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When nondegenerate homoclinic orbits to an expanding fixed point of a map
f:X— X, XCR" exist, the point is called a snap-back repeller. It is known that the rele-
vance of a snap-back repeller (in its original definition) is due to the fact that it implies
the existence of an invariant set on which the map is chaotic. However, when does the first
homoclinic orbit appear? When can other homoclinic explosions, i.e., appearance of infi-
nitely many new homoclinic orbits, occur? As noticed by many authors, these problems
are still open. In this work we characterize these bifurcations, for any kind of map, smooth
or piecewise smooth, continuous or discontinuous, defined in a bounded or unbounded
closed set. We define a noncritical homoclinic orbit and a homoclinic orbit of an expanding
fixed point is structurally stable iff it is noncritical. That is, only critical homoclinic orbits
are responsible for the homoclinic explosions. The possible kinds of critical homoclinic

orbits will be also investigated, as well as their dynamic role.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Many real processes in different sciences can be mod-
elled by noninvertible smooth or piecewise smooth sys-
tems. In the study of the bifurcation mechanisms which
are common to these systems a particular role is played
by the homoclinic orbits. It is well known that the homo-
clinic bifurcations are one of the most important tools to
analyze the dynamics properties, both in continuous and
in discrete time. The homoclinic bifurcations occurring in
continuous time models (see [34-37]) are often studied
by use of discrete maps associated with a so-called Poin-
caré section, and related with invertible maps. No homo-
clinic orbit can be associated with unstable foci or
unstable nodes in a two-dimensional invertible map, or
in general with repelling (expanding) cycles in n-dimen-
sional invertible maps, n > 2. While in noninvertible maps
we may have homoclinic orbits also associated with
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expanding fixed points or cycles. For a smooth map, a repel-
ling cycle p is expanding when all the eigenvalues are high-
er than 1 in modulus. Marotto was the first to prove in [28]
that homoclinic orbits may occur also for such repelling
points, and that chaos is associated to the existence of
homoclinic orbits. Indeed, his first work included a minor
technical mistake, and he himself gave a corrected version
in [29], after the appearance of several papers which, try-
ing to correct the mistake, were providing less general
proofs (as in Li and Chen [23]).

Recall that a nondenegerate homoclinic orbit to an
expanding fixed pointofamap f: X - X, XCR" n > 1, is
such that in all the points x; of the orbit the Jacobian J{(x;)
is defined and det (J{x;))= 0. When nondegenerate
homoclinic orbits exist, the point is called, after Marotto
([28,29]), a snap-back repeller (SBR for short), and its
importance relies on the fact that in any neighborhood of
such a homoclinic orbit it is possible to prove the existence
of an invariant set on which the map is chaotic. This prop-
erty holds in the phase space R",n > 1, or in a generic
compact metric space.

An increasing number of papers have been published,
dealing with homoclinic bifurcations of expanding cycles
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(we recall [10,9,25,26,20,31,32,11,17,18,15,16]). However,
when does the first homoclinic orbit appear? As noticed
in [18], as well as in [12,33,27], this is still an open prob-
lem, although some investigations in order to answer to
this question, have already been published. In [12] the first
observations are given for smooth maps of R" suggesting to
consider critical homoclinic orbits, which are those includ-
ing a critical point, as responsible for the first homoclinic
bifurcation called SBR bifurcation. We recall that according
to the definition given by Julia and Fatou, a critical point of
a smooth map is a point in which at least two different in-
verses are merging in a unique point, in which the map is
not locally one-to-one (see [12,30]). Recently, other papers
appeared considering suitable definitions aimed to charac-
terize the first homoclinic bifurcation of an expanding
fixed point. Clearly, to solve the problem one has to ana-
lyze what occurs when the condition of nondegeneracy is
not satisfied. However, there are several different kinds
of degenerate homoclinic orbits. For example, in continuous
maps degenerate orbits are those having a homoclinic
point g in which det (J{q)) = 0, or those having a homoclin-
ic point g belonging to the switching set of a piecewise
smooth function in which det (J{q)) is not defined. This is
the approach followed in a few recent works, among which
it is worth to mention the one by Shi and Yu in [33] and by
Glendinning in [18]. Indeed, as there are several cases of
degeneracy, there are different conditions and approaches.
But, as we show in the present paper, no one of these ap-
proaches works for all the possible cases. That is, we can
easily give an example of homoclinic orbit in which a
homoclinic point g has det (J{q))=0, or in which det
(U{q)) is not defined, and that is also structurally stable,
that is: not associated with a SBR bifurcation or any homo-
clinic explosion. In fact, we notice that considering a sys-
tem under parameter variations, the first SBR bifurcation
of an expanding fixed point (i.e., transition from no homo-
clinic orbit to infinitely many nondegenerate homoclinic
orbits) is often followed by many other so-called Q2-explo-
sions, i.e. homoclinic bifurcations leading to infinitely
many new nondegenerate homoclinic orbits.

As recalled above, homoclinic bifurcations of expanding
fixed points or cycles can occur only in noninvertible maps,
so it is not surprising to find out that the true condition
leading to a SBR bifurcation or any Q-explosion is associ-
ated with the noninvertibility in the neighborhood of some
homoclinic point. In the case of a continuous function in a
compact set, the definition given above of critical homo-
clinic orbits leads indeed to the only possible bifurcation
cases. Note that a degenerate homoclinic orbit may be crit-
ical (as in the case of existence of an extremum point) or
not (as in the case of existence of an horizontal inflection
point). Then we shall extend the definition and bifurcation
condition also to a great variety of noninvertible function,
smooth or piecewise smooth, continuous or discontinuous,
in a bounded or unbounded closed set X C R".

One more important question is related to the dynamics
associated with a critical homoclinic orbit (or a degenerate
homoclinic orbit which is also critical): is it possible to find
a chaotic set in its neighborhood? We give an answer also
to this question: in general nothing can be stated a priory.
We give examples in which chaos exists, as well as

examples in which a critical homoclinic orbit is not associ-
ated with a chaotic invariant set.

Note that critical homoclinic orbits in noninvertible
maps may also be associated with a homoclinic bifurcation
similar to a tangent bifurcation between the stable and
unstable sets of a saddle in smooth maps (an example is gi-
ven in Section. 4.2) as well as in piecewise smooth maps
(an example can be found in [13]).

The content of the paper is as follows. In Section. 2 we
recall the necessary definitions, comparing the related
properties. We recall well known theorems and present
our main result, namely the definition of critical homoclin-
ic orbit and Theorem 2, which is proved in the Appendix.
The dynamic behavior of a map associated with a critical
homoclinic orbit is investigated in Section. 3 in the case
of one-dimensional (1Dim for short) maps, showing sev-
eral examples, and illustrating how to proceed in order to
see whether a chaotic set exists or not. Section 3.1 is de-
voted to other kinds of homoclinic bifurcations, of maps
defined in unbounded sets. Further results and comments
on the structurally stable noncritical homoclinic orbits in
R",n > 1, are given in Section. 4, where we also discuss
several two-dimensional (2Dim for short) examples.
Namely, in Section. 4.1 we first analyze a class of maps
with separate second iterate, in which several examples
of SBR and other homoclinic explosions can be easily con-
structed, and then, in Section. 4.2 a class of maps in trian-
gular form, with an explicit example showing its peculiar
properties and SBR bifurcations. In Section. 4.3 we describe
a piecewise smooth 2Dim map, showing how the SBR
bifurcation of a focus point can be identified using the crit-
ical curves. Section. 5 concludes.

2. Homoclinic theorem

Let us consider a map f: X — X where X C R". To simplify
the exposition we limit our reasoning to a fixed point p of
flx). Then the same arguments can be applied to a k-cycle
of f by considering the fixed points of the map f*.

The main property used to prove the existence of chaos
(see the Appendix) is the existence of two disjoint compact
sets, say Up and Uy, such that

f¥Uo) > (UpUUy) and fXU;) > (Up UUy) (1)

for a suitable k (in the 1Dim case a map f possessing such a
property is called strictly turbulent following [8], see also
[22]). We shall see that this property occurs when a homo-
clinic orbit of an expanding fixed point exists, which satis-
fies particular conditions.

A homoclinic trajectory of a fixed point is one which
tends to this point in the forward process, and in some
backward one. For example, in a 1Dim unimodal map it
is easy to see when an unstable fixed point p becomes
homoclinic (and called snap-back repeller).

Consider the map whose graph is shown in Fig. 1a: the
fixed point p is there unstable, but not homoclinic (the pre-
images of p different from itself are external to the absorb-
ing interval I = [cq,c]). While in Fig. 1b it is homoclinic, and
in any neighborhood U of p two intervals Iy and I; can be
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4

(a)

Fig. 1. The fixed point p is expanding. Not homoclinic in (a), homoclinic in (b).

found such that f(Io) > Io Ul; and f*(I;) > IoUI; (there is
not a unique pair, an example in Fig. 1b is with k =6).

In the 1Dim case an unstable fixed point in which the
map is locally invertible is always expanding, while this
is not true in R". So let us recall the definition.

Definition 1. We say that a fixed point p of f: X — X,
X CR", is expanding if f is continuous in p and a neighbor-
hood U of p exists such that for any x € U\p an integer n,
exists for which f™(x) ¢ U (that is, the trajectory of x leaves
U in a finite number of iterations), and a local inverse f(;l
satisfies Nysofg"(U) = p.

Notice that we have not made use of the derivative or
Jacobian matrix of f in p, as in fact we shall characterize
the homoclinic bifurcations independently on the smooth-
ness of the function in the homoclinic points. It is clear,
however, that if fis smooth in p then a sufficient condition
for the fixed point p to be expanding is that all the eigen-
values of J{p) are larger than 1 in modulus, as the local in-
verse behaves as a contraction (see [19]).

In the following, considering a neighborhood U of an
expanding fixed point p, it is understood that it is a neigh-
borhood as in the definition given above, and we also say
that f is locally invertible in p with local inverse f;.

Given an expanding fixed point p of a map f, any point
in a neighborhood U of p is repelled away (thus no local
stable manifold can exist), but when fis noninvertible then
the trajectory of a point may come back in U again. This
occurs when p becomes homoclinic. And the fixed point
p becomes homoclinic when we can find preimages of the
fixed point itself, arbitrarily close to it. When this occurs
the fixed point is called a snap-back repeller. More pre-
cisely, a point q is called a homoclinic point of p (or homo-
clinic to p) if there exists an integer j such that fi(q) = p, and
it is possible to find a sequence of preimages of ¢ which
tends to p:

(’)q(P):{pH...,q_i,... 7q1:p},

(2)

where f(q)=q;i=1,...,j — 1,f(q) =p,and {q ;}3°, is a suit-
able backward orbit converging to p, i.e. f(q_;)=q_i+1 and
g_i—pasi— oo

Thus, considering a neighborhood U(p) in which the
map is locally expansive we can find a point of the homo-

7q—27q—17q7q17q2,...

clinic trajectory which belongs to U. So, without loss of
generality we can define a homoclinic trajectory via a point
X € U, its images x; = f(xo) and the local inverse fol(x) as
follows:

Definition 2. Let p be an expanding fixed point of
f:X — X,XCR". The point p is called a snap-back repeller
if there exists a point xq € U\p such that f*(xo)=p for a
suitable integer m. The orbit Oy, (p) given by

7f0_n(X0)7 . >f0_] (X0)7X07X17 o 7xm = p}

3)

Ox(P) = {p ...

is the related homoclinic orbit, where x; = f(xo).

Notice that according to this definition the fixed point
may be a point of non smoothness of f{x), differently from
the usual definition given, for example, in [28] or in [10].
We recall that Marotto (see [28] and [29]) gave the defini-
tion of snap-back repeller for a differentiable map
f:R" — R", under the assumption that all the eigenvalues
of J{p) exceed 1 in magnitude, and det (J{(x;)) # 0 in all the
homoclinic points. Smooth maps were considered also by
Devaney in [10], and he gave the definition of nondegener-
ate homoclinic orbit as follows:

Definition 3. A homoclinic orbit O(p) of an expanding
fixed point p of a smooth map f: X — X, XCR" is called
nondegenerate if det(J{x;))# 0 in all the points x; of the
orbit.

Recall that in [28] (as well as in [10]) for a smooth map
the following theorem is proved:

Theorem 1. (Marotto [28,29]). If a smooth map f : X — X,
X CR", has a snap-back repeller p such that all the eigen-
values of J{p) exceed 1 in magnitude, and O(p) is a
nondegenerate homoclinic orbit, then in any neighborhood
of O(p)f is chaotic in some invariant set.

Here the set is chaotic in the sense of Li and Yorke [24],
and of Devaney [10]. This result holds also for a wider class
of maps, which includes also discontinuous maps. In fact,
the theorem can be easily formulated for nondegenerate
homoclinic orbits of a piecewise smooth map, f:X —
X,X C R", when p is an expanding fixed point of f in which
all the eigenvalues of J{p) exceed 1 in magnitude and O(p)
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is a nondegenerate homoclinic orbit of p. Then in any neigh-
borhood of O(p) there exists an invariant Cantor set /1 on
which f is chaotic.

In [15] Theorem 1 has been extended to piecewise
smooth maps in R" for some degenerate homoclinic orbits
under some assumptions on the Jacobian J{p). We do not
write here the statement because below we shall improve
the result in Theorem 2.

Notice, however, that from the above theorem nothing
can be stated about the bifurcation which leads an expand-
ing fixed point to become a snap-back repeller, called SBR
bifurcation, as well as other homoclinic bifurcations lead-
ing to a new explosion of infinitely many nondegenerate
homoclinic orbits, called Q-explosions. This was indeed
still an open problem, both for smooth maps and for gen-
eric piecewise smooth ones.

It is clear that to identify such bifurcations one must
look for homoclinic orbits which are degenerate,i.e. not sat-
isfying the definition of nondegenerate given above (in
Definition 3). There are, however, several kinds of degener-
acy, also for a smooth map, and the relevant ones are only
the degenerate homoclinic orbits which are structurally
unstable (with respect to the existence of the homoclinic
orbit itself). For example, a homoclinic orbit having a point
q such that det(J{q)) = 0, is degenerate, but it is not neces-
sarily related to something particular. Under suitable
assumptions (given below in Theorem 2) it may also be a
structurally stable orbit, not involved in any Q-explosion.
For example, in the 1Dim case a local extremum may be
particular, but not a point q of the homoclinic orbit which
is a horizontal inflection point (as shown in Fig. 2a), where
the homoclinic orbit is persistent. In the case of piecewise
smooth maps, the derivative or Jacobian may be not de-
fined in a homoclinic point g, but this does not necessarily
mean that the orbit is structurally unstable, as shown in
Fig. 2b with a 1Dim example where the homoclinic orbit
is persistent as well. The function may be discontinuous
in a homoclinic point q (see Fig. 2c), and here the homo-
clinic orbit is not persistent (if the point ¢ moves on its
right side the homoclinic orbit disappears, differently oc-
curs if it moves on the left).

Notice that if a point q of a homoclinic orbit is a point of
non differentiability or is such that det (Jr(q)) = O, then The-
orem 1 (and the related generalizations) cannot be applied.
However, in the particular situations shown in (Fig. (2)a, b)
Theorem 2 given below applies and states the existence of
chaos. In fact, what matters in order to classify the first

f

homoclinic orbit to an expanding fixed point p, as well as
to characterize further homoclinic explosions, is a homo-
clinic orbit in which the local invertibility is lost in some
homoclinic point (which thus is not structurally stable).
The important property that we have in a structurally sta-
ble homoclinic orbit O(p) in the case of 1Dim maps is that
in each point x; of the homoclinic orbit the function is con-
tinuous and locally monotone (either increasing or decreas-
ing) and thus locally invertible (or locally one-to-one) in
a neighborhood of each point of the homoclinic orbit. Sim-
ilarly in the phase space R" this property corresponds to
the fact that in each point x, of a structurally stable
homoclinic orbit f is continuous in x;, and a neighborhood
V(xx) exists such that f is one-to-one in V(x,) (and clearly
onto the set f{V(x,))). When this occurs we say that f is lo-
cally invertible in each point of O(p). Then we give the
following:

Definition 4. A homoclinic orbit O(p) of an expanding
fixed point pofamap f : X — X,X C R", is called noncritical
if fis locally invertible in each point of O(p) (i.e. if in each
point x, of the homoclinic orbit f is continuous, and a
neighborhood V(x,) exists in which f is one-to-one).

We can also state the following property:

Property 1. A homoclinic orbit O(p) is critical if

(i) it includes a point in which f is continuous but not
locally invertible,
(ii) or it includes the limit value at a discontinuity point,
(iii) or it is unbounded.

A homoclinic orbit of p is noncritical when none of the
three conditions above are satisfied, i.e. it is bounded,
without any critical point, and without any discontinuity
point. When the function fis defined in a compactset X of
R" then if fis continuous only (i) can occur, while if fis dis-
continuous then also (ii) may occur. In part (ii) we do not
write “it includes a discontinuity point” to emphasize that
it does not matter how the function is defined, all the limit
values may be involved in a critical homoclinic orbit, but it
is clear that a critical homoclinic orbit with a limit value as
defined in (ii) also includes a discontinuity point. The last
condition in (iii) can occur only if X is a closed unbounded-
set of R", in which case the space R" is considered compac-
tified (that is, we include the points at infinity). In fact, the
main theorem (Theorem 2 below), characterizing the

(a)

Fig. 2. Degenerate homoclinic orbits. In (a) g is a point having vanishing derivative. In (b) q is a point of non differentiability in which fis continuous. In (c) q

is a point of discontinuity.
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structurally stable homoclinic orbits, only considers non-
critical (and thus bounded) homoclinic orbits of p, and its
proof is independent on the structure of the set X. While
a critical homoclinic orbit, which characterizes all the
structurally unstable homoclinic orbits leading to SBR
bifurcations or homoclinic explosions, also depends on
the definition of f in X. It is clear that if X is a closed
unbounded set of R" we still may have a critical homoclinic
orbit of type (i) or (ii), but also a new kind of homo-
clinic bifurcation mechanism can occur: unbounded
homoclinic trajectories (as described in Section. 3.1).

The existence of a noncritical homoclinic orbit is impor-
tant because it is possible to prove that in any neighbor-
hood of a noncritical homoclinic orbit there exists an
invariant set on which the restriction of the map is chaotic.
We remark that when we have a noncritical homoclinic or-
bit, we also have a sequence of well defined inverse func-
tions associated with each point of the homoclinic
trajectory. In fact, starting from the expanding fixed point
p =X, we must have x, 1 :fjl‘l(xm), (where the inverse
]31*1 is necessarily different from f;!), then x, , = j2*1
(Xm-1),Xm_3 =fj;1 (xm_2), and so on, where each index jj de-
tects the suitable unique inverse which has to be applied in
order to get the point of the homoclinic orbit under consid-
eration. We can now state our main theorem, which gener-
alizes Theorem 1 (we do not require the homoclinic orbit
to be nondegenerate!):

Theorem 2. Let f be a piecewise smooth noninvertible map,
f:X— X XCR" Let p be an expanding fixed point of f and
O(p) a noncritical homoclinic orbit of p. Then in any
neighborhood of O(p) there exists an invariant Cantor like
set A on which f is chaotic.

As mentioned above, this theorem improves a similar
one givenin [15].In fact in the previous version the function
was assumed differentiable in the fixed point, while here we
make no assumptions on the derivatives or Jacobians, and f
may be not differentiable in the fixed point p as well as in
other homoclinic points. The proofis given in the Appendix.

Note that the difference between Cantor set and Cantor
like set (the definition of which is given in Property 3 in the
Appendix) is that a Cantor set is proved to be a set of points,
while a Cantor like set is a set of compact elements which
(similarly to the points of a Cantor set) are in 1-1 corre-
spondence with the elements of the space X, of one sided
infinite sequences of two symbols {0,1}, and the set in-
cludes infinitely many cycles.

In the next section we shall focalize our attention and
comments to the 1Dim case, coming back in Section 4 to
the space R".

3. Critical homoclinic orbits in R!

As noticed above, Theorem 2 holds for noncritical
homoclinic orbits. Thus the homoclinic orbits which are
particular are only the critical homoclinic orbits in our
definition, and are the candidates to characterize the

! Clearly a noncritical homoclinic orbit may be degenerate or nonde-
generate, while a nondegenerate homoclinic orbit is also noncritical.

homoclinic bifurcations (not only the first one, the SBR
bifurcation, but any other as well). Here we shall investi-
gate the properties of critical homoclinic orbits in R,

A first result is that the dynamic behavior in a neighbor-
hood of a critical homoclinic orbit cannot be uniquely charac-
terized a priori (as chaotic or not). In fact, as we will see
below, in a neighborhood of a critical homoclinic orbit
the dynamic behavior depends on the particular system.
That is, both in smooth and piecewise smooth maps, in a
neighborhood of a critical homoclinic orbit a chaotic set
may exist or not exist.

Fig. 3 shows a discontinuous map in which we have the
left limit value y; as maximum, and the map is invariant in
an absorbing interval I=[f{u;),u;]. As long as f(u)>p
(Fig. 3a) the fixed point p has no homoclinic orbit. A neigh-
borhood of p exists which cannot include other periodic
points. It can be easily seen in Fig. 3a that periodic points
cannot exist in the interval [(u;),f2(uy)]. Therefore, no
invariant chaotic set can include p. This is true as long as
the only rank-1 preimage of p different from itself is out-
side the interval I (as in Fig. 3a). For f2(p;) = p, or f{ji) = p_1
(Fig. 3b), the fixed point p has a critical homoclinic orbit
(SBR bifurcation of p) and, as we shall see below, in any
neighborhood of the critical homoclinic orbit we can find
an invariant set in which the map is chaotic. For f(u;)<p
(Fig. 3c) the fixed point p has infinitely many noncritical
and nondegenerate homoclinic orbits (structurally stable).

Moreover, in the applied context, when a map is
investigated as a function of some parameters, it is
usually observed the first SBR bifurcation followed
by infinitely many further homoclinic explosions (£2-
explosions), and all of them are associated with critical
homoclinic orbits. In fact, whenever a preimage of the
fixed point from outside the invariant absorbing interval
enters inside, a new critical homoclinic orbit is created.
For example, the point p_, is a rank-2 preimage of p out-
side the interval I in Fig. 3c: if the parameters are chan-
ged so that f{u;) = p_,, then other new critical homoclinic
orbit appear (followed by infinitely many other noncriti-
cal and nondegenerate homoclinic orbits), again associ-
ated with chaotic behaviors and with a new explosion
of unstable periodic orbits.

Similarly, in Fig. 4 we show the first SBR bifurcation of a
fixed point p, but now before the bifurcation, see (Fig. 4a),
the fixed point does not belong to an invariant absorbing
interval I = [f{uy), pi] (in (Fig. 4a), p and its rank-1 preimage
bound the basin of attraction of I). The difference is that in
the example shown in (Fig. 3c) the nondegenerate homo-
clinic orbits appearing due to the critical homoclinic orbit
belong to a chaotic set inside the invariant attracting inter-
val I, while in the example shown in (Fig. 4c) these belong
only to a chaotic repeller (in fact, the interval I = [f{u), ]
is invariant but not attracting in (Fig. 4b) and no longer
invariant in Fig. 4c). Notice that the other fixed point x*
of the map shown in Fig. 4, belonging to I, is homoclinic,
and as the parameters are changed from (Fig. 4a) to
(Fig. 4b) infinitely many critical homoclinic orbits of x*
occur.

A critical homoclinic orbit, however, is not necessarily
associated with a chaotic invariant set. Fig. 5 shows a dis-
continuous map in which we are varying the right offset
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Fig. 3. The fixed point p is not homoclinic in (a). In (b) critical homoclinic orbits of p exist. In (c) noncritical homoclinic orbits of p exist.
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Fig. 4. The fixed point p is not homoclinic in (a). In (b) critical homoclinic orbits of p exist. In (c) noncritical homoclinic orbits of p exist.

(b)

Fig. 5. The fixed point p is not homoclinic in (a). In (b) a unique critical homoclinic orbit of p exists. In (c) noncritical homoclinic orbits of p exist.

Ug. For ug < p (Fig. 5a) the expanding fixed point p has no
homoclinic orbit. For ug = p (Fig. 5b) the fixed point p has
a unique critical homoclinic orbit (snap-back repeller bifur-
cation of p) but nevertheless in any neighborhood of the
critical homoclinic orbit we cannot find an invariant set in
which the map is chaotic. In fact, in Fig. 5b the unstable
fixed point p and this critical homoclinic orbit are the un-
ique nondivergent trajectories. For ug > p (Fig. 5¢) we have
an explosion of infinitely many different noncritical homo-
clinic orbits of p (structurally stable) and a chaotic repeller
exists.

To prove the existence of chaos associated with a criti-
cal homoclinic orbit, to which the Theorems given above
cannot be applied, it is enough to show that we can find
two disjoint intervals, Iy and I;, such that ff(Io) > Io U4
and fX(I,) > Io U I, for a suitable k. That this not always oc-
curs has been shown with the example in Fig. 5b and one
more example is given below (in Fig. 8b), showing a differ-
ent case in which it is not possible to find two intervals

which behave as required above, although other critical
homoclinic orbits with a chaotic invariant set can be found
(and a third example is given in Fig. 9d).

In the process described below to prove the existence of
chaos, continuous and discontinuous maps differ because
of the different properties in the critical points. We follow
the definition used by Julia and Fatou for smooth maps: a
critical point c is a local extremum, so that at least two dis-
tinct inverses exist, say f;! and f!, whose preimages of c
are merging in one point, say f!(c) = f7'(c) = c.1 (fif (%)
and f1(x) giving points on opposite sides with respect to
c_1), and the function has a vanishing derivative in c_;. In
[30] it is extended to nondifferentiable maps (in the
1Dim case a local extremum), and also to discontinuous
maps, defining as critical points the two extrema of a func-
tion at a discontinuity point. The images of a critical point
are also relevant in the description of the dynamics, so that
c is called critical point of rank-1 and c; = f(c), i=1, 2,...are
called critical points of rank (i + 1).
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When a critical homoclinic orbit involves a critical point
c which is a local extremum (case (i) in Property 1), then at
least two inverses exist, which are defined in ¢ and merg-
ing in a point c_4, and both are suitable. While when a dis-
continuity point is involved (case (ii) in Property 1), and a
limit value of f at the discontinuity point, y; or ug, then we
have a unique inverse which is of interest in that point.

Let us start with the case of a critical homoclinic orbit
involving a critical point ¢ which is a local maximum, to
fix the reasoning (considerations similar to those given be-
low clearly apply in the case of a local minimum). Consider
a critical homoclinic orbit O (p) including a critical point c
representing a local maximum, for which f(c) = p. At least
two merging preimages exist giving f'(c) = f71(c) = c_4
(see the qualitative picture in Fig. 6). Then problems may
arise from the fact that in any neighborhood of c_;f is not
1-1, so that locally a compact interval including c_; is
mapped by fin a compact interval having c=f(c_;) on its
boundary and thus in a finite number of iterations p is also
on the boundary. However, this is not a problem if we con-
sider only the topological property, without considering
the derivatives of the function in the homoclinic points
(and indeed the map may also be not differentiable in
some homoclinic points). Thus, let us consider a compact
interval W= W, U W, where W,=[a,c_1] and W, =[c_4,5]
for which f{W) = [y,c]. That is, at least two inverses are de-
fined in W), say fi'([y,c]) = W, and f;1([y,c]) = W,. Then
(W) must include a compact interval bounded by p. Let
U c f**(W) be a compact interval bounded by p. The local
inverse f~1(U) is disjoint from the inverse f!(U) where
fi'(p) gives the homoclinic point x,_; (as the preimages
are on opposite sides with respect to c_;). Then considering
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the preimages of U following the same functions which
give the homoclinic orbit by backward iterations, we get
an interval f%U) c [y,c] and due to the existence of the
critical value ¢ we are at a point in which at least two dif-
ferent inverses can be chosen. Then for any choice (for f;!
as well as for f-1) we have f*(U) ¢ W, or f*D(U) c W,.
In any case, continuing to follow the points of the given
homoclinic orbit we can detect a suitable n such that
I = f**™(U) c U (not including the point p). When the
set obtained with the repeated applications of the local in-
verse Ip = f; **"(U) (which includes p and is disjoint from
I) satisfies I = f; "™ (U) c U, the proof is done. As, defin-
ing F=f**m we have constructed two disjoint intervals I
and I; such that F(Ip) >DIoul; and F(I;) D IoU I, and this
ends the proof. Moreover, we can construct two different
invariant sets, once considering f;! and once f;! in the
above construction.

For example, let us consider the SBR bifurcation (the
first homoclinic explosion) of p in the map qualitatively
shown in Fig. 7. This bifurcation occurs when f(c) = p. Con-
sider the critical homoclinic orbit, say O,(p), given by

Oz(p) = {p <—f;n(C,1),. . .,f;l(C,]),C,],C, C1,Co :p} (4)

Here we have a chaotic set in any neighborhood of O,(p),
no matter if c_; is obtained via f'(c) or f!(c). Clearly,
changing the possible sequence of preimages of c_; we
can find infinitely many other critical homoclinic orbits,
different from O,(p), but all of them end with the points
(c_1,¢,¢1,c2 = p), and all of them are associated with a cha-
otic set.

However, this is not the case for the critical homoclinic
orbit

pIO

(b) (©)

Fig. 6. The fixed point p is not homoclinic in (a). In (b) critical homoclinic orbits of p exist, associated with a chaotic set. In (c) noncritical homoclinic orbits

of p exist.

s

C.;

% 2
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/
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(b)

(c)

Fig. 7. The fixed point p is not homoclinic in (a). In (b) SBR bifurcation of p and the critical homoclinic orbits are associated with chaotic sets. In (c)

noncritical homoclinic orbits of p exist.
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O3a(p) = {p < f;y"(c1),....f; ' (c21),c.1,€,¢1,C, 03 = P}

(3)

shown in (Fig. 8a).

This orbit Os4(p) corresponds to the second homoclinic
explosion of the fixed point p, occurring when f(c)=p.
Then consider the point q=f"'(c ;) and note that for
any interval including this point ¢ we need 5 iterations
to return to obtain an interval including the point g again
(see Fig. 8b). Even if we consider as q any other homoclinic
point of the same homoclinic orbit, closer to p, the number
of iterations needed to an interval I; including g to return
on the right side including q and I, again, is an odd number.
By contrast, any right neighborhood I of p needs an even
number of iterations to be on the right side again. It follows
that we can find two integers k; and k, satisfying Lemma 4
in [18], one odd and one even, and indeed a homoclinic or-
bit exists, but this homoclinic orbit is not associated with a
chaotic set because we cannot find a unique integer k such
that f(Io) > Io U l; and f*(I;) > b U L.

Nevertheless, there are infinitely many critical homo-
clinic orbits, all ending with the same critical points
(c_2,c_1,6,C1,C2, c3=p), which are associated with chaos,
as for example the critical homoclinic orbit

Op(p) : {p — f;"(c2) ... .f7 ' (c2),
¢ =f"(c1),cq,¢01,60,03 =p}

(6)
(see Fig. 8c). In fact, let ¢ = f'(c_,) as in Fig. 8d and con-
sider the point ¢ on the left of g such that (¢ ) =g, then
let L =[&q]: we have [f°(I;)=[p,c]. Consider now
Ip = f8[p, c] (see Fig. 8e). So we have found two disjoint
intervals I and I; such that f5(Iy) > Io U I; and f8(I,) D Io U ;.

Notice that the critical orbit involved in the first homo-
clinic bifurcation of a fixed point p is not necessarily the
one associated with the critical point bounding the invari-
ant absorbing interval of interest, as shown in Fig. 9.
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And also in such a case the critical homoclinic orbit in
Fig. 9b (when c=p) is associated with a chaotic set and
nothing changes in the construction of the intervals de-
scribed above except for the inverses which are used: here
the local inverses f~! and f! associated with the critical
point c = p, giving c_q, are different from the local inverse
fi! acting on the unstable fixed point p, and we can have
different kinds of homoclinic orbits (by using both in-
verses, f;! and f-', as shown in Fig. 9c).

Similarly we can reason in the case of a discontinuous
map. Let us consider a critical homoclinic orbit O(p)
including a point y; or ug. Then the critical homoclinic or-
bit must include the discontinuity point d and for some
integer k we have f(u;)=p or f(ug)=p. In these cases,
problems may arise from the fact that a compact interval
including d is mapped by f in two disjoint intervals, one
bounded by y; and one by ug. Clearly we have to consider
only one of them, the compact interval bounded by g if it
is f(u;) = p, or the one bounded by i if it is f(ug) = p. Thus
in the discontinuous case, in the construction of the suit-
able intervals we have not an alternative associated with
the left/right side of the discontinuity point, but a unique
choice.

From Fig. 10 we can see that it is easy to find particular
cases in which a single critical homoclinic orbit involves
two conditions in Property 1: twice (i) (Fig. 10a), or both
(i) and (ii) (Fig. 10b and c). However this does not intro-
duce more complicated reasoning with respect to those gi-
ven below. In other words, in Fig. 10a for each critical point
we can reason in a similar way, thus proving the existence
of different invariant chaotic sets associated with the same
critical homoclinic orbit. In the cases of (Fig. 10b and c) a
particular attention must be paid in order to detect
whether it is the critical point or the discontinuity point
or both, to be associated with complex dynamics.

Another critical homoclinic orbit not associated with a
chaotic set is shown in Fig. 10d. In this example, any left
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Fig. 8. Second homoclinic explosion of the fixed point p. In (a) the critical homoclinic orbit is not associated with a chaotic set. In (b) a neighborhood of q
takes 5 iterations to include g again. In (c) a different critical homoclinic orbits of p is considered, associated with chaos. In (d) a suitable interval I is shown.

In (e) a suitable interval Iy is shown.
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(a)
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Fig. 9. The fixed point p is not homoclinic in (a). In (b) critical homoclinic orbits of p exist. The critical point involved in the homoclinic bifurcation is not
associated with the absorbing interval. In (c) noncritical homoclinic orbits of p exist.
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Fig. 10. In (a) a critical homoclinic orbit involves two critical points, a local maximum and a local minimum. In (b) a critical homoclinic orbit involves two
critical points, a local maximum and a value (right limiting value) at a discontinuity point. In (c) a critical homoclinic orbit involves two critical points, a
local maximum and a value (left limiting value) at a discontinuity point. In (d) a critical homoclinic orbit is not associated with a chaotic set.

neighborhood of y; = p, following backward the homoclinic
orbit, has preimages only on the right side of p.

3.1. Homoclinic orbits in unbounded sets X C R!

Up to now we have considered examples of critical
homoclinic orbits for a map f: X — X in which X is a com-
pact (closed and bounded) subset of R!. Let us now exam-
ine via an example what may occur when we consider a
closed and unbounded set X of R'.

It is clear that we still may have expanding fixed points
which undergo their SBR bifurcation and other Q-explo-
sions via critical homoclinic orbits of type (i) or (ii) in Prop-
erty 1. However, when the map has an unbounded domain
and range, a new kind of homoclinic bifurcation mecha-
nism can occur, which leads to part (iii) in Property 1. In
fact, we have to introduce a new concept, which in the
1Dim case is associated with the occurrence of a horizontal
asymptote (which means that the rank-1 preimage of a
real point may be at infinity, +oo or —co), and that of a ver-
tical asymptote as well. In such cases we consider the real
space closed, including the points at infinity.

To better understand this new kind of critical homoclin-
ic orbit let us describe an example. Consider the map
whose shape is shown in Fig. 11. We can see that f:
X — X where X =[—oo,c] is unbounded. There is a vertical
asymptote in x=v ({v) = —co, and let f;'(—c) = v) and
an horizontal asymptote in h (f{—~oo)=h, and
fi1(h) = —oc0). Here the critical point x = ¢ is not involved
in the homoclinic bifurcation of the fixed point x = p. The
fixed point p in Fig. 11a is below the horizontal asymptote
h (h > p), and has no other rank-1 preimage different from
itself in the interval X, i.e. in p only the local inverse is de-
fined, say f;'(p) = p. As long as it is h > p the fixed point is

not homoclinic. A new kind of homoclinic bifurcation (here
SBR bifurcation of p) occurs when h =p (see Fig. 11b), as
after this bifurcation, when h < p (see Fig. 11c) there is an
explosion of nondegenerate homoclinic orbits of p, involv-
ing another inverse function. That is, when p > h one more
rank-1 preimage of the fixed point p appears, say
p_; = fi1(p), creating homoclinic orbits, and at the bifurca-
tion, when p = h, this new rank-1 preimage of the fixed
point appears at —oo. Indeed at the bifurcation we can see
that both the horizontal and vertical asymptotes are involved:
we can consider the unbounded critical homoclinic orbit (see
Fig. 11b)

Ooc(p) : { .. 7f(;n(v)7 s 7f071(v)7 v :f(;1(—00),
—oo =f;'(h),p=h}. (7)

Also notice that an unbounded critical homoclinic orbit in
general is not the unique existing one. In Fig. 11c we show
a second one. These new unbounded critical homoclinic or-
bits lead to infinitely many noncritical (and nondegener-
ate) bounded homoclinic orbits of p when p>h. The
bounded homoclinic orbit shown (in black) in Fig. 11d is
given by

o) :{...fo" 0 1), .S (1):p 1 =f'(p), P} (8)

After this first homoclinic explosion (SBR bifurcation of p)
other Q-explosions may occur due to the crossing of the
same horizontal asymptote h of other homoclinic points.
For example, in Fig. 11d the homoclinic point
q=fy%(p_;) is below h. We can assume a change in the
function so that to have q = h (and thus a new unbounded
critical homoclinic orbit), leading, for g > h, to a new explo-
sion of nondegenerate homoclinic orbits of p.
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Fig. 11. The fixed point p is not homoclinic in (a). In (b) and (c) unbounded critical homoclinic orbit of p are shown. In (d) noncritical homoclinic orbits of p

exist.
3.2. Different homoclinic bifurcations

In this work we are characterizing the homoclinic bifur-
cations which lead an existent fixed point p, expanding, to
become SBR. We also recall that in the 1Dim case, if the
eigenvalue of an expanding fixed point p is negative then
its SBR bifurcation leads to homoclinic points on both sides
of p. While if the eigenvalue of p is positive then its SBR
bifurcation usually leads to homoclinic points on one side
only. Thus it may occur, after, that another Q-explosion
creates homoclinic points on the other side. In this case
we may distinguish between two SBR bifurcations associ-
ated with the two sides of p (as both are global bifurcations
which may have relevant dynamic effects).

However, it is worth to mention that the appearance of
noncritical and nondegenerate homoclinic orbits of a fixed
point may also occur via different kind of bifurcations, both
local and global, as shown in the following examples.

Example 1. A stable fixed point may become homoclinic
due to its flip bifurcation. That is, we may have a fixed
point p attracting for ¢<¢&; at &=¢f its flip bifurcation
occurs (eigenvalue equal to —1), and for ¢ > ¢ nondegen-
erate homoclinic orbits exist. An example is shown in
Fig. 12. In Fig. 12a the fixed point p is stable, and via a
subcritical flip bifurcation it becomes unstable and imme-
diately with nondegenerate and noncritical homoclinic
orbits (Fig. 12b).

Example 2. A fixed point or cycle may appear via border
collision bifurcation, and soon after its appearance it may
have homoclinic orbits. As an example consider the transi-
tion from invertibility to noninvertibility in the 1Dim
piecewise linear map with one discontinuity point d, and

’

(a) (b)

Fig. 12. The fixed point p is stable in (a), and homoclinic in (b).

two branches f; and fz as shown in Fig. 13. In Fig. 13a it
is fiofr(d)>frofi(d) so that the map is invertible in
I=[ug ui], where pg=fr(d) and p;=fi(d), and there can
be only a stable regime (the structurally stable attractor
can only be a stable cycle, or quasiperiodic trajectories
can exist, but no homoclinic orbit). In Fig. 13b it is
fi o fr(d) = fr o fi(d) (bifurcation value) and the map is topo-
logically conjugate to a linear rotation (only periodic or
quasiperiodic orbits can exist). In Fig. 13c it is
frofr(d)<frofi(d) so that the map is noninvertible in I,
inside which there can be only a chaotic regime (no stable
cycles can exist, only unstable and homoclinic). That is,
after the bifurcation value infinitely many unstable cycles
appear via border collision bifurcations and these are
homoclinic. For the details we refer to [21] and [14].

Example 3. A saddle node bifurcation in a smooth map
may give rise to a cycle which is already homoclinic at
its appearance, and with homoclinic points (on one side
only) also at the saddle node bifurcation value. For exam-
ple this occurs in the logistic map (or any map topologi-
cally conjugate to it) after the Feigenbaum point, at any
saddle node bifurcation value opening a periodic window
of a k-cycle (and infinitely many of them occur, also many
for the same value of k).

4. Critical homoclinic orbits in R"

Let us now turn to the general case of homoclinic orbits
of maps in R" and consider an expanding fixed point p of a
map f: X - X with X C R". The property of a homoclinic or-
bit to be noncritical is structurally stable, that is, under
parameter variation the homoclinic orbit persists and is
noncritical (and the function f and f after the perturbation
are conjugated), thus Theorem 2 applies to structurally sta-
ble homoclinic orbits. In other words, the critical homoclin-
ic orbits are structurally unstable, as in fact, a small
variation of the parameters brings a critical homoclinic or-
bit on one side to become noncritical and on the other side
to disappear. We exclude particular cases in which a criti-
cal homoclinic orbit persists under some parameter varia-
tion, that is, we assume that a kind of transversality
condition is satisfied. Let a critical homoclinic bifurcation
occur at a parameter value ¢ = ¢.. Then on one side of the
bifurcation value, say for ¢ < &, this homoclinic orbit does
not exist, while if the transversality condition is satisfied,
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for ¢ > &, close to the bifurcation value, this homoclinic or-
bit exists and is noncritical. The first SBR bifurcation and
further homoclinic explosions of an expanding fixed point
p must involve a critical homoclinic orbit.

We notice that our approach generalizes the definition
given by Glendinning in [18], where a particular set of
points W for a hybrid continuous map is considered, given
by the set of points in which the Jacobian is not defined. In
that paper it is noticed that a homoclinic orbit having a
point in the set W is not structurally stable. However, this
is not necessarily always true. We can easily find examples
of n -dimensional maps in which a point of the homoclinic
trajectory belongs to the set W but keeping the property of
being locally invertible, and thus noncritical in our defini-
tion (generalization of the 1Dim case shown in Fig. 2b), so
that such a homoclinic orbit is also structurally stable, and
Theorem 2 works perfectly.

A similar notion is introduced also by Shi and Yu in [33]
with respect to points in which the determinant of the
Jacobian is vanishing. A homoclinic orbit with a point in
which the Jacobian determinant is vanishing is called
“not regular”, and the authors show that it may be not
structurally stable. However, also this classification of “not
regular” homoclinic orbit may lead to a structurally stable or-
bit, noncritical in our definition, and thus not related to a
bifurcation value. We can easily find examples of n-dimen-
sional maps in which a point of the homoclinic trajectory
belongs to the set Wy of vanishing Jacobian, but satisfying
in the meantime the property of being locally invertible
and, thus, noncritical (generalization of the 1Dim case
shown in Fig. 2a), so that Theorem 2 can be applied.

As we have seen in Section 2, the true property leading
to a homoclinic orbit which is not structurally stable (and
thus leading to the SBR bifurcation and other homoclinic
explosions), is the one here described. We can so state cor-
ollaries of the main result given in Theorem 2:

Corollary 1. Let f: X — X,XCR", be a piecewise smooth
noninvertible map, p an expanding fixed point of fand O(p) a
critical homoclinic orbit of p, then O(p) determines either the
SBR bifurcation or another homoclinic explosion of p.

So, assuming a kind of transversality condition, we can
state that the critical homoclinic orbits are structurally
unstable. In other words, we can state the following:

Corollary 2. Let f: X — X,XCR", be a piecewise smooth
noninvertible map, p an expanding fixed point of f and O(p) a
homoclinic orbit of p. The homoclinic orbit O(p) is structurally
stable iff it is noncritical.

(b)

*‘i{ MR

(c)

Fig. 13. In (a) the map is invertible in I. In (b) the map is at a bifurcation. In (c) the map is noninvertible in I.

In section 3 we have described what is a critical point ¢
for a 1Dim map. Let us now characterize a critical point of
maps in R". As for the 1Dim case, we can have several
kinds of critical points: with vanishing Jacobian, or not de-
fined Jacobian (and as in the 1Dim case different one-side
Jacobians can be defined). Associated with points in which
the map is continuous, all the points in which f is not lo-
cally invertible (satisfying part (i) of Property 1) lead to
the so-called Critical Set denoted as CS, or, in the case of a
2Dim map, to the Critical Line? traditionally denoted as LC
(from the french Ligne Critique, as in [30] and references
therein). The critical line LC is the set of points of the plane
having at least two merging preimages in points in which
the map is not locally 1 — 1. The set of merging preimages
is denoted by LC_;. Similarly in a higher dimensional space,
the Critical Set CS is the set of points of the space having at
least two merging rank-1 preimages in points in which the
map is not locally 1-1, and the set of merging preimages is
denoted by CS_;. That is, let x € CS, then in any neighbor-
hood of x we can find at least two inverse functions, say
f71(x) and f'(x) such that f7'(x) =f'(x) =x_1 € (S (fi”!
and f-! giving points on opposite sides with respect to
CS_1). When the map f is smooth, the set CS_; is a subset
of the locus defined by det (J{x))=0 (it may be equal or
strictly included in it). When the map is piecewise smooth
and continuous, the set CS_; may include (not necessarily)
a set in which the map changes definition (also called
switching manifolds).

Considering discontinuous maps, we include in the set
CS_; also the points of discontinuity, and clearly in the
set CS the limit values at the discontinuity points are in-
cluded. That is, considering a point of discontinuity
X_1€CS_4 then lim, . ,f(y) € CS. Thus in discontinuous
maps part (ii) of Property 1 may occur, in which case the
critical homoclinic orbit includes also a critical point asso-
ciated with the discontinuity.

Considering part (iii) of Property 1, we have seen that in
the 1Dim case the critical homoclinic orbit must necessar-
ily include both a horizontal and a vertical asymptote. Sim-
ilarly we can reason in R". Such an unbounded critical
homoclinic orbit must necessarily include both a real point
whose inverse is at infinity, and a real point in which the
map takes infinite value (i.e. the rank-1 preimage of a point
at infinity must be real). Several examples of maps of the
plane having a vanishing denominator or inverse functions

2 With the meaning of Critical curve, i.e. not necessarily a straight line.
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with a vanishing denominators have been considered in
[2-5].

Consider now a critical homoclinic orbit O(p) of an
expanding fixed point p, so that f does not satisfy the prop-
erty of being locally invertible in each point of O(p). One
more problem is whether such an orbit is associated with
an invariant chaotic set or not. As we have shown in the
previous section, for maps in R' this may occur or not.
The same result holds in general for maps in R". In [18] it
was shown that, depending on the signs of the eigenvalues
of a repelling node in R?, a critical homoclinic orbit may be
associated with chaos or not.

In the case of a repelling focus in R? a critical homoclin-
ic orbit is more likely associated with chaos. Examples of
critical homoclinic orbits to an expanding focus have been
given for a smooth map in [15], for a piecewise smooth
continuous map and for a discontinuous one in [16]. Other
2Dim examples are given in the following subsections.

4.1. Maps with separate second iterate

A first example of 2Dim maps from which several
examples can be obtained and whose properties are
strictly related to those of a 1Dim map is the class of maps
given by

, {x' =gy)
Y =f®)

having separate second iterate (see [6]) in which the 1Dim
function

9

F:Z=fog(2) (10)

determines the bifurcations of ®. Here the SBR bifurcation
and other homoclinic explosions of cycles of the 1Dim map
F in attracting invariant sets also correspond to SBR and
homoclinic explosions of cycles of the 2Dim map @ in
attracting invariant 2Dim sets. In particular, defining

X =y
{5 he a

all the qualitative maps z = f{z) considered in the 1Dim
examples of Section 3 lead to analogues in the 2Dim case.
That is, all the SBR and homoclinic bifurcations there de-
scribed for fixed points also occur for the related fixed
points in the 2Dim map T defined in (11).

For example, a 2Dim analogue of the 1Dim example
shown in Section 3.1 defined in a closed and unbounded
set X C R? can be easily constructed via the map T given
in (11), and the function f(x) of Fig. 11.

4.2. Triangular maps

One more class of maps in the phase space R? which can
be obtained making use of any 1Dim map f already consid-
ered in Section 3 is related to triangular maps. A map T of
the plane into itself is called triangular when it has the fol-
lowing structure:

¥ =fX)

' {y’ =2(x,y) (12

for which the cycles and critical points are associated with
the related cycles and critical points of the 1Dim map
x = f{x). A peculiarity of this class of maps is that the eigen-
values associated with any cycle are always real, so that it
is not possible to have repelling foci. The unstable cycles
are only saddles and repelling nodes, as the Jacobian ma-
trix has a triangular structure with diagonal elements lead-
ing to the eigenvalues: J;1 =f(x) and J»> = dyg(x,y). As an
example let us consider the standard logistic function
fa(x)=ax(1 — x) coupled with a linear function g(x,y)=
X+ by:

T(x,y) : {x/ =fa(x) = ax(1 — x)

Y =8 (x,y) =x+by

It is immediate to see that T in (13) is of so-called Z, — Z,
type of noninvertibility. The critical sets LC_; and LC are gi-
ven by the straight lines x=c_;=0.5 and x=c=a/4,
respectively. Any point of the half-plane on the right side
of LC (region Zy) has no rank-1 preimages. By contrast,
any point of the half-plane on the left side of LC (region
Z5) has two distinct preimages, one on the right and one
on the left of LC_4, given by:

(13)

1 = e-Va-dad ) x — aV@ A
Tl_ (X,7yl) : { y/ixza ) TT_ (X/my,) : { yrixza
=" y=1=
(14)

Clearly any point (x,y) € LC has two merging preimages
T,'(x,y) =T, '(x,y) on LC_;.

The two fixed points x* = %=1 and x = 0 of f,(x) lead to the
two fixed points of T: P*= (x*y*) where y* = and O =
(0,0). As one eigenvalue is constant and equal to the
parameter b we have that for |b|<1 no cycle can be
expanding, and T can only have attracting cycles or sad-
dles. Moreover, the stable eigenvector associated with
the eigenvalue b belongs to vertical lines through the peri-
odic points. The initial conditions with x <0 and x > 1 lead
to divergent trajectories.

Differently, for |b| > 1 no attracting cycle can exist, and
the cycles of Tcan only be saddles or repelling nodes (i.e.
expanding), and the unstable eigenvector associated with
the eigenvalue b belongs to vertical lines through the peri-
odic points. Thus almost all the trajectories are divergent in
this case, and the invariant set in the phase space is a so-
called chaotic repeller.

The SBR bifurcation of the fixed point x* of the logistic
map occurs when the parameter is a=a*~ 3.67857351,
such that f2 (c) = x*, and at this bifurcation value we have
that all the homoclinic orbits of x* are critical (and also
associated with chaotic sets).

For the 2Dim map T in (13) the result of this bifurcation
depends on the parameter b. For |b| <1 it corresponds to
the first homoclinic bifurcation of the saddle fixed point
P* (the unstable set of P* becomes tangent to the stable
one) whose dynamic effect is that an attracting set made
up of two disjoint pieces for a < a* becomes in one unique
piece for a > a* (as for the 1Dim case).

Similarly, at a =4 the SBR bifurcation of the origin for
the logistic map becomes, for T in (13), the first tangency
between the stable and unstable sets of the saddle O, and
for a> 4 all the cycles belonging to a chaotic repeller in
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the phase plane are saddles. Thus no SBR bifurcation of P*
(or of O) can occur in these cases. An example is shown in
(Fig. 14a and b) at b =0.9 before and after the homoclinic
tangency at a = a*, and in (Fig. 14c and d) at b =—0.9 before
and after the homoclinic tangency at a = a*. The boundaries
of the regions shown in Fig. 14 are made up by lateral seg-
ments of critical curves LC;, while upper and lower bound-
aries are given by the unstable sets of saddle cycles. In [30]
the boundaries of these areas are so-called of mixed type,
different from those occurring in other cases, where all
the boundaries are made up of critical segments, an exam-
ple of which will be given in the next subsection. We re-
mark that in this case also the homoclinic bifurcations of
saddle cycles (via tangency of the stable and unstable sets) oc-
cur via a homoclinic orbit which includes a point belonging to
the critical set LC.

For |b| > 1 the SBR bifurcation of the fixed point x* of the
logistic map occurring at a=a* corresponds to the SBR
bifurcation of the expanding node P*. At a=a* all the
homoclinic orbits of P are critical (an example is shown
in Fig. 15a at b=1.1 and in Fig. 15b at b= —1.1). While
for a>a* close to the bifurcation, the homoclinic orbits
of P* are noncritical and nondegenerate. This situation per-
sists up to the second homoclinic explosion of P* occurring
at the parameter a such that f3(c) = x* when other critical

homoclinic orbits emerge. Regarding the existence of a
chaotic set associated with the critical homoclinic orbits
at the bifurcation values, it is most likely that these sets ex-
ist, because the eigenvalues of P* are either both negative
or one positive and one negative.

The situation at a =4 is similar: the SBR bifurcation of
the origin for the logistic map is also for T the SBR bifurca-
tion of the fixed point O. At a =4 all the homoclinic orbits
of O are critical, while noncritical and nondegenerate for
a>4.

4.3. A smooth map of type Z; — Z3 — Z;

The last example that we propose is a smooth map con-
sidered in [7]. We refer to that work for the details regard-
ing the critical sets recalled below, and other properties of
this map. It is a 2Dim noninvertible map of type
Zy — Z3 — Z; defined by:

X =x+
T v (15)
¥y =ax +bx" +cx® +dy

The map T in (15) has three fixed points O= (0,0), P=
(xp,yp) and Q= (xq,yq), where

8
. ¥ - Bf
6
0 1
0 (a) . (b)
3
TL:
p*
i
3
0

Fig. 14. Attracting sets of map T in (13). Initial conditions in the gray region give divergent trajectories. LC_; is the vertical line at x = 0.5. The vertical line
through P* is its local stable set. In (a) b=0.9 and a<a*. In (b) b=0.9 and a>a*. In (c) b=—0.9 and a<a*. In (d) b=—0.9 and a > a*.



446 L. Gardini et al./Chaos, Solitons & Fractals 44 (2011) 433-449

1.5
.1‘3;‘
y . B3
e :
=1 {P*
0 c, . |
By® “r . ¢
P} :
B P*
-0.5 -4
-0.1 X 1.1

=6
Py
y . 1! P P*
P* . ._5
-2 H ok
fpu ™2
P*
Ic,
-8 :
-0.1 ¢ ¢; x ¢ 11

(b)

Fig. 15. Critical homoclinic orbits of the fixed point P of the map T in (13) at a=a* In (a) at b=1.1 and in (b) at b=-1.1.
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Xp ==t 212 4 yp=0 (16)
2
Xq = —hpr e 2’2 e, Yo=0

The inverses of T in (15) are obtained via the solutions
of a cubic equation. The rank-1 preimages of a point (x,y)
are the points (x,y) which are solutions of the following
equations:

o +b +(a—dx+dd —y =0, y=x—x (17)

The phase space of map T in (15) is divided into three re-
gions Z,,k = 1, 2, 3, characterized by points having k distinct
rank-1 preimages. The boundaries of the regions Z;, k=1,
3, are made up of two parallel straight lines L, L', defining
the critical curve LC=L UL’ The critical set LC is the locus
of points having at least two merging rank-1 preimages
(obtained by two different determinations of the inverse
map T~') and the set of merging points gives the critical
set LC.y =L UL ;. So we have LC=T(LC_;) =T(L_1)u
T(L' ;) and here the two branches of LC_; are given by
the condition detJ{(x,y) = 0. Therefore we obtain

—b—+/b*—3c(a—d
L, \V c(a—d)

3c ’
g —b+/b* —3c(a—d) 18
-1 (X = 3C ( )

Considering the parameters a=0.25, c=-0.5, d=—1.08,
then for b in a suitable range the fixed point Q is a stable
focus, which becomes for increasing b an unstable focus,
and sequences of further bifurcations lead to an annular
chaotic area (see [30]) surrounding the unstable focus.
No homoclinic orbit of Q can exist as long as the points
in a neighborhood of Q are repelled and can never come
back, as it occurs when an annular area exists. At b=1.01
the fixed point Q is still surrounded by an annular chaotic
area, but the hole around it is now very small (see Fig. 16a),
and at b~ 1.017 the SBR bifurcation of Q occurs. This
bifurcation can be easily detected considering the critical
curves which bound the annular chaotic area A. In fact,
the boundary of an invariant annular area A is obtained
by a finite number of critical segments Ti(g), i=1,..., n,

where g=ANLC_; is called the “generating arc” (see
[13,30]). In our example shown in Fig. 16 the boundary
of A belongs to the set U?:]Ti(g), where g=AnNL_;.
Fig. 16b illustrates the 8 images of the generating arc and
in Fig. 16a we show the critical segments on the annular
area A.

Let Q_; be the rank-1 preimage of Q different from itself
and belonging to the region between the two lines L_; and
L, 3 Aslong as Q_; is located outside the invariant area A no
homoclinic orbit of Q can exist. The SBR bifurcation occurs
when the preimage Q_; belongs to the boundary of A. At this
bifurcation value infinitely many homoclinic orbits appear,
whereby all of them are critical. In fact, as Q_; belongs to
the boundary of A, made up of critical segments, we have
that a point q_; € g(CL_1) must exist, which is mapped in
Q_; in a finite number of iterations, and preimages of q_;
spiraling towards Q can be easily found. In our example at
the SBR bifurcation of Q we have that Q_; belongs to an
arc of LCs, so that T*q_;)=Q_; and thus T°(q_;)=Q.
Fig. 17 shows the invariant area at the SBR bifurcation value,
which is now obtained via UleTi (g) (whereg=ANL_q). Thus
all the homoclinic orbits must be of the following kind:

0Q):{Q«...q1€Ll4,9€L,q,€L1,q, €L5,q5
=Q 1 €l3,9,=Q¢€Ls} (19)

In particular, denoting by T,' the inverse of T for which Q is
fixed, i.e. T,'(Q) = Q, we obtain that

0Q):{Q—=Ty"(q1);---,91 €890,91,92,95 = Q1,94 = Q}

(20)

is a critical homoclinic orbit of Q (the critical point qq be-
longs to LC and q_; belongs to LC_;).

In our example, it is most likely true that all the critical
homoclinic orbits at the SBR bifurcation value are associ-
ated with chaotic sets. This comes from the following argu-
ments. We know that a neighborhood W of q_; is folded
along L inside the invariant area A and the image T>(W)
reaches the fixed point Q. Thus a portion of area bounded

3 We notice that a third preimage also exists, it is a so called extra-
preimage (see [30]) which plays no dynamic role.
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(a)

2

(b)

Fig. 16. Invariant annular area as attracting set of the map T in (15) at a = 0.25, c=—0.5, d =—1.08 and b = 1.01. In (b) only the critical segments are drawn,
giving the boundary of the annular area. The rank-1 preimage Q_; of Q is external to the invariant area and Q is not homoclinic.
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Fig. 17. Attracting set in (a) and invariant area in (b) of the map Tin (15) at b = 1.017. The rank-1 preimage Q_; of Q is on the boundary of the invariant area,

and critical homoclinic orbits of Q exist.

by an arc of critical curve L4 has the fixed point Q on the
boundary. Then all the images of T>(W) are also areas with
a boundary of critical curve L; for any j > 4, and through the
fixed point Q. It follows that if we take this area U= T>(W),
most likely we can have T,"(U) c U for several integers n
(such a set plays the role of the set Up), while taking the
preimages of U following the homoclinic trajectory an area
U, belonging to U may also be found. The most difficult
thing to prove is that we can find an integer k such that
Tk(U()) D) U() @] U] and ’Ik(U1) D) U() @] U].

In any case, independently on what occurs at the critical
homoclinic orbits, the important fact is that for b>1.017
the preimage Q_; is internal to the invariant area A and
infinitely many noncritical and nondegenerate homoclinic
orbits of Q exist (for which the proof of the existence of the
chaotic set is standard).

We notice that similarly to what occurs in 1Dim maps,
after the SBR bifurcation other homoclinic explosions of Q
occur. This happens whenever preimages of Q from outside
the invariant area A enter inside. At the bifurcation, when
the preimage belongs to the boundary of A, critical

homoclinic orbits are created, followed by an explosion
of noncritical homoclinic orbits.

5. Conclusions

In this work we have characterized the occurrence of
the first SBR bifurcation of an expanding fixed point p (or
of acycle)ofamap f : X — X, X C R", as well as all the pos-
sible homoclinic explosions of p. The most important no-
tion leading to the classification of homoclinic orbits as
structurally stable or not is the notion of noncritical homo-
clinic orbit given in this work (in Definition 4). In fact, when
the homoclinic orbit is noncritical then we have proved in
Theorem 2 that, whichever is the map (smooth or piece-
wise smooth, continuous or discontinuous), in a neighbor-
hood of the noncritical homoclinic orbit an invariant
Cantor like set A exists, and this property (of being non-
critical) is persistent under small variation of the parame-
ters, so that a noncritical homoclinic orbit is structurally
stable. Using several 1Dim examples we have shown that
in general nothing can be stated about a critical homoclinic
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orbit a priori. That is, in a neighborhood of it we can find an
invariant Cantor like set or not. By using similar examples
with triangular maps it is clear that the same conclusion
holds in 2Dim or higher dimensional maps. While critical
homoclinic orbits of expanding 2Dim foci are perhaps
associated with chaos. However, in our opinion, the dy-
namic behavior at these bifurcation values with critical
homoclinic orbits is less important with respect the occur-
rence of infinitely many noncritical homoclinic orbits after
the SBR and the others homoclinic explosions, which are
robust under parameter variation.

Appendix A

Let us first recall some properties whose proof is nowa-
days well known (see [19,10,1]).

Property 2. Let ¢ be the shift map acting on the space X5 of
one sided infinite sequences of two symbols {0,1}, then o is
chaotic.* Any map which is topologically conjugated with the
shift map is also chaotic.

Property 3. Let (X,d) be a metric space and F: X — X a map.
If there exist two compact sets Upc X and U; Cc X with
UnU;=¢ such that F(Uo) > Upu U; and F(U]) D> Upgu Uy
then the set Uy U Uj includes a closed invariant Cantor like
set A, that is a set of closed compact elements y which are
in one-to-one correspondence with the elements S, of X,
and SF(X) = O'(SX).

Property 4. Let (X,d) be a metric space and consider a map f:
X — X. Let F=f" for some positive integer n. If F is chaotic on
some invariant set A C X then also f is chaotic on UL_,f*(A).

For convenience let us recall the proof of Property 3
when a set U > Uy U U; exists such that® F(Ug) = F(U;) = U.
Then two suitable inverses exist such that F,'(U)=
Uo,F;'(U) = U; and defining F~' = F;' UF;" we have

FY(U)=UyuU;
F2(U) = F ' (Up) UF 1 (Uy) = Ugo UUg; UUyo UUy; C FH(U)

(21)
It is clear that F%(U) includes 2¥ disjoint sets and

A=1limF*U) = F*U) (22)

koo k>0

(where F°=F° =1 is the identity function). Any element ¥
€ A is either a point or a compact set. Moreover, to any ele-
ment y € A we can associate by construction a symbolic
sequence, called itinerary or address of , S, = (S¢$15253. . .)
with s;€{0,1}, i.e. S, belongs to the set of all one-sided
infinite sequences of two symbols X, -5, is constructed
via the symbols we put as indices to the compact sets in

4 That is, ¢ has a positive topological entropy, is topologically transitive, and
is chaotic in the sense of Li-Yorke [24] as well as in the sense of Devaney [10].

5 We remark that the property is true also when F(Up) N F(U;) > Up U Uy
and F(Up) is different from F(U;), but the proof is slightly different.

the construction process, and there exists a one-to-one
correspondence between the points y € A and the ele-
ments S, € X,. From the construction process we have that
if ¢ belongs to the set Usy, s, then F(y) belongs to Uy, ,.
Thus the action of the function F on the elements of A cor-
responds to the application of the shift map o to the itiner-
ary S, in the code space X5, as S,y = 0(S,). In fact

if y € A has S, = (50515253 ...)
then F(y) € A has Sg;) = (515283...) = 0(S0515283...) = 0(Sy)
(23)

that is, S, cF=060S,. Given an element y € A we con-
struct its itinerary S, in the natural way: we put so=0 if
x €Uy or sg=1 if y € Uy, then we consider F) and we
puts; =0if F(y) € Up or s; = 1 if F(¥) € Uy, and so on. It fol-
lows that A is a Cantor like set and F can be considered
chaotic in the Cantor like set A.

Notice that we have not used any assumption on the
functions F,' and F,', and also without any assumption,
by using the fixed point theorem, we can say that the sets
associated with a periodic symbolic sequence must include a
periodic point, i.e. a cycle with that symbolic sequence must
exist.

Assuming that Fal and F{l are contraction mappings it
follows that the elements of A are single points, and thus
F is conjugated with the shift map . However, as already
commented in [1], a Cantor set of points A in the above
process can be obtained also with less strong assumptions
in these functions (an example of class of functions satisfy-
ing less strict conditions is given in [15]).

Proof of Theorem 2. To prove the statement it is enough
to show that we can find a compact neighborhood U of p,
and two disjoint compact sets Uy and Uy, Ug U U; C U such
that F(Up) = F(U;) = U. We do this constructing the needed
sets starting from a compact neighborhood U of p, and
following the homoclinic orbit in a backward way, as the
function is, by assumption, locally invertible in all the
points of the homoclinic orbit. By definition of expanding
point p we know that a compact neighborhood U of p
exists and a local inverse f;! is such that N,-qof;"(U) = p.
Let xo be a homoclinic point of p belonging to U such
that f™(xo)=p, and Oy,(p) the considered homoclinic
orbit:

Ox (p) : {P —fo"(x0), - fo (%), X0, X1, .. Xm :p} (24)

Let us define f;! the inverse of f which satisfies
fil(p) = xm-1, and it is always possible to choose U such
that f;71(U) and f; ! (U) are disjoint. Let us consider the local
inverses which give the homoclinic points by backward
iterations, say f5 ! (Xm-1)=Xm_2.f5" (Xm_2) =Xm_3,....f; 1 (X1)=
Xo. Then consider the set f-! o ... o f;1 o fi1(U), if it be-
longs to U then we are done, otherwise let k be a suitable
integer (which  necessarily exists) such that
U =f*ofy'o...of;1off}(UycU. Let n=m+k and
consider Uy = f3"(U). By construction, Up and U; are dis-
joint, and it is always possible to choose k such that
Uo U Uy c U. This ends the proof as defining F = f* we have
F(Up) = F(U;) = U and the desired inverses are given explic-
itlyby Fg' =f;" F;' =f;* o f-l o ..o f;l o ffl. O
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