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We consider the dynamics of a family of two-dimensional piecewise linear maps at the transition be- 

tween the invertible and non-invertible cases. This leads to a degeneracy consisting of a half plane which 

is mapped onto a straight line, the critical line LC. In these regimes the ω-limit set of the trajectories 

must be on the images of some segment of LC. Thus, the first return map along this line can help in 

defining the global dynamic behavior of the two-dimensional map. In other cases, the first return map 

helps in determining some attracting sets, although not the unique attractors of the two-dimensional 

map. 

© 2020 Elsevier Ltd. All rights reserved. 

1

 

r  

s  

v  

m  

t  

f  

w  

t  

o

 

t  

m  

i  

i  

w  

t  

w  

o  

s  

i  

n  

d  

c  

c  

c  

o  

b  

i  

c  

i  

l  

m  

r  

t  

c  

t

 

r  

p  

h

0

. Introduction 

The interest in the dynamic behaviors and bifurcations occur-

ing in piecewise smooth two-dimensional maps has been con-

tantly growing in the last two decades, mainly due to the rele-

ant applications of these maps in the applied context. Often these

aps arise as Poincaré return maps of dynamical systems in con-

inuous time that are subject to impacts or discrete switching sur-

aces, but also as true piecewise smooth systems in discrete time

hich represent applications to economics and social siences. Sys-

ems of the first kind can be found, for example, in [1–5] . Systems

f the second kind can be found, for example, in [6–10] . 

The existence of a set crossing which the map changes defini-

ion leads to new kind of bifurcations with respect to those which

ay occur in smooth systems. That is, when an invariant set, typ-

cally the periodic point of a cycle, merges with the border of def-

nition, then a drasting change may occur, as evidenced in [11,12] ,

here the term border collision bifurcations has been introduced for

he first time, and thereafter used in almost all the works dealing

ith piecewise smooth systems. In fact, since then the bifurcations

ccurring in a continuous piecewise linear system have been con-
∗ Corresponding author. Tel.: +66 8516 84 930. 
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idered in many works, especially related to the map considered

n these works, which is called two-dimensional border collision

ormal form map. We refer to [13–16] for the transition to chaotic

ynamics, and to [17,18] for the bifurcations involving cycles with

omplex eigenvalues (a focus and a center). Other kinds of bifur-

ations peculiar of piecewise linear maps are those related to cy-

les with an eigenvalue −1 (also called degenerate flip bifurcation)

r associated with periodic points which disappear reaching the

oundary of the plane, infinity, and then becoming virtual, this

s related to an eigenvalue +1 (also called degenerate transcriti-

al bifurcation), as described in [19] . Moreover, a fold bifurcation

n smooth maps is well known, it leads to a pair of cycles. Simi-

arly occurs in continuous piecewise linear maps, a fold bifurcation

ay occur, leading to a pair of cycles, but in this case it is always

elated also to a border collision bifurcation, that is, at the bifurca-

ion value one periodic point belongs to the set in which the map

hanges definition, so that the term fold border collision bifurca-

ion is often used (for more details see [19] ). 

One more property, related to the different dynamic behaviors,

efers to the invertibility or non-invertibility of the map in the

hase plane. Recall that in invertible maps homoclinic orbits can

e related only to saddle cycles (intersection between the stable

nd unstable sets), and the basins of attracting sets are always

imply connected. Differently, in non-invertible maps the homo-

https://doi.org/10.1016/j.chaos.2020.109813
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.109813&domain=pdf
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1 In invertible maps homoclinic orbits can be related only to saddle cycles (inter- 

section between the stable and unstable sets), and the basins of attracting sets are 

always simply connected. Differently, in non-invertible maps the homoclinic orbits 

can occur also for repelling nodes or foci (related to snap-back repellers) and the 

basins of attraction can also be multiply connected or disconnected. 
clinic orbits can occur also for repelling nodes or foci (related to

snap-back repellers) and the basins of attraction can also be mul-

tiply connected or disconnected. The parameters at which a map

changes between the invertible/non-invertible cases are particular,

here called degenerate, because in such cases there exists a whole

area which is mapped into a curve of the plane, the points of

which have thus infinitely many rank-1 preimages. The dynamics

occurring in similar degenerate cases are rarely considered in pub-

lished papers. We refer to [20] for a relevant example. 

The study of such degenerate cases in a continuous piecewise

smooth two-dimensional map is the goal of the present paper.

We consider a particular continuous system, already introduced in

[21] , the two-dimensional piecewise linear map given by 

T : 

{
x ′ = | x | − ay 
y ′ = x − cy + d 

(1)

where a , c , and d > 0 are real parameters, which is a particular case

of a family of maps proposed in [22] . As it is shown in [21] the

value of the parameter d is just a scaling factor, and we can con-

sider d = 1 in the system given above. Moreover, in the same work

the fixed points (real and virtual) have been determined together

with the existence regions of pairs of 3-cycles and 4-cycles, and

the regions related to invertible/non-invertible maps of the fam-

ily. The parameters are varied in the ( a , c ) parameter plane. The

degenerate cases occur for c = a and c = −a, and at such values a

whole half-plane is mapped into the critical line of map T (also

called Z 0 − Z 1 − Z ∞ 

case). This degeneracy, or peculiarity, allows us

to determine parameter ranges at which a fixed point is globally

attracting or a 3-cycle is almost globally attracting (i.e. attracting

all the points of the phase plane except for a fixed point and a

saddle 3-cycle whose stable set has a very simple structure). 

After this Introduction, the structure of the paper is as follows.

In Sec. 2 we describe some properties of map T related to the fixed

points and 3-cycles, which are involved in the dynamics occurring

in the degenerate cases here considered. The degenerate cases are

considered in Sec. 3 . First the simplest case, for c = −a, when the

left partition x < 0 is mapped into the critical line LC , and we show

that the real fixed point is globally attracting. In subsection 3.2 we

consider the degenerate case c = a . The possible outcome of the

dynamics are now very different. We have intervals of values (on

c = a ) in which the fixed point may be globally attracting, or co-

existing with an attracting 3-cycle, and the related basins may be

separated by a frontier with simple or complex (fractal) structure.

But the main interval on c = a leads to an almost globally attract-

ing 3-cycle, which means attracting all the points of the phase

plane except for a fixed point and a saddle 3-cycle whose stable set

has a very simple structure. This can be proved by using the first

retun map on the critical curve LC in the right partition. Moreover,

by using a suitable first return map we show the appearance by

fold border collision bifurcation of a pair of 5-cycles, one of which

may be attracting and coexisting with the attracting 3-cycle. The

related basins in the phase plane ( x , y ) are separated by sets with

a complex structure. Sec. 4 concludes. 

2. Preliminaries 

We consider the two-dimensional piecewise linear map given

by (x ′ , y ′ ) = T (x, y ) defined in (1) with d = 1 , as a function of the

two parameters ( a , c ). This piecewise linear continuous map has a

critical line in x = 0 , denoted LC −1 (following [23] ), separating the

regions where the map has different definitions. Let us rewrite the

system defined in the two partitions x > 0 and x < 0 (which are also

called left/right partitions) as follows: 

T := 

{
T L (x, y ) if x ≤ 0 

T R (x, y ) if x > 0 

where (2)
 L (x, y ) := 

{
x ′ = −x − ay 
y ′ = x − cy + 1 

, T R (x, y ) := 

{
x ′ = x − ay 

y ′ = x − cy + 1 

. (3)

ue to continuity, both functions T L and T R map the critical line

C −1 ( x = 0 ) onto the line given by 

C : y = 

c 

a 
x + 1 , for a � = 0 . (4)

s usual in piecewise smooth systems, the symbols R and L are

sed to denote the itinerary of a point (for the regions x > 0 and

 < 0, respectively) and, in particular, the symbolic sequence of cy-

les. For a point belonging to the critical line LC −1 both symbols

an be used; however, this case denotes a transition or bifurcation,

nd it is considered separately. For example, in the case of a cycle,

he merging of a periodic point with LC −1 represents a collision,

hich may lead to a bifurcation (appearance/disappearance of the

ycle). 

It is well known that the dynamic behaviors highly depend on

he invertibility/non-invertibility of the map 

1 and, as evidenced

n [21] , considering the preimages of a point belonging to the

ight/left side of the LC curve and looking for their position with

espect to the boundary x = 0 , it is easy to prove the following: 

roperty 1. Let a > 0 . 

For c > 0 map T is invertible for a > c , otherwise it is non-

nvertible of Z 0 − Z 2 type; 

for c = a map T is degenerate, the half-plane x > 0 is mapped into

he critical line LC ( y = x + 1 ), thus it is non-invertible of Z 0 − Z 1 −
 ∞ 

type; 

for c < 0 map T is invertible for a > | c | , otherwise it is non-

nvertible of Z 0 − Z 2 type; 

for c = −a map T is degenerate, the half-plane x < 0 is mapped

nto the critical line LC ( y = −x + 1 ), thus it is non-invertible of Z 0 −
 1 − Z ∞ 

type. 

We consider the region a > 0 in order to have bounded dynam-

cs for map T . So at the degenerate cases occurring for c = a and

 = −a, a whole half-plane is mapped onto the critical line, and

he map is called of Z 0 − Z 1 − Z ∞ 

type because each point of LC

as infinitely many preimages (all the points of a half-line). 

For a > 0 map T has a unique real fixed point 

 

∗
L = (x ∗L , y 

∗
L ) = (− a 

2 + a + 2 c 
, 

2 

2 + a + 2 c 
) (5)

hile P ∗
R 

= (x ∗
R 
, y ∗

R 
) = (−1 , 0) is always a virtual one. The stability

nalysis of P ∗
L 

depends on the eigenvalues of the Jacobian matrix

f the linear map T L . We have 

r(J L ) = −(1 + c) , D L = det(J L ) = (a + c) (6)

o that the characteristic polynomial P L (λ) leads to P L (−1) = a,

 L (1) = 2 + a + 2 c and the region in the ( a , c ) parameter plane in

hich P ∗
L 

is an attracting fixed point, given by P L (1) > 0 , P L (−1) >

 and D L < 1, corresponds to 

 

∗
L := 

{ 

a > 0 , c > − a 

2 

− 1 c < −a + 1 

} 

. (7)

n explicit form the eigenvalues are as follows: 

1 , 2 (P ∗L ) = 

1 

2 

(
−(1 + c) ±

√ 

(1 − c) 2 − 4 a 

)
. (8)

he existence region of the real fixed point P ∗
L 

is shown colored

n the ( a , c ) parameter plane in Fig. 1 (a), and the bright yellow
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Fig. 1. In (a) the existence and stability regions of the fixed points are evidenced in the ( a , c ) parameter plane. In (b) the existence and stability regions of the 3-cycles are 

evidenced. The lines of equation c = a and c = −a which are of interest in this work are evidenced in blue. 
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riangle is the region S ∗
L 

in which P ∗
L 

is attracting. In the same

gure we have also reported the boundaries of the existence re-

ion of the virtual fixed point, P ∗
R 
, to evidence the character of

he existing virtual fixed point P ∗
R 

(attracting or repelling): since

r(J R ) = (1 − c) and D R = det(J R ) = (a − c) the characteristic poly-

omial P R (λ) leads to P R (1) = a, P R (−1) = 2 + a − 2 c and the re-

ion in the ( a , c ) parameter plane in which P ∗
R 

is a virtual attract-

ng fixed point is given by P R (1) > 0 , P R (−1) > 0 and D R < 1, that

s S ∗R := 

{
a > 0 , c < 

a 
2 + 1 c > a − 1 

}
. In particular, the virtual fixed

oint P ∗
R 

is attracting for 0 < a < 1 and c < (1 − a ) . 

The existence of an attracting virtual fixed point P ∗
R 
, or a re-

elling focus, implies that the trajectories from the right partition

re always mapped in the left partition in a finite number of itera-

ions. This creates the possibility to have attracting cycles with pe-

iodic points in both partitions, coexisting with the attracting fixed

oint P ∗
L 

. And in fact, in our system, we have an existence region of

 pair of 3-cycles, which overlaps with that of the fixed point P ∗
L 
,

nd in part with the stability region of P ∗L . This has been shown

n [21] . We determine the existence of a 3-cycle of map T looking

or the solutions of the equation T 3 (x, y ) = (x, y ) noting that the

ymbolic sequence of the two cycles are RLR and RLL , and when

hey are merging we have RLC denoting with C a point on the

ritical line LC −1 . Considering particular solutions of the equation

 

3 (x, y ) = (x, y ) , two 3-cycles with symbolic sequence RLR and RLL

an be determined. A periodic point of a real 3-cycle C s 
3 

which may

e attracting is given by 

(x s 3 , 1 , y 
s 
3 , 1 ) = 

(
a (−c 2 − a 2 + ac + 2 a + c − 1) 

2 c 3 + a 3 − a 2 c − c 2 a − 3 ac + a + 2 

, 

2(c 2 − c − ac + a + 1) 

2 c 3 + a 3 − a 2 c − c 2 a − 3 ac + a + 2 

)
(9) 

nd satisfies T R ◦ T L ◦ T R (x, y ) = (x, y ) where 

 R ◦ T L ◦ T R (x, y ) = 

[
(ac − 2 a − 1) (ac + a − ac 2 + a 2 ) 

(−a − c + c 2 + 1) (a + 2 ac − c 3 ) 

][
x 
y 

]

+ 

[
−2 a + ac 

−a − c + c 2 + 1 

]
. (10) 

onsidering 

 L ◦ T R ◦ T L (x, y ) = 

[
2 a + 1 + ac −c 2 a − ac + a 2 + a 

c − a + c 2 − 1 2 ac − a − c 3 

][
x 
y 

]

+ 

[
ac 

c 2 − a − c + 1 

]
(11) 
nd solving for T L ◦ T R ◦ T L (x, y ) = (x, y ) a periodic point (x u 
3 , 1 

, y u 
3 , 1 

)

f a real 3-cycle C u 
3 

(which is repelling) is obtained, given by 

(x u 3 , 1 , y 
u 
3 , 1 ) = 

(
−(a 2 − ac + c − c 2 − 1) 

a 2 + ac − 3 c − c 2 − 1 

, 
2( a − 1) 

a 2 + ac − 3 c − c 2 − 1 

)
. 

(12) 

he two 3-cycles appear/disappear via fold border collision bifur-

ation at a parameter point ( a , c ) for which it is x s 
3 , 1 

= 0 , and for

 � = 0 this leads to the necessary condition 

f old − BCB 3 , 1 : c 
2 + a 2 − ac − 2 a − c + 1 = 0 (13)

nd another fold border collision bifurcation occurs considering the

umerator of x u 
3 , 1 

in (12) , for 

f old − BCB 3 , 2 : a 
2 − ac + c − c 2 − 1 = 0 . (14)

he existence region of the pair of 3-cycles is also bounded by

 curve related to a degenerate transcritical bifurcation occurring

hen one eigenvalue becomes 1 and the periodic points of the cy-

les tend to infinity. For the 3-cycle C s 
3 

this occurs when the pa-

ameter point ( a , c ) belongs to the curve denoted by τ (C s 
3 
) : 

(C s 3 ) : 2 c 3 + a 3 − a 2 c − c 2 a − 3 ac + a + 2 = 0 (15)

hile for the other 3-cycle saddle C u 
3 

the degenerate transcritical

ifurcation occurs for: 

(C u 3 ) : a 2 + ac − 3 c − c 2 − 1 = 0 . (16)

hese curves are shown in Fig. 1 (b). Inside the existence region,

he stability region of C s 
3 

is bounded by bifurcation curves re-

ated to the center bifurcations and degenerate flip bifurcations, so

hat these can be determined from the eigenvalues of the function

 R ◦T L ◦T R ( x , y ), for which we have tr(J RLR ) = 3 ac − c 3 − a − 1 and

et (J RLR ) = (a − c) 2 (a + c) . The stability conditons are P J RLR 
(1) =

 c 3 + a 3 − a 2 c − c 2 a − 3 ac + a + 2 > 0 , P J RLR 
(−1) = a (a 2 − c 2 − ac +

 c − 1) > 0 and det (J RLR ) < 1 leading to the red portion shown in

ig. 1 (b). 

In particular, as evidenced in Fig. 1 (b), the degenerate line a = c

hich is of interest in this work, crosses the existence region of

oth the fixed point P ∗
L 

and the 3-cycles, and involves three partic-

lar codimension-two bifurcation points (black points in Fig. 1 (b)),

hich shall characterize the dynamics, as described in the next

ection. 

. Degenerate cases of non-invertibility 

The system we consider is characterized by several regions in

he parameter space ( a , c ) of coexisting cycles, and it is interest-

ng to show that also in the degenerate cases the dynamics may
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be not trivial. Due to the degeneracy, for c = a, a > 0, then any tra-

jectory crossing the right partition, or for c = −a, a > 0, any tra-

jectory crossing the left partition, is mapped onto a single straight

line: the critical line LC . In such cases, we have that any trajectory

crossing the partition ( x > 0 or x < 0) must have the ω−limit set

belonging to the images of the critical line. This may allow for the

use of same one-dimensional map representing the first return on

the critical line LC or some portions of it. 

3.1. Case c = −a 

Let us first consider the parameters belonging to c = −a in

the range 0 < a < 2 (that is, inside the stability region of P ∗L ) at

which the left partition x < 0 is mapped into the critical line LC ,

which has a negative slope ( y = −x + 1 ) and the real fixed point

P ∗L = (x ∗L , y 
∗
L ) = (− a 

2 −a , 
2 

2 −a ) ∈ LC is attracting. Its eigenvalues are

λ1 (P ∗
L 
) = 0 and λ2 (P ∗

L 
) = a − 1 which is negative for a < 1 and pos-

itive for 1 < a < 2 (with eigenvector along LC ). The virtual fixed

point P ∗R is attracting for 0 < a < 

1 
2 , a repelling focus for 1 

2 < a < 2 .

Any initial condition on the right side has the trajectory which is

mapped in a finite number of iterations to the left side, so we can

consider the points of the left partition which are mapped onto

the straight line LC . 

For a point (z, −z + 1) ∈ LC with z < 0, we have T L (z, −z + 1) =
(z(a − 1) − a, −z(a − 1) + a + 1) which belongs to LC in the left

partition for a ≥ 1 or a < 1 and − a 
1 −a < z < 0 . For a ≥ 1 it is λ2 ≥ 0,

so the trajectory necessarily converges monotonously to P ∗
L 
. Dif-

ferently, for 0 < a < 1 the eigenvalue satisfies −1 < λ2 < 0 and

since T L (− a 
1 −a , 

a 
1 −a + 1) = (0 , 1) all the trajectories of the interval

− a 
1 −a ≤ z < 0 are converging to P ∗

L 
without crossing the right par-

tition. For z < − a 
1 −a the trajectory crosses the right partition, in

which the action of the virtual fixed point applies, which is a con-

traction for 0 < a < 

1 
2 , or P ∗

R 
is repelling focus for 1 

2 < a < 2 and it

can be shown that in at most 5 iterations the trajectory either stays

in the left partition or it is mapped again in the right partition of

LC but closer to x = 0 so that in a few iterations the trajectory en-

ters the interval − a 
1 −a ≤ z < 0 . We have so proved the following 

Proposition 1. Let c = −a and 0 < a < 2, then the fixed point P ∗L is

globally attracting. 

It is worth noting that the extrema of the interval (i.e. a = 0

and a = 2 ) are excluded from the above proposition because these

are bifurcation values, and are considered separately. From the first

coordinate of P ∗L we can see that it crosses the border x = 0 when

the parameter a changes sign, from negative to positive or vice

versa . Moreover, from the expression of the eigenvalues given in

(8) we also have that for a = 0 the eigenvalues become λ1 = −1

and λ2 = −c. Thus, crossing the boundary a = 0 of the stability re-

gion from inside we have that the fixed point becomes virtual ex-

actly when one eigenvalue crosses −1 . After that, for a parameter

point ( a , c ) belonging to the white region of Fig. 1 (a), we have both

fixed points which are virtual and repelling, and map T has diver-

gent orbits. 

Differently, the value a = 2 corresponds to the crossing of the

lower boundary P L (1) = 2 + a + 2 c = 0 from inside, as shown in

Fig. 1 (a), so that one eigenvalue approaches 1 and also the de-

nominator of the expression of the fixed point in both components

tends to zero, that is, the fixed point tends to infinity. Thus, it cor-

responds to a degenerate transcritical bifurcation [19] , after which

the fixed point disappears (i.e. it becomes virtual), and the generic

trajectory of map T is divergent. 

3.2. Case c = a 

A different behavior occurs in the other transition, for c = a . The

right partition x > 0 is mapped onto the critical line LC , which is
ow a straight line with a positive slope ( y = x + 1 ), and the real

xed point P ∗L (attracting or repelling) does not belong to LC , and

t is always located below LC . Now a point of LC is represented as

(z, z + 1) . 

The virtual fixed point P ∗R is attracting for 0 < a < 2, and its

igenvalues are λ1 (P ∗
R 
) = 0 and λ2 (P ∗

R 
) = 1 − a which is positive for

 < 1 and negative otherwise. 

The fixed point P ∗L is attracting for 0 < a < 0.5, and a repelling

ocus for a > 0.5 in the range here considered (the eigenvalues are

omplex for 3 − 2 
√ 

2 < a < 3 + 2 
√ 

2 ). 

Since for 0 < a < 0.5 the functions in the two partitions are both

ontractions, we may expect global convergence to the real fixed

oint P ∗
L 

. Any point in the right partition is mapped on LC and

ince λ2 (P ∗R ) is positive the iterates stay on LC on the right side

p to a point with 0 ≤ z ≤ a 
1 −a from which it is mapped on the

eft side in a point with −a ≤ z ≤ 0 . From the left side either it

onverges to P ∗
L 

without crossing the right partition or it may be

apped again in the right side. Since we know that a pair of

-cycles exists in this range of parameter values (appearing via

old-BCB when the conditions in eq. (13) are satisfied, that is for

 = ̃

 a 1 � 0 . 381966 ), we look for a suitable first return map on LC

evealing their appearance and existence. 

Considering a point (z, 1 + z) ∈ LC with z > 0 we have T R (z, z +
) = (z(1 − a ) − a, z(1 − a ) − a + 1) ∈ LC which belongs to the re-

ion x < 0 if a ≥ 1 while for a < 1 this holds if 0 < z < 

a 
1 −a . Then we

ave T L ◦ T R (z, z + 1) = (z(a 2 − 1) + a 2 , (1 − a ) 2 (z + 1)) which be-

ongs to the region x > 0 if a ≥ 1 while for a < 1 this holds if 0 < z <
a 2 

1 −a 2 
. Then we consider T R ◦ T L ◦ T R (z, z + 1) = (z ′ , z ′ + 1) given by

 

′ = m r z + q where m r = −a 3 + 3 a 2 − a − 1 and q = m r + 1 = −a 3 +
 a 2 − a. If z ′ > 0 then this is the first return on LC , under the given

onditions. As we shall see below, the restrictions considered so

ar are satisfied in our region of interest for ̃  a 1 < a ≤ 1 + 

√ 

2 , while

he case a > 1 + 

√ 

2 requires further analysis, as described below. 

For the left partition, considering z < 0 we determine the first

eturn map of T on LC . It is T L (z, z + 1) = (−z(1 + a ) − a, z(1 −
 ) + 1 − a ) which belongs to the left partition for − a 

1+ a < z <

 , then T L ◦ T L (z, z + 1) = (z(1 + a 2 ) + a 2 , z(a 2 − 2 a − 1) + a 2 − 2 a +
) which belongs to the right partition for − a 2 

1+ a 2 < z < 0 , then

 R ◦ T L ◦ T L (z, z + 1) = (z ′ , z ′ + 1) ∈ LC where z ′ = m l z + q with m l =
a 3 + 3 a 2 + a + 1 and q = −a 3 + 3 a 2 − a . We can so consider the

rst return map on LC via the one-dimensional map z ′ = f (z) de-

ned as follows: 

f (z) : 

{
z ′ = m l z + q if z ≤ 0 

z ′ = m r z + q if z ≥ 0 

(17)

here 

m l = −a 3 + 3 a 2 + a + 1 , 

 r = (a − 1)(1 + 2 a − a 2 ) , (18)

q = m r + 1 = a (−a 2 + 3 a − 1) . 

he analysis of this one-dimensional piecewise linear map leads to

he following results: the slope m r belongs to the interval [ −1 , 1]

ff q ∈ [0 , 2] and this occurs iff ˜ a 1 ≤ a ≤ ˜ a 2 with 

˜ a 1 � 0 . 381966 ,
 

 2 � 2 . 618 ( ̃  a 1 and 

˜ a 2 are the two roots of (−a 2 + 3 a − 1) = 0 ),

hile it is m l > 1 for any a satisfying ˜ a 1 ≤ a ≤ ˜ a 2 . We remark that

n the line c = a, shown in Fig. 1 (b), the point a = ̃

 a 1 corresponds

o the codimension-2 parameter point in which the BCB bifurca-

ion curve and the degenerate flip bifurcation curve related to the

-cycles are intersecting, the point a = 2 corresponds to the unique

oint on the line c = a in which the attracting 3-cycle undergoes

 transcritical bifurcation becoming infinite (and also the virtual

xed point P ∗
R 

changes from attracting to repelling with one real

igenvalue smaller that −1 ), while the point a = ̃

 a 2 corresponds to

he second codimension-2 parameter point in which the BCB bi-

urcation curve and the degenerate flip bifurcation curve related
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Fig. 2. Shape of the one-dimensional map f ( z ) in the degenerate case a = c. In (a) the attracting 3-cycle C s 3 , represented by the fixed point, coexists with the attracting fixed 

point P ∗L . In (b) the 3-cycle C s 3 is almost globally attracting. 
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8

o the 3-cycles are intersecting. Moreover, m r takes its maximum

alue ( m r = 1 ) at a = 2 , and it is: 

 r = −1 for a = ̃

 a 1 −1 < m r < 0 for ˜ a 1 < a < 1 

 r = 0 for a = 1 0 < m r < 1 for 1 < a < 2 

 r = 1 for a = 2 1 > m r > 0 for 2 < a < 1 + 

√ 

2 

 r = 0 for a = 1 + 

√ 

2 0 > m r > −1 for 1 + 

√ 

2 < a < ̃

 a 2 
 r = −1 for a = ̃

 a 2 . 

(19) 

or 0 < a < ̃

 a 1 the fixed point P ∗
L 

is globally attracting (the first

eturn map in the right side is not applicable, all the points ul-

imately remain in the left partition). The fold-BCB occurring at

 = ̃

 a 1 is related to a codimension-2 point because the slope on

he right partition is m r = −1 , leading for a > ̃

 a 1 to a pair of fixed

oints, one z s > 0 attracting with negative slope, as shown in the

raph of the map z ′ = f (z) in Fig. 2 (a), and the basin of attrac-

ion of z s is bounded by the repelling fixed point on the left side,

 

u , and its rank-1 preimage. Clearly the positive fixed point corre-

ponds to the periodic point of the attracting 3-cycle C s 
3 
, since it

s z s = x s 
3 , 1 

, while the negative fixed point is z u = x u 
3 , 1 

, the point of

he repelling 3-cycle C u 
3 

of map T . 

In the one-dimensional map f ( z ) a point mapped in z < z u has a

ivergent trajectory, but in the two-dimensional map T such points

ave a different behavior. In fact, the map z ′ = f (z) represents the

rst return on LC only for the trajectories of T which follow the

ymbolic sequence RLR starting from the right side and LLR starting

rom the left side of the critical point (0, 1) ∈ LC (corresponding

o z = 0) . For ˜ a 1 < a < 1 this is clearly true in a neighborhood of

 = 0 , but not everywhere, since we know that as long as P ∗L is
ig. 3. Phase space at parameters close to the center bifurcation in the degenerate case

oint P ∗L . In yellow the basin of the fixed point, in red the basin of C s 3 separated by the st

lled with ellipses, the external one is the envelope of critical segments. In (c) a = 0 . 52 a

, also made up of critical segments, coexists with the 3-cycle C s 3 , the basins are separate
ttracting (for 0 < a < 0.5) there are regions of points having the

rajectory completely on the left partition, and points in the right

ide exist which are mapped in these regions. The value a = 0 . 5

orresponds to the center bifurcation of P ∗L , which has been shown

n [21] is of supercritical type. 

For ˜ a 1 < a < 0 . 5 the first return map z ′ = f (z) is clearly mean-

ngful in the interval (z u , f −1 (z u )) and in the two-dimensional map

his gives the immediate basin of z s on LC . The stable set of the

addle 3-cycle C u 
3 

separates the points belonging to the basins

 (C s 
3 
) and B (P ∗L ) while for a = 0 . 5 the stable set of the saddle 3-

ycle C u 
3 

separates the points belonging to the basins B(C s 
3 
) and the

et of points which are mapped into closed invariant curves around

he center P ∗L . Examples of these two cases are shown in Fig. 3: in

ig. 3 (a) the fixed point is attracting (its basin is evidenced in yel-

ow), while Fig. 3 (b) shows the center bifurcation value. The out-

rmost invariant closed curve around P ∗L is the envelope of all the

mages of the critical segments, and the white points denote those

hich are mapped in the invariant region around the center P ∗
L 

. 

For a > 0.5 after the supercritical center bifurcation, coexisting

ith the attracting 3-cycle an attracting closed curve �+ exists,

hich is made of critical segments (when the rotation number is

ational, so that the critical segments of the invariant curve are

lso a saddle-attracting node connection) or the invariant curve is

he envelope of critical segments (when the rotation number is ir-

ational). An example of the first kind is shown in Fig. 3 (c), where

he attracting set is a cycle of period 8. Clearly, increasing the pa-

ameter a several periodicity regions are crossed (which in the pa-

ameter plane ( a , c ) are issuing from the center bifurcation curve

f P ∗L ). The closed curve increases, approaching the boundary of its

asin of attraction, which is given by the stable set of the saddle 3-
 a = c. In (a) a = 0 . 44 , the attracting 3-cycle C s 3 coexists with the attracting fixed 

able set of the saddle C u 3 . In (b) a = 0 . 5 is the bifurcation value, an invariant area is 

n attracting closed curve �+ , connection of a saddle and attracting node of period 

d by the stable set of the saddle C u 3 . 
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Fig. 4. In (a) c = a = 0 . 564 an attracting closed curve made up of critical segments is very close to the basin boundary. One branch of the 3-cycle saddle C u 3 is close to an 

homoclinic bifurcation. The basin of the attraction of the 3-cycle C s 3 is shown with three colors, for map T 3 in white the basin of the closed curve. In (b) c = a = 0 . 565 after 

the contact the closed curve no longer exists, the basins of the fixed points of C s 3 for map T 3 , shown with three colors, are separated by the stable set of the saddle C u 3 , and 

has now a fractal structure. 
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cycle C u 
3 
. In Fig. 4 (a) we show the closed curve very close to such a

contact bifurcation, the critical segments belonging to the attract-

ing closed curve are almost on segments belonging to the stable

set of the 3-cycle saddle. The basin of the 3-cycle is considered

for the map T 3 , so to better evidence the basins of the three fixed

points of map T 3 , while the white points are still converging to the

closed curve �+ . 
The contact bifurcation is clearly a homoclinic bifurcation of the

saddle 3-cycle: after the contact the stable and unstable sets are

intersecting transversely, leading to the existence of a chaotic set

(a chaotic repeller) since the homoclinic points prove the existence

of infinitely many repelling cycles. This is shown in Fig. 4 (b): soon

after the contact, the fractal structure of the basins of the three

fixed points of map T 3 fills the former basin of the closed curve. 

As the parameter a approaches 1, the complex structure of the

basins simplifies. In fact, as we have seen above, for a ≥ 1 as long

as the slope m r is positive, or non-negative (i.e. for 1 ≤ a ≤ 1 + 

√ 

2 )

any point belonging to the right side of LC , say LC + , is mapped

again to this side in three iterations. For any z > 0 T R ◦ T L ◦ T R (z, z +
1) = (z ′ , z ′ + 1) ∈ LC + and this implies that map f ( z ) is the proper

first return on LC + , Fig. 2 (b) shows the function when the fixed

point on the right side is related to a positive slope, and it attracts

all the points on the right side of the unstable fixed point z u . It fol-

lows that the 3-cycle C s 
3 

is the only attracting set, almost globally

attracting as described in the following 

Proposition 2. Let c = a and 1 ≤ a ≤ 1 + 

√ 

2 then the 3-cycle C s 
3 

at-

tracts all the points of the phase plane except for the saddle 3-cycle

 

u 
3 

and its stable set, which has a simple structure issuing from P ∗
L 

. 

Proof. The structure of the basins of the three points of C s 
3 
, as

fixed points of T 3 , is determined by the stable sets of the three

fixed points of the saddle C u 
3 
, which is given by the local stable set

and its preimages. In the considered case also the points of the 3-

cycles have one eigenvalue equal to zero (since it is D R = 0 ), which

corresponds to the stable set, given by the related eigenvector.

Clearly, the other eigenvalue is related to the stability/instability of

the point, and the related eigenvector is on the critical line cross-

ing the point. Let us consider the point (x u 
3 , 1 

, y u 
3 , 1 

) of the 3-cycle

saddle as given in (12) , fixed point of T L ◦T R ◦T L ( x , y ) given in (11) .

From that function, for c = a, we obtain the following system 

T L ◦ T R ◦ T L (x, y ) = 

[
(a + 1) 2 a (1 − a 2 ) 

−(1 − a 2 ) −a (a − 1) 2 

][
x 
y 

]
+ 

[
a 2 

a 2 − 2 a + 1 

]
(20)
hose fixed point is (x u 
3 , 1 

, y u 
3 , 1 

) and the related eigenvalues are

1 (x u 
3 , 1 

, y u 
3 , 1 

) = 0 and λ2 (x u 
3 , 1 

, y u 
3 , 1 

) = (a + 1) 2 − a (a − 1) 2 > 1 for

ny value of a in the considered interval. The local eigenvector re-

ated to the zero eigenvalue is a straight line issuing from the point

(x u 
3 , 1 

, y u 
3 , 1 

) with slope 

 (x u 3 , 1 , y 
u 
3 , 1 ) = 

a + 1 

a (a − 1) 
(21)

t can be seen that for a < 1 it is s (x u 
3 , 1 

, y u 
3 , 1 

) < 0 so that the locally

table set intersects the critical line LC −1 , and this implies that

he global stable set (taking all the preimages) may become a set

ith complex structure (as shown in the examples of Fig. 3 ). For

 = 1 the slope becomes infinite, which means that the local sta-

le set becomes the vertical straight line issuing from (x u 
3 , 1 

, y u 
3 , 1 

) =
(− 1 

3 , 0) which does not intersect LC −1 . It crosses the axis y = 0 for

 = − 1 
3 < 0 and the preimages are only in the left side, converg-

ng to P ∗
L 
, so that the global stable set does not intersect any crit-

cal line. The same holds for the stable sets of the other point in

he left partition. For the point in the right partition the slope of

he stable set is given by m = 

1 
a and it intersects the critical line

C −1 in a point of the segment [0,1), but since it belongs to the

ight partition, all the points of this line for x ≥ 0 are mapped into

he point of C u 
3 

on the left side. Thus the three basins of attraction

re three simply connected regions covering the whole plane. Sim-

lar simple structure exists for a > 1, it can be described as long as

he stable set issuing from (x u 
3 , 1 

, y u 
3 , 1 

) is not intersecting LC , that

s, when the slope is positive and greater than 1 (an example is

hown in Fig. 5 (a)). From, the slope given in (21) it follows that

 (x u 
3 , 1 

, y u 
3 , 1 

) = 1 for a = 1 + 

√ 

2 . Thus for 1 ≤ a ≤ 1 + 

√ 

2 the basin

f attraction has the simple structure as described above, while for

 > 1 + 

√ 

2 the stable set is intersecting again the critical curves

nd the structure of the basins increases in complexity (an exam-

le is shown in Fig. 5 (b)). �

For 1 + 

√ 

2 < a < ̃

 a 2 the slope m r becomes negative again, and

t is possible to have T R ◦ T L ◦ T R (z, z + 1) = (z 1 , z 1 + 1) with z 1 =
 r z + q < 0 , which occurs for z > 

q 
| m r | . When this occurs it is pos-

ible to have different symbolic sequences for the first return map

n LC , and to have the first return on the right side of LC we have

o continue the applications of the map. 

Considering T L ◦ T R ◦ T L ◦ T R (z, z + 1) = (−z 1 (1 + a ) − a, z 1 (1 −
 ) + 1 − a ) with z 1 = m r z + q < 0 we have a point belonging to the

ight partition for | z 1 | > 

a 
1+ a and we obtain the first return map

ith one more branch defined via T R ◦ T L ◦ T R ◦ T L ◦ T R (z, z + 1) =
(z ′ , z ′ + 1) with z ′ = −(m r z + q )(1 + 2 a − a 2 ) − 2 a + a 2 . We can so
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Fig. 5. In (a) c = a = 1 . 4 the 3-cycle C s 3 is almost globally attracting, the basins of the fixed points of C s 3 for map T 3 , shown with three colors, are separated by the stable set 

of the saddle C u 3 , which has a very simple structure. In (b) c = a = 2 . 5351(> 1 + 

√ 

2 ) the 3-cycle C s 3 is attracting but the basins of the fixed points of C s 3 for map T 3 have now 

a more complex structure. 

Fig. 6. In (a) shape of the one-dimensional map ̃  f (z) when the rightmost branch leads to the appearance of a new fixed point, at a = 2 . 584 , attracting 5-cycle for map T . In 

(b) phase space of map T at a = 2 . 6 showing in red the basin of attraction of the 3-cycle C s 3 , and in dark gray the basin of attraction of the coexisting attracting 5-cycle C s 5 . 
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onsider the map on LC via the one-dimensional map z ′ = ̃

 f (z)

efined as follows: 

˜ f (z) : 

⎧ ⎪ ⎨ 

⎪ ⎩ 

z ′ = m l z + q if z ≤ 0 

z ′ = m r z + q if z ≥ 0 and m r z + q > − a 
1+ a 

z ′ = −(m r z + q )(1 + 2 a − a 2 ) − 2 a + a 2 if z > 0 and 

m r z + q < − a 
1+ a 

Considering the parameter a for values a > 1 + 

√ 

2 the shape

f the map 

˜ f (z) is shown in Fig. 6 (a). It does not represent the

rst return map in the interval of the right branch in which it be-

omes negative ( − a 
1+ a < m r z + q < 0 ) but it is the first return map

or m r z + q < − a 
1+ a leading to the rightmost branch of the map,

nd from this branch it can be seen that for a � 2 . 584 < ̃

 a 2 a pair

f 5-cycles appears (via a new attracting fixed point of ˜ f (z) , rep-

esenting a fixed point of the function T R ◦T L ◦T R ◦T L ◦T R ( x , y )). The

ymbolic sequences (when starting from the points colliding with

C −1 ) of the pair of cycles of map T is given by RRLRL and LRLRL ,

nd the first one corresponds to an attracting 5-cycle C s 
5 
, coexist-

ng with C s 
3 
. Obviously, all the periodic points of the cycles C s 

3 
, C u 

3 
,

 

s 
5 
, C u 

5 
belong to critical segments of LC i , i ≥ 1 (which all belong to

hree segments of straight lines). An example for a = 2 . 6 < ̃

 a 2 is

hown in Fig. 6 (b), and the attracting 3-cycle is close to the fold-

CB, occurring at a = ̃

 a 2 , leading to the disappearance of the pair

f 3-cycles, and leaving the 5-cycle as unique attracting set. 

. Conclusions 

In this work we have considered degenerate cases occurring in

 family of piecewise smooth continuous two-dimensional maps
t the transition from invertible to non-invertible, or vice versa .

he degeneracy consists in an half plane which is mapped into a

traight line. For the map defined in (2) , the degenerate cases oc-

ur for c = a and c = −a, and the whole half-plane x > 0 or x < 0,

espectively, is mapped into the critical line LC of map T , also called

 0 − Z 1 − Z ∞ 

case since each point of LC has the rank-1 preimage

hich consists in a whole half-line. This degeneracy is peculiar be-

ause in some cases (and always when the fixed point is repelling)

he ω− limit set of the trajectories must be on the images of the

nvolved arc of LC , and thus the first return map on LC may be very

seful to determine the dynamic behavior. This has been used in

ec. 3.1 to prove that for c = −a in the region of interest (that is,

hen the dynamics are bounded), the real fixed point is globally

ttracting. In Sec. 3.2 we use the first return map on LC to prove

hat for c = a in the main interval 1 ≤ a ≤ 1 + 

√ 

2 there exists a

-cycle which attracts almost all the points of the phase plane,

hat is, all the points except for a fixed point and a saddle 3-cycle

hose stable set has a very simple structure, consisting in three

alf-lines, and three simple curves issuing from the repelling fixed

oint. Moreover, the first return map allows us to predict the ap-

earance by fold border collision bifurcation of a pair of 5-cycles,

ay at a = a ∗5 , one of which may be attracting and coexisting with

he attracting 3-cycle. 

Our analysis is however not complete. In fact, there is an in-

erval of values for a , 1 + 

√ 

2 < a < a ∗5 , at which the first return

ap described in Sec. 3.2 is not a complete characterization of the

ynamics of map T , since it is not simple to detect the symbolic

equence of the trajectories, before their return on LC . These inves-

igations are left for future works. 
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