) ∈ (0, 1) as well as g ′(d) ∈ (0, 1), so that close to the discontinuity
point, f(x) and g(x) are both increasing functions. Then for values of the parameters (kA, kB) close to the point (0, 0) the
map  MII possesses an absorbing interval given by I = [f(d), g(d)] = [d + kA(1 − d), (1 − kB)d] from which the dynamics cannot
escape. These conditions are sufficient to state the existence of a big-bang bifurcation point from which periodicity regions
following an adding scheme are issuing (Avrutin et al., submitted for publication). Thus in the region R1 we  have a so-called
increasing/increasing case with negative jump, in which the breaking of the continuity in the map  MII leads to a unique stable
cycle. Infinitely many periodicity regions, of any period, are issuing from the point (0, 0) in the two-dimensional parameter
plane (kA, kB), following the so-called period adding structure.

When the parameters satisfy point (2) of Proposition 3 then Case (II) and (a′)–(b) given above are satisfied, together with
−1 < f ′(d) < 0, so that close to the discontinuity point f(x) is decreasing and g(x) is an increasing functions (as g′(d) ∈ (0, 1)).
Then for values of the parameters (kA, kB) close to the point (0, 0) the map  MII possesses an absorbing interval given by
I = [g(d), f ◦ g(d)] from which the dynamics cannot escape. These conditions are sufficient to state the existence of a big-bang
bifurcation point. Infinitely many periodicity regions, of any period, are issuing from the point (0, 0) in the two-dimensional
parameter plane (kA, kB), following the so-called period increment structure (with bistability regions) (Avrutin et al., submitted
for publication; Gardini et al., submitted for publication).

When the parameters satisfy point (3) of Proposition 3 then Case (II) and (a)–(b′) given above are satisfied, together with
−1 < g′(d) < 0. Thus close to the discontinuity point f(x) is increasing and f ′(d) ∈ (0, 1), while g(x) is a decreasing (and locally
stable). Then for values of the parameters (kA, kB) close to the point (0, 0) the map  MII possesses an absorbing interval given
by I = [g ◦ f(d), f(d)] from which the dynamics cannot escape. As in the previous case, these conditions are sufficient to state
the existence of a big-bang bifurcation point at which periodicity regions following an increment scheme (with bistability
regions) exist.

When the parameters satisfy point (4) of Proposition 3 then Case (II) and (a′)–(b′) given above are satisfied, together with
−1 < f ′(d) < 0 and −1 < g′(d) < 0. Thus close to the discontinuity point f(x) and g(x) are both decreasing (and locally stable).
Then for values of the parameters (kA, kB) close to the point (0, 0) the map  MII possesses a stable cycle of period 2, that is,
two attracting fixed points of the composite functions g ◦ f(x) and f ◦ g(x) exist (Avrutin et al., submitted for publication). �

References

Avrutin, V., Schanz, M.,  2006. Multi-parametric bifurcations in a scalar piecewise-linear map. Nonlinearity 19, 531–552.
Avrutin, V., Schanz, M.,  Gardini, L., 2010a. Calculation of bifurcation curves by map  replacement. International Journal of Bifurcation and Chaos 20,

3105–3135.
Avrutin, V., Granados, A., Schanz, M.,  2010b. Sufficient conditions for a period increment big-bang bifurcation in one-dimensional maps. Preprint available

at  the Mathematical Physics Preprint Archive, http://www.ma.utexas.edu/mparc-bin/mpa?yn=10-124.
Avrutin, V., Gardini, L., Granados, A., Schanz, M.,  Sushko, I. Continuity breaking in one-dimensional piecewise smooth maps, submitted for publication.
Bazerman, M.H., 2006. Judgment in Managerial Decision Making. John Wiley & Sons, Hoboke NJ.
Bischi, G.I., Merlone, U., 2009. Global dynamics in binary choice models with social influence. Journal of Mathematical Sociology 33, 1–26.
Bischi, G.I., Merlone, U., 2010a. Binary choices in small and large groups: a unified model. Physica A 389, 843–853.
Bischi, G.I., Merlone, U., 2010b. Global dynamics in adaptive models of collective choice with social influence. In: Naldi, G., Pareschi, L., Toscani, G. (Eds.),

Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences. Birkhauser, Boston MA,  pp. 223–244.
Bischi, G.I., Gardini, L., Merlone, U., 2009a. Impulsivity in Binary Choices and the Emergence of Periodicity. Discrete Dynamics in Nature and Society Volume

2009. Article ID 407913, 22 pages, doi:10.1155/2009/407913.
Bischi, G.I., Gardini, L., Merlone, U., 2009b. Periodic cycles and bifurcation curves for one-dimensional maps with two discontinuities. Journal of Dynamical

Systems and Geometric Theories 7, 101–123.
Galam, S., 2003. Modelling rumors: the no plane pentagon French Hoax case. Physica A 320, 571–580.

http://www.ma.utexas.edu/mparc-bin/mpa?yn=10-124


L. Gardini et al. / Journal of Economic Behavior & Organization 80 (2011) 153– 167 167

Gardini, L., Tramontana, F., 2010. Border Collision Bifurcations in 1D PWL  map  with one discontinuity and negative jump. Use of the first return map.
International Journal of Bifurcation and Chaos 20, 3529–3547.

Gardini, L., Tramontana, F., Avrutin, V., Schanz, M.,  2010a. Border Collision Bifurcations in 1D PWL  map  and Leonov’s approach. International Journal of
Bifurcation and Chaos 20, 3085–3104.

Gardini, L., Avrutin, V., Schanz, M.,  Granados, A., Sushko, I. Organizing centers in parameter space of discontinuous 1D maps with one increasing and one
decreasing branches, submitted for publication.

Hao, B.-L., 1989. Elementary Symbolic Dynamics and Chaos in Dissipative Systems. World Scientific, Singapore.
Keener, J.P., 1980. Chaotic behavior in piecewise continuous difference equations. Transactions of the Amererican Mathematical Society 261, 589–604.
Leonov, N.N., 1959. Map  of the line onto itself. Radiofisisica 3, 942–956.
Leonov, N.N., 1962. Discontinuous map  of the straight line. Doklady Akademii Nauk SSSR 143, 1038–1041.
Schelling, T.C., 1973. Hockey helmets, concealed weapons and daylight saving. Journal of Conflict Resolution 17, 381–428.
Schelling, T.C., 1978. Micromotives and Macrobehavior. W.W.  Norton, New York.


	Inertia in binary choices: Continuity breaking and big-bang bifurcation points
	1 Introduction
	2 The model
	3 The analysis of the map with linear payoffs
	4 Case (I): dynamics of the map MI
	5 Case (II): dynamics of the map MII
	5.1 Increasing/increasing case
	5.2 Decreasing/increasing case
	5.3 Increasing/decreasing case
	5.4 Decreasing/decreasing case

	6 Conclusions
	References
	References


