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Abstract

In this work we consider a continuous two-dimensional piecewise linear family
of maps in which the �xed point and other cycles undergo a center bifurcation, the
analogue of a Neimark-Sacker bifurcation, which has a particular structure when
occurring in piecewise linear maps. Our goal is to determine and characterize the
occurrence of a center bifurcation of supercritical or subcritical type. We show that
for the �xed point a determinant role is played by the virtual �xed point of the
system. Also for other k-cycles the virtual �xed point plays a determinant role, as
well as the saddle cycles related to the cycle which undergoes a center bifurcation.
A particular bifurcation point separating the two transitions, supercritical and sub-
critical, is related to a conservative system (the analogue of the Chenciner point in
smooth maps).

Keywords: subcritical center bifurcation, supercritical center bifurcation, two-
dimensional piecewise linear map, border collision bifurcation

1 Introduction

Many dynamic behaviors and bifurcations have been considered in two-dimensional
maps, smooth and piecewise smooth (PWS for short). The simplest cases that have
been studied are clearly continuous two-dimensional piecewise linear maps (PWL for
short) with one border line at which the system changes de�nition. The most famous
studies within this type of maps are the well known Lozi map [Lozi, 1978] and the
Gingerbread-man map considered in [Devaney 1984, Aharonov et al. 1987] in the
conservative (area preserving) case, which exhibit in�nitely many elliptic periodic
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orbits and chaos related to homoclinic bifurcations of saddle cycles [Gonchenko &
Shilnikov, 2000].
Several families of PWL maps have been considered by many authors, see [Grove

& Ladas 2005, Tikjha et al. 2010, 2017 ] mainly with the goal to classify possible
families having a global attracting �xed point, suitable for applications in biology
[Cannings et al., 2005, Cull 2006]. However, two-dimensional PWL systems rarely
succeed in such a simple dynamical behavior. On the contrary, there are several
works published in the last decade referring to PWS systems and showing multi-
stability [Simpson 2010, Zhusubaliyev et al. 2006a,b,c, 2008], also in�nitely many
coexisting attractors [Simpson 2014a,b], which is a result similar to the one already
known for di¤eomorphisms: smooth maps may exhibit in�nitely many attractors on
dense sets of parameter values, known as a Newhouse regions [Newhouse, 1974].
Among the reasons leading to several works dealing with PWS and PWL maps

we mention their relevance in the applied context. In fact, PWS maps typically
arise as discrete time models (obtained for example via Poincaré return maps) of
dynamical systems in continuous time when the system is subject to impacts or dis-
crete switching events that modify the equations describing the system. Examples
of such systems include power electronic converters and switching circuits (see e.g.
[Banerjee & Verghese, 2001, Zhusubaliyev & Mosekilde, 2003]), mechanical systems
with impacts and friction (see e.g. [Brogliato, 1999, di Bernardo et al., 2008, Ma
et al. 2006, Ing. et al. 2010]. Clearly, situations where several attractors coexist
simultaneously may lead to a fundamental source of uncertainty with respect to
the applied meaning of the map (given an initial condition to which attractor will
converge the trajectory?). This raised the interest of many researchers, and with
respect to smooth systems new kind of bifurcations became relevant, such as the
so-called border collision bifurcations (BCB for short), due to the collision of an
invariant set (typically a periodic point) with the border of de�nition of the map.
The term BCB is due to [Nusse & York, 1992, 1995] and since then it is used to de-
scribe this particular kind of bifurcations. Moreover, when some parameter is varied
through a bifurcation leading an attracting set to collide with the border (and, as
recalled in the references cited above, phenomena of this type are really observed
in physical and engineering systems), what will then occur to the system trajecto-
ries? The study of this kind of bifurcations in PWL systems lead the researchers
to consider a particular simple piecewise linear map in which the parameters are
only trace and determinant of the linear functions in the two di¤erent partitions of
the plane, and many results and properties have been described for this map, called
two-dimensional border collision normal form map, see e.g. [Banerjee et al. 1998,
Banerjee & Grebogi 1999, Glendinning & Wong, 2011, Glendinning 2016] for the
transition to chaotic dynamics, and in particular [Simpson & Meiss, 2008, Sushko
& Gardini 2008] related to the bifurcations involving cycles with complex eigenval-
ues (a focus and a center). Recall that the well known Neimark�Sacker bifurcation
occurring in smooth maps is related to a continuous crossing of a pair of complex
conjugate eigenvalues of a periodic orbit through the unit circle, in the supercritical
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case is related to the existence of periodicity regions of cycles (also known as Arnold
tongues) whose periods follow the Farey summation rule in a period adding bifur-
cation structure. Di¤erently, the crossing of a pair of complex eigenvalues through
the unit circle has a peculiar structure in the case of PWL maps, since the cycle
is a center at the bifurcation value and the center bifurcation studied in [Sushko &
Gardini 2008] describes the structure of the dynamics at the bifurcation value. As
for a border collision, the question is what shall occur after, when the cycle becomes
a repelling focus?.
Other kinds of bifurcations peculiar of PWL maps are those occurring at in�nity,

that is, periodic points which disappear reaching the boundary of the plane. This
occurs when a cycle tends to the Poincaré Equator of the real phase plane, which
we denote as P.E. for short, or appears from in�nity. Properties of this kind of
bifurcations have been considered in [Avrutin et al. 2010, Avrutin et al. 2016]. In
particular, the degenerate transcritical bifurcation is described in [Sushko & Gardini,
2010].
Both the last two aspects mentioned above are of interest in the present work.

In fact, the center bifurcations studied up to now (or Neimark-Sacker bifurcations
for PWL maps) have been considered mainly related to the appearance of attract-
ing closed invariant curves, which consist in a saddle-node connection (also called
modelocked periodic orbit or phase-locked invariant curve) or in the closure of quasi-
periodic trajectories, which are related to a rational rotation number or an irrational
one, respectively, called supercritical center bifurcation. The exact dynamic behav-
ior occurring at a center bifurcation value does not say which kind of bifurcation
occurs, and which kind of dynamics will appear after (when a cycle becomes a re-
pelling focus). So the bifurcation may be supercritical, leading to new attracting
sets, or subcritical, or degenerate: the conservative case, area preserving. To our
knowledge, the reason why a subcritical/supercritical center bifurcation occurs in
this class of maps has not yet been studied. In this work we consider a PWL system
in which �xed points and cycles undergo a center bifurcation, and our goal is to
show why and when it occurs subcritical or supercritical. Clearly, it is well known
that the existence of attracting sets in PWL maps is associated with the kind of
eigenvalues and eigenvectors related to the two linear functions involved in the def-
inition of the map. Indeed, we shall see that the character of the center bifurcation
of a �xed point or cycle is also related to the properties of the virtual �xed point
of the system (recall that a �xed point is called virtual when it does not belong to
the proper partition) and the existence of repelling cycles. To be precise, for both
a �xed point and for a 4-cycle we shall prove that the center bifurcation curve is
separated in two parts (supercritical and subcritical) by a particular point at which
the map is conservative, and the center bifurcation is supercritical when the P.E.
is repelling, subcritical when the P.E. is attracting. In all these cases the virtual
�xed point is either attracting or a repelling focus. A similar result also applies to
a 3-cycle, but not in all the cases of a center bifurcation. In fact, those bifurcations
which can be characterized do not cover all the possible situations, since it may
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occur that the P.E. is neither attracting nor repelling. However, as we shall see
in one example, also in such cases the character of the center bifurcation may be
determined considering the global dynamic behavior of the map.
The two-dimensional PWL continuos map that we consider is given by

T :

�
x0 = jxj � ay
y0 = x� cy + d (1)

where a; c, and d 6= 0 are real parameters, which is a particular case of a family of
maps proposed in [Tikjha et al. 2017 ].
After this Introduction, the structure of the paper is as follows. In Sec.2 we

describe some properties of the map, we classify the system depending on the prop-
erty of invertibility/noninvertibility, determining the �xed points, commenting the
related bifurcations which may occur crossing the stability region of the unique real
�xed point. We also describe the existence regions of a pair of 3-cycles and of 4-
cycles, commenting some bifurcations related to their existence and stability. Since
the stability regions of both cycles are in part overlapped with that of the attracting
�xed point, these regions will be used in the description of the bifurcation sequences
associated with the center bifurcations of supercritical and subcritical type. In Sec.3
we prove (in Proposition 1) the conditions leading to the type of center bifurcation
for the existing �xed point, showing the relevance of the virtual �xed point. The
separator between subcritical and supercritical center bifurcation is the conserva-
tive case. In Sec.4 we �rst prove that, as for the �xed point, also for the attracting
4-cycle the kind of center bifurcation is determined (in Proposition 2) by using the
virtual �xed point and the unstable cycles. In Sec.5 we consider the two branches
of center bifurcation which may occur to the attracting 3-cycle. In one case we can
prove (in Proposition 3) that the center bifurcation must be subcritical. Di¤erently
from all the other cases, in the second branch the virtual �xed point is a saddle,
and this leads to di¤erent way of reasoning, which involve the noninvertibility of the
map and the existence of absorbing areas. Sec.6 concludes.

2 Properties of the two-dimensional PWL map

Consider the two-dimensional PWL map given by (x0; y0) = T (x; y) de�ned in (1).
It is immediate to see that the parameter d 6= 0 has a role of scaling factor. Here
we consider the case d > 0 and via the change of variable X = x

d
; Y = y

d
, after

simpli�cation, and renaming the state variables as (x; y), we get the system (1) with
d = 1: Thus, we consider the system as a function of the two parameters (a; c). This
PWL continuous map has a critical line in x = 0, denoted LC�1 (following [Mira et
al., 1996]), and it separates the regions where the map has di¤erent de�nitions. Let
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us rewrite the system as follows:

T : =

�
TL(x; y) if x � 0
TR(x; y) if x � 0

where (2)

TL(x; y) : =

�
x0 = �x� ay
y0 = x� cy + 1 ; TR(x; y) :=

�
x0 = x� ay
y0 = x� cy + 1 (3)

since we shall use the properties of the two di¤erent linear maps de�ned in the two
partitions.
A property of map T to emphasize refers to its invertibility, since the dynamic

behaviors of the map depend on it, and this comes soon from the inverse(s) of a
point of the plane, or, equivalently, considering the images of the half-planes under
the action of the two linear maps. Due to continuity, both functions TL and TR map
the critical line x = 0 into the same line given, for a 6= 0, by

LC : y =
c

a
x+ 1 (4)

Considering the preimages of a point belonging to the right/left side of the LC curve
and looking for their position with respect to the boundary x = 0 (or considering the
images of points belonging to the di¤erent partitions and looking for the position
with respect to LC), we can state the following

Property-1.
For c > 0 map T is invertible for a > c, otherwise it is noninvertible of Z0�Z2

type;
for c = a map T is degenerate, the half-plane x > 0 is mapped into the critical

line LC (y = x+ 1), thus it is noninvertible of Z0 � Z1 � Z1 type;
for c < 0 map T is invertible for a > jcj, otherwise it is noninvertible of Z0�Z2

type;
for c = �a map T is degenerate, the half-plane x < 0 is mapped into the critical

line LC (y = �x+ 1), thus it is noninvertible of Z0 � Z1 � Z1 type.

In the degenerate cases each point of LC has in�nitely many preimages: all the
points of an half-line. Recall the main di¤erences between invertible and noninvert-
ible maps with respect the dynamics: In invertible maps homoclinic orbits can be
related only to saddle cycles (intersection between the stable and unstable sets), and
the basins of attracting sets are always simply connected. Di¤erently, in noninvert-
ible maps the homoclinic orbits can occur also for repelling nodes or foci (related to
snap-back repellers) and the basins of attraction can also be multiply connected or
disconnected.

2.1 Fixed points

We can easily write the two �xed points P �L and P
�
R of the linear functions TL and

TR, respectively, which may be real �xed points or virtual ones (i.e., not belonging
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to the proper partition). The regions x > 0 and x < 0 are also called left/right
partitions and, as usual in PWS systems, the symbols R and L are used to denote
the itinerary of a point and, in particular, the symbolic sequence of cycles. Notice
that even if a �xed point is virtual, it in�uences the dynamics in the related partition
of the phase plane (x; y), thus it is relevant for the dynamic behavior of the map.
In our system we have

P �R = (x
�
R; y

�
R) = (�1; 0) ; P �L = (x�L; y�L) = (�

a

2 + a+ 2c
;

2

2 + a+ 2c
) (5)

Since P �R belongs to the left partition, it is always a virtual �xed point for our system.
Di¤erently, P �L is a real �xed point of map T for a > 0 and c > �1� a

2
or a < 0; and

c < �1� a
2
, while for a = 0 it is P �L 2 LC�1 and thus this corresponds to a border

collision.
The stability analysis depends on the eigenvalues of the Jacobian matrix J of

the two linear maps. Considering TR we have

tr(JR) = (1� c) , DR = det(JR) = (a� c) (6)

so that the characteristic polynomial PR(�) leads to PR(1) = a; PR(�1) = 2+a�2c
and the region in the (a; c) parameter plane in which it is a virtual attracting �xed
point, given by PR(1) > 0; PR(�1) > 0 and DR < 1, is the following:

S�R :=
n
a > 0; c <

a

2
+ 1 ; c > a� 1

o
(7)

Clearly, the borders of the regions correspond to bifurcations of the �xed point.
Explicitly the eigenvalues are given by

�1;2(P
�
R) =

1

2

�
(1� c)�

p
(1 + c)2 � 4a)

�
(8)

and are complex conjugate for j1 + cj < 2
p
a:

For the linear map TL we have

tr(JL) = �(1 + c) , DL = det(JL) = (a+ c) (9)

so that the characteristic polynomial PL(�) leads to PL(�1) = a; PL(1) = 2+a+2c
and the region in the (a; c) parameter plane in which P �L is an attracting �xed point,
given by PL(1) > 0; PL(�1) > 0 and DL < 1, corresponds to

S�L :=
n
a > 0; c > �a

2
� 1 ; c < �a+ 1

o
(10)

in explicit form the eigenvalues are as follows:

�1;2(P
�
L) =

1

2

�
�(1 + c)�

p
(1� c)2 � 4a

�
(11)
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The existence region of the real �xed point P �L is shown colored in the (a; c) parameter
plane in Fig.1(a), and the bright yellow triangle is the region S�L in which P

�
L is

attracting. In the same �gure we have also reported the boundaries of the region
S�R to evidence the region in which the virtual �xed point P

�
R is attracting.

It is worth noting that for a parameter point (a; c) belonging to the white region
of Fig.1(a), we have both �xed points which are virtual and repelling, and map
T has divergent orbits. Some boundaries of the stability region of P �L can also
be commented soon. Crossing the lower boundary PL(1) = 2 + a + 2c = 0 from
inside, one eigenvalue approaches 1 and also the denominator of the expression of
the �xed point in both components tends to zero, that is, the �xed point P �L tends
to in�nity, to the P.E.. Thus, it corresponds to a degenerate transcritical bifurcation
[Sushko & Gardini, 2010], after which the �xed point disappears (i.e. it becomes
virtual). Considering the �rst coordinate of P �L we can see that it crosses the border
x = 0 when the parameter a changes sign, from negative to positive or vice versa.
Moreover, from the expression of the eigenvalues given in (11) we also have that for
a = 0 the eigenvalues become �1 = �1 and �2 = �c: Thus, crossing the boundary
a = 0 of the stability region from inside we have that the �xed point becomes virtual
exactly when one eigenvalue crosses �1. The last boundary of the stability region,
for 0 < a < 4; corresponds to complex eigenvalues (since DL = a + c = 1 and

�1;2(P
�
L) =

1
2

�
�(2� a)� i

p
a(4� a)

�
) leading to a center bifurcation, that will be

investigated in Sec.3.

Fig.1 In (a) the stability regions of the �xed points are evidenced. In the yellow
triangular region the real �xed point P �L is attracting, in the portion belonging to c > 0
also the virtual �xed point P �R is attracting. In (b) a two-dimensional bifurcation

diagram in the (a; c) parameter plane, the initial condition is close to the �xed point P �L:

Besides the properties related to the center bifurcation that we shall consider in
Sec.3, in the small triangle with 0 < a < 1 and 0 < c < 1 (hatched in the yellow
region of Fig.1(a)) both �xed points satisfy the stability conditions, so that map T
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has bounded trajectories, but not all converging to the attracting �xed point P �L:
Indeed, for parameters in that region, the trajectory of a point in the right partition
of the phase plane (x; y) is necessarily mapped into the left partition in a �nite
number of iterations, and the orbit then follows the curves related to the attracting
�xed point P �L but may cross again the right partition. This creates the possibility
to have attracting cycles with periodic points in both partitions, coexisting with
the attracting �xed point P �L. Recall that in a PWL continuous map, cycles of
period n > 1 appearing by fold-BCB must have a periodic point of the cycle on
the critical line x = 0, from which a pair of cycles appear/disappear with symbolic
sequence which di¤er by 1 symbol only. This means that 2-cycles cannot appear by
fold-BCB, and the minimum period for a cycle of map T related to a fold-BCB is
3. The 2D bifurcation diagram in Fig.1(b) shows attracting cycles of period 3 and
4 existing after the center bifurcation of P �L when the parameter a approaches the
value 1, but from the �gure we can also argue that these regions are not issuing
from the bifurcation curve related to the (supercritical) center bifurcation. Indeed,
investigating the existence of these cycles we show that they appear by fold-BCB
when the �xed point P �L is still attracting, and at the center bifurcation value of
P �L we have coexistence between one or both of these cycles with the invariant area
related to the center bifurcation of P �L. The investigation of some of these cycles is
the goal of the next subsections.

2.2 Cycles of period 3

We determine the existence of a 3-cycle of map T looking for the solutions of the
equation T 3(x; y) = (x; y) noting that the symbolic sequence of the two cycles are
RLR and RLL and when they are merging we have RLC denoting with C a point
on the critical line LC�1. Considering

TR�TL�TR(x; y) =
�

(ac� 2a� 1) (ac+ a� ac2 + a2)
(�a� c+ c2 + 1) (a+ 2ac� c3)

� �
x
y

�
+

�
�2a+ ac

�a� c+ c2 + 1

�
(12)

and solving for TR � TL � TR(x; y) = (x; y) we obtain a solution (xs3;1; ys3;1) given by

(xs3;1; y
s
3;1) =

�
a(�c2 � a2 + ac+ 2a+ c� 1)

2c3 + a3 � a2c� c2a� 3ac+ a+ 2 ;
2(c2 � c� ac+ a+ 1)

2c3 + a3 � a2c� c2a� 3ac+ a+ 2

�
(13)

which is a periodic point of a real 3-cycle Cs3 when all the periodic points belong to
the proper partition, that is xs3;1 > 0; x

s
3;2 < 0 and x

s
3;3 > 0, and we have denoted it

with "s" because it corresponds to the 3-cycle which may be attracting. Considering

TL�TR�TL(x; y) =
�
2a+ 1 + ac �c2a� ac+ a2 + a
c� a+ c2 � 1 2ac� a� c3

� �
x
y

�
+

�
ac

c2 � a� c+ 1

�
(14)
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and solving for TL � TR � TL(x; y) = (x; y) we obtain a solution (xu3;1; yu3;1) given by

(xu3;1; y
u
3;1) =

�
�(a2 � ac+ c� c2 � 1)
a2 + ac� 3c� c2 � 1 ;

2(a� 1)
a2 + ac� 3c� c2 � 1

�
(15)

which represents a periodic point of a real 3-cycle Cu3 when all the periodic points
belong to the proper partition, that is xu3;1 < 0; x

u
3;2 > 0 and x

u
3;3 < 0; and we have

denoted it with "u" because it corresponds to the 3-cycle which is repelling.
We look for the existence of this pair of cycles by considering the possible BCB,

that is, a parameter point (a; c) for which it is xs3;1 = 0, and for a 6= 0 this leads to
the necessary condition

fold�BCB3;1 : c2 + a2 � ac� 2a� c+ 1 = 0 (16)

Crossing this curve a pair of 3-cycles may appear/disappear. It is know that cycles
appeared by fold-BCB as a saddle and a node (attracting or repelling) may also
disappear by fold-BCB when another pair of periodic points merge on the critical
line x = 0. For the pair of 3-cycles this corresponds to the merging of the periodic
point with symbolic sequence RRL (�xed point of TL � TR � TR(x; y) = (x; y)) for
the 3-cycle Cs3 with the periodic point with symbolic sequence LRL (�xed point of
TL � TR � TL(x; y) = (x; y)) for the 3-cycle Cu3 . This leads to the equation of the
second fold-BCB, considering the numerator of xu3;1 in (15), we get

SN �BCB3;2 : a2 � ac+ c� c2 � 1 = 0: (17)

which is called saddle-node BCB because the pair of merging cycles are a saddle
and an attracting node. The relevant portions of these curves are shown in Fig.2(a).
Moreover, the existence region of the pair of 3-cycles is bounded by a third curve,
related to a degenerate transcritical bifurcation occurring when one eigenvalue be-
comes 1 and the periodic points of the cycles tend to in�nity. For the 3-cycle Cs3 this
occurs when the parameter point (a; c) belongs to the curve denoted by �(Cs3):

�(Cs3) : 2c3 + a3 � a2c� c2a� 3ac+ a+ 2 = 0 (18)

while for the other 3-cycle saddle Cu3 the degenerate transcritical bifurcation occurs
for:

�(Cu3 ) : a2 + ac� 3c� c2 � 1 = 0 (19)

bounding the existence regions, which are thus di¤erent for the two cycles, as shown
in Fig.2(a).
As mentioned above, when a parameter point belongs to the degenerate transcrit-

ical bifurcation curves we also have the related Jacobian matrix with one eigenvalue
+1. Other bifurcations of the cycles are related to the eigenvalues of the map T 3.
Let us consider the Jacobian matrix JRLR from eq.(12) for the 3-cycle Cs3, we have

tr(JRLR) = 3ac� c3 � a� 1 , det(JRLR) = (a� c)2(a+ c) (20)
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The stability conditons are PJRLR(1) = 2c3 + a3 � a2c � c2a � 3ac + a + 2 > 0;
PJRLR(�1) = a(a2 � c2 � ac + 3c � 1) > 0 and det(JRLR) < 1 leading to the red
region shown in Fig.2(a). Notice that only two small arcs of the fold-BCB curve in
(16) are related to the appearance of an attracting node and a saddle, the other two
arcs are related to the appearance of two unstable 3-cycles.
The bifurcations curves obtained from the stability conditions PJRLR(�1) = 0

and det(JRLR) = 1 bound the stability region in two di¤erent parts. A numerical
investigation has shown that the portion of PJRLR(�1) = 0 in the lower region
(associated with an attracting �xed point) is related to a degenerate �ip-BCB of
subcritical type (an attracting 6-cycles merges with LC�1 at the bifurcation of a
saddle 3-cycle with an eigenvalue equal to �1, leading to an attracting 3-cycle),
while the portion in the upper part is related to a supercritical one (an attracting
3-cycle undergoes a bifurcation with an eigenvalue equal to �1, becoming a saddle
and leading to an attracting 6-cycle). Similarly for the center bifurcation curve
(det(JRLR) = 1), there are two portions belonging to the existence region. The
lower one is in a region in which the map is invertible and, as we shall see in Sec.5,
related to a center bifurcation of subcritical type, while the upper one in a region of
noninvertibility and the center bifurcation is supercritical.
Di¤erently, for the 3-cycle Cu3 ; from the Jacobian matrix JLRL in eq.(14) we have

PJLRL(1) = a2 + ac � 3c � c2 � 1 and PJLRL(1) > 0 is the region below the curve
�(Cu3 ); so that for any (a; c) belonging to the existence region of the cycle Cu3 one
real eigenvalue is always greater than 1 (being PJLRL(1) < 0).
It is worth noting that many bifurcation curves related to the bifurcations of the

3-cycles are issuing from the particular point (a; c) = (1; 0).
As it can be seen from Fig.2(a), there is an overlapping between the stability

region of the �xed point P �L with the existence region of the three cycles, in particular
with a region in which the 3-cycle Cs3 is attracting. In Sec.3 we shall describe some
dynamic behaviors related to parameters belonging to this region, crossing the center
bifurcation curve of P �L. Moreover, within the stability regions of the �xed point
and the 3-cycle, there is also a region in which both coexist also with an attracting
4-cycle, as described in the next subsection.
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Fig.2 In (a) Existence region of 3-cycles in the (a; c) parameter plane. In the red colored
area the 3-cycle Cs3 is attracting. In (b) the existence region of 4-cycles in the (a; c)

parameter plane. In the blue colored area the 4-cycle Cs4 is attracting. In the azure area
the two 4-cycles are both unstable.

2.3 Cycles of period 4

For the appearence via fold-BCB of a pair of 4-cycles we consider the function
T 2R � TL � TR(x; y) :�

2ac� ac2 + a2 � 1� a �2a2c+ ac+ ac3 � ac2 + a
2ac+ c2 � c3 � 2a+ c� 1 a2 � 3ac2 + a+ c4

� �
x
y

�
+

�
�ac2 + 2ac� 3a+ a2

c2 � c+ 1� 2a+ 2ac� c3
�

and looking for its �xed point (a periodic point with symbolic sequence RLRR), we
get

xs4;1 =
a(�a3 + 2c3 + 2a2c� 2ac2 + 2a2 � 2c2 � 4ac+ 2a+ 2c� 2)

a4 � 2c4 � 2a3c+ 2ac3 + 4ac2 � 2a2 � 2ac+ 2 (21)

ys4;1 =
2(1� c)((a� c)2 + 1)

a4 � 2c4 � 2a3c+ 2ac3 + 4ac2 � 2a2 � 2ac+ 2

which results in the periodic point of a 4-cycle Cs4 which can be attracting, appearing
via fold-BCB crossing through an arc of the curve of equation

fold�BCB4;1 :
1

2
a3 � c3 � a2c+ ac2 � a2 + c2 + 2ac� c� a+ 1 = 0: (22)

obtained from xs4;1 = 0, for a 6= 0, and bounding the blue colored existence region,
related to a pair of 4-cycles, which we have found as a saddle and an attracting
node. The repelling 4-cycle saddle, say Cu4 , appearing at the fold-BCB has symbolic
sequence LLRR, and a point of this cycle is obtained considering the �xed point of
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the function T 2R � T 2L(x; y); leading to

xu4;1 =
�(a3 � 2c3 � 2a2c+ 2ac2 � 2a2 + 2c2 + 4ac� 2a� 2c+ 2)

a3 � 2ac2 + 4c2 � 2a

yu4;1 =
2((a� c)2 + 2c� a� 1)
a3 � 2ac2 + 4c2 � 2a

The stability of the 4-cycle Cs4 can be determined considering the Jacobian matrix
JRLR2 and its trace and determinant, that is:

tr(JRLR2) = 2ac� 4ac2 + 2a2 � 1 + c4 , det(JRLR2) = (a� c)3(a+ c) (23)

The stability region in the parameter plane is the one in which we have satis�ed
the three conditons PJRLR2 (1) = a

4 � 2c4 � 2a3c+ 2ac3 + 4ac2 � 2a2 � 2ac+ 2 > 0;
PJRLR2 (�1) = 2ac�4ac

2+2a2�2a3c+2ac3+a4 > 0 and det(JRLR2) = (a�c)3(a+c) <
1:
The stability region is colored in Fig.2(b) in dark blue, while the azure color

denotes 4-cycles both repelling. Since the attracting 4-cycle node becomes a focus
and then becomes repelling via a center bifurcation, the separation curve is a center
bifurcation occurring at det(JRLR2) = 1:
The lower boundary of the azure region in Fig.2(b) (bounding the existence

region) is another fold-BCB in which the periodic point with symbolic sequence
R3L (of a repelling node) and the periodic point with symbolic sequence LR2L (of
a saddle) are merging. Considering the function TL � T 3R(x; y) and looking for its
�xed point, we get

xn4;1 =
a(�a3 � 2c3 + 2a2c+ 2c2 � 2c+ 2)

a4 � 2c4 � 2a3c+ 2ac3 + 4ac2 � 2a2 � 2ac+ 2

yn4;1 =
2(1� c)(c2 � 2a+ 1)

a4 � 2c4 � 2a3c+ 2ac3 + 4ac2 � 2a2 � 2ac+ 2

and the fold-BCB (in which a 4-cycle saddle and a repelling node are merging on
x = 0) occurs at parameter points belonging to the curve obtained from xn4;1 = 0,
for a 6= 0 :

fold�BCB4;2 : a3 + 2c3 � 2a2c� 2c2 + 2c� 2 = 0 (24)

The existence region of both 4-cycles Cs4 and Cu4 is bounded by degenerate transcrit-
ical bifurcations of the two cycles, occurring for the attracting cycle when

�(Cs4) : PJRLR2 (1) = a
4 � 2c4 � 2a3c+ 2ac3 + 4ac2 � 2a2 � 2ac+ 2 = 0 (25)

and for the unstable one when

�(Cu4 ) : PJL2R2 (1) = a
3 � 2ac2 + 4c2 � 2a = 0 (26)

whose interesting arcs are shown in Fig.2(b).
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As for the pair of 3-cycles, we observe that also the existence region of the pair
of 4-cycles overlaps with the stability triangle of P �L (in which also the virtual �xed
point P �R is attracting).
In the next section we describe which kind of center bifurcation occurs to the

�xed point P �L.

3 Super- and sub-critical center bifurcation of P �L
We have already mentioned that the structure of the dynamics at a center bifurcation
depends on the rotation number, as described in [Sushko & Gardini, 2008]. However,
the result of the center bifurcation of P �L, crossing the boundary of S

�
L from inside

to outside the stability region, depends on the global structure of the phase plane,
since the dynamics of the map on the right partition depends also from the virtual
�xed point P �R. As we have seen in Sec.2.1, inside the stability region of P

�
L there

is a region in which the virtual �xed point P �R is also attracting. This leads to a
di¤erence of behavior when crossing the bifurcation curve DL = 1 for c > 0 or c < 0.
In the �rst case, the crossing occurs when both �xed points are attracting, and we
shall see that the result is a supercritical center bifurcation. Di¤erently, in the second
case, the crossing of the bifurcation curve occurs when the virtual �xed point P �R is
a repelling focus, and we have a subcritical center bifurcation for the �xed point P �L.
The switching occurs for (a; c) = (1; 0) which is related to a particular condition:
the determinants of both Jacobian matrices are equal to one, DL = 1 and DR = 1;
which means that the map is conservative. We prove the following

Proposition 1.The center bifurcation of P �L is supercritical for c > 0; subcritical
for c < 0: Map T is conservative for c = 0 with rotation number 1/3 at the center
P �L:

Proof. It is easy to see that in our system the �xed point P �L is always below the
straight line LC. At the bifurcation (whenDL = a+c = 1 with complex eigenvalues,
for 0 < a < 4) P �L is a center, and we know that depending on the rotation number,
rational or irrational, the existing invariant area, belonging to the left side, x � 0;
is either a polygon bounded by a �nite number of segments of critical curves or it is
the envelop curve of critical segments, an invariant ellipse tangent to LC�1. When
it is bounded by segments, these are images of a segment on LC�1 between (0; 0)
and T (0; 0) = (0; 1), which is mapped on LC (y = c

a
x+ 1) on the segment between

(0; 1) and T (0; 1) = (�a;�c+1) and the further images are spiraling around P �L (in
particular for c = 1�a, LC1 intersects LC�1 in (0; 1�a2�a)). The invariant area is �lled
with periodic orbits of the same period when the rotation numer is rational, while it
is �lled with invariant ellipses when it is irrational, with quasiperiodic orbits dense
on the curves.
When the parameter point (a; c) belongs to the center bifurcation curve DL = 1

the invariant area exists (a polygon or an ellipse) which means, by continuity, that
for parameters just before the bifurcation (for a+c < 1) a closed area exists, mapped
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into itself, bounded by a �nite number of critical segments, and it belongs to the
basin of attraction of the focus P �L:
Clearly this is true crossing the bifurcation curve (a+ c = 1) at any value of the

parameter c. Thus, what makes the di¤erence between the di¤erent kinds of center
bifurcation, is the behavior of the points of the phase plane close to the pre-existing
closed area bounded by critical segments.
For c > 0 and parameters inside the stability region of P �L (which means 0 <

a < 1), the virtual �xed point P �R is attracting (with real or complex eigenvalues),
and close to the bifurcation the point P �L is an attracting focus. Thus, the P.E. of
the phase plane is repelling, that is, the map cannot have divergent trajectories,
and it is 0 < DL < 1; jDRj < 1. In particular, map T cannot have any repelling
expanding cycle (node or focus), since this would imply a determinant larger than
1 in modulus, while the Jacobian determinant related to a cycle of period (n +m)
having a symbolic sequence with n points in the left partition and m points in the
right partition is given by DL

nDR
m; and it is necessarily smaller than 1 in modulus.

Notice that clearly map T can have saddle cycles, with related Jacobian determinant
smaller than 1, but due to the fact that the two linear functions are contractions
the two branches of the unstable set of a saddle are converging to some sets at �nite
distance, while the two branches of the stable set, preimages of the local eigenvector,
extend up to in�nity, since the inverse on the right side leads to points in the left
partition where the inverse is an expanding rotation.
At the bifurcation value P �L belongs to an invariant area (�lled with periodic or

quasiperiodic orbits) in the left partition, the P.E. does not attract any trajectory (as
jdet(JT )j � 1 in any point of the phase plane, with DL = 1 for x � 0 and jDRj < 1
for x � 0), the system is not conservative and the boundary of the invariant set
related to the center P �L cannot be a closed curve repelling from outside. That is, in
case of a subcritical bifurcation we ought to have, before the center bifurcation, a
repelling closed curve bounding the set of points converging to the �xed point, but
a repelling closed curve is, in the generic case, a saddle-repelling node connection,
which cannot exist. Thus a neighborhood of the former basin of attraction of P �L
must exist, which is the set of points converging to the invariant area existing at
the bifurcation, and thus the result of the bifurcation is an attracting closed curve,
which crosses LC�1.
Reasoning in a similar way, crossing the bifurcation curve DL = 1 for c < 0

(which occurs for a > 1) the virtual �xed point P �R is a repelling focus, so DR > 1
in any point of the right partition of the phase plane (any point of the R side is
mapped into the L side in a �nite number of iterations). In this case, before the
bifurcation, when P �L is an attracting focus (DL < 1), the P.E. of the phase plane
may attract several orbits and invariant repelling closed curves may exist. At the
center bifurcation we have two �xed points of focus type (one real and one virtual)
and det(JT ) � 1 in any point of the phase plane (it is DL = 1 for x � 0 and DR > 1
for x � 0), so that an attracting cycle cannot exist. After the bifurcation, when
det(JT ) > 1 in any point of the phase plane, no attracting node can exist, which
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means that an attracting invariant curve given in the generic case by a saddle-
attracting node connection, is not allowed. Thus, at the bifurcation, the external
boundary of the invariant set related to the center P �L (tangent to x = 0 or with a
segment on it) cannot be a closed curve attracting from outside, and the bifurcation
must be of subcritical type (before the center bifurcation, repelling closed curves
connection saddle-repelling nodes, are allowed).
Notice that this means that a neighborhood of the former basin of attraction of

P �L cannot exist any longer, and that the boundary of the former basins of attraction
corresponds, at the bifurcation, to the external closed curve of the existing invariant
set, and it is repelling from outside.
For c = 0, at the point (a; c) = (1; 0) the map is conservative (area-preserving in

the whole phase plane) since det(JT ) = 1 in any point (x; y) of the plane, with P �L as
a real center while P �R is a virtual center. The �xed point P

�
L = (�1

3
; 2
3
) is a center

with rational rotation number 1
3
(since the eigenvalues are �1;2(P �L) =

1
2

�
�1� i

p
3
�
).

The invariant polygon bounded by the critical segments connecting the points (0; 0),
(0; 1) and (�1; 1) is �lled with cycles of period 3. In fact, let (x; y) be a point with
x � 0; then TL(x; y) = (�x�y; x+1); T 2L(x; y) = (y�1; x+y�1), T 3L(x; y) = (x; y)
and the only points to which we can apply consecutively the map in the left partition
are those of the invariant polygon bounded by the critical segments connecting the
3-cycle f(0; 0); (0; 1); (�1; 1)g : The trajectory of any other point crosses also the
right partition. �
A two-dimensional bifurcation diagram in the (a; c) parameter plane when the

center bifurcation is supercritical is shown in Fig.1(b), and periodicity regions of
attracting cycles of di¤erent periods issuing from the bifurcation curves can be seen
(di¤erent periods are evidenced with di¤erent colors), and it is known that the
periods follow the standard Farey summation rule [Boyland 1986].
Let us illustrate the bifurcation mechanisms with some examples. In the super-

critical case, for c > 0; we can distinguish between the noninvertible/invertible map.
In the noninvertible case, for 0 < a � 0:5, considering a suitable segment J0 on LC�1
we know that the halfplane x > 0 is mapped below or onto LC, and the images of
J0 are spiraling around P �L so that an absorbing area bounded by a �nite number
of critical segments, mapped into itself, exists, which must belong to the basin of
the attracting focus P �L or to the stable set of the invariant polygon at the center
bifurcation. In the example shown in Fig.3(a) it is considered a small segment J0
on LC�1 starting in y = 1�a

2�a and ending in y = y�L + 0:1 and in �ve iterations a
closed area is obtained, which is mapped into itself. In that �gure the values of the
parameters are very close to the center bifurcation value, and the �gure does not
change at the bifurcation value. That is, the basin of attraction of P �L existing before
the center bifurcation persits and becomes the set of points which are mapped into
the invariant area around the center.

15



Fig.3 In (a) a = 0:45, c = 0:549; close to the center bifurcation value. In yellow the
basin of attraction of P �L bounded by the stable set of the saddle C

u
3 ; in red the basin of

attraction of Cs3 : Segments of critical curves bound an area mapped into itself. In (b)
a = 0:899, c = 0:1; close to the center bifurcation value. In yellow the basin of

attraction of P �L bounded by the stable set of the saddle C
u
3 ; three di¤erent colors denote

the basin of attraction of Cs3 for map T
3. In azure the basin of attraction of C43 bounded

by the stable set of Cu4 : Segments of critical curves bound an area around P
�
L mapped

into itself.

We know that in this range (0 < a � 0:5), at the bifurcation value an attracting
3-cycle may coexist, and Fig.3(a) shows such an example, in which the basin of
attraction of P �L is bounded by the stable set of the 3-cycle saddle. In the other
case, when the pair of 3-cycles does not exist, the invariant area is also simpler to
construct, since there are no other attracting cycles.
In the invertible case, for 0:5 < a < 1, we know from Sec.2 that the attracting

�xed point always coexists with an attracting 3-cycle. Then the basin of attraction
of P �L is bounded by the stable set of the 3-cycle saddle which, as remarked above,
cannot end at �nite distance (i.e. it is issuing from the repelling P.E.). Also in
this case we can �nd, considering the images of a small segment J0 on LC�1 a
closed area which is mapped into itself and, as long as P �L is attracting, completely
included inside its basin of attraction. As an example, in the case shown in Fig.3(b),
considering the segment J0 on LC�1 starting in y = 0:5 and ending in y = 0:6 in a
�nite number of iterations a closed area around P �L mapped into itself is obtained.
Also here the parameters are just before the bifurcation value, and the �gure is
similar to that at the center bifurcation value. We can notice that, as we know from
Sec.2.3, at the parameters considered in this �gure we also have the coexistence
of an attracting 4-cycle. The basin of attraction of the 3-cycle is shown for map
T 3 to emphasize the fractal structure of the basin, since one branch of the 3-cycle
saddle is homoclinic, while the other unstable branch of the 3-saddle converges to
the attracting �xed point (or to the related invariant set). In both the examples
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shown in Fig.3, after the center bifurcation an attracting closed invariant curve �+
exists, close to the boundary of the invariant area, and the basin of P �L before the
bifurcation becomes the basin of �+:

A di¤erent behavior occurs in the subcritical the case, for c < 0 (1 < a < 4),
and the map is always in the invertible range.
Close to the bifurcation, with the images of a suitable segment J0 on LC�1, a

closed area which is mapped into itself can be obtained. As long as P �L is attracting
it is completely included inside its basin of attraction. In the example shown in
Fig.4(a), considering the segment J0 on LC�1 shown in color, in a �nite number of
iterations a closed area around P �L is obtained. The parameters are just before the
bifurcation value, and the basin of attraction of P �L is close to the area mapped into
itself, bounded by a repelling closed curve, and outside this area the trajectories
are divergent. As the parameters approach the bifurcation value, the basin of P �L
shrinks and at the center bifurcation (see Fig.4(b)) the repelling closed curve of the
basin boundary becomes the boundary of the invariant area around the center P �L:

Fig.4 Fig.super In (a) a = 1:4, c = 0:41; close to the center bifurcation value. In yellow
the basin of attraction of P �L bounded by a closed repelling curve. In gray divergent
trajectories. Segments of critical curves bound an area mapped into itself. In (b)
a = 1:4, c = 0:4; at the center bifurcation value, the external closed curve is the

envelope of critical segments. In (c) a = 1, c = 0; phase space in the conservative (area
preserving) case.

On the center bifurcation curve DL = 1; the transition supercritical/subcritical,
that is P.E. repelling/attracting, clearly occurs via a conservative case (at which
the P.E. is neither attracting nor repelling). In Fig.4(c) we show the case of map T
conservative at the particular point (a; c) = (1; 0) of the parameter plane. This point
is also a codimension-two point (as we have seen in Sec.2, many bifurcation curves
of the parameter plane are issuing from this point), and the fact that the map is
conservative leads to a particular structure of orbits in the phase plane (x; y). That
is, all the orbits are bounded, the existing cycles are either centers (also called elliptic
periodic points) or saddles with reciprocal eigenvalues. The phase plane presents
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in�nitely many islands formed by centers of di¤erent periods surrounded by invariant
sets related to saddles, bounding other elliptic cycles, with chaotic rings due to the
transverse intersection of the stable and unstable sets of the saddles, giving rise to
Smale horseshoes and chaotic sets [Gonchenko & Shilnikov, 2000]. The existence of
a triangular region around the �xed point P �L �lled with cycles of period 3 has been
proved in Proposition 1, while the existence of 4 hexagonal regions around a 4-cycle
center �lled with cycles of period 24 will be proved in the next section (Proposition
2). We notice that the dynamics of this conservative map are the same as those
of the Gingerbread-man map considered by [Devaney 1984, Aharonov et al. 1987]
and also the same of the Lozi map in the particular conservative case considered in
[Botella-Soler et al. 2011, Elhadj, 2014].

4 Super- and sub-critical center bifurcations of Cs4
We have already seen the relevance of the virtual �xed point in determining the kind
of center bifurcation of the �xed point P �L; and here we show that the virtual �xed
point is relevant also in determining the type of center bifurcation of the 4-cycle.
Whenever the center bifurcation curve is crossed for c < 0, when the �xed point P �L
undergoes a subcritical center bifurcation and the virtual �xed point P �R is a repelling
focus, we have a supercritical center bifurcations of the 4-cycle Cs4 . Di¤erently, for
c > 0; when the �xed point P �L undergoes a supercritical center bifurcation and the
virtual �xed point P �R is an attracting focus, we have a subcritical center bifurcation
of the 4-cycle Cs4 . Notice that the values of center bifurcation curve of C

s
4 belong to

the parameter region in which the map is uniquely invertible and also in this case,
as already remarked, the di¤erence of dynamic behaviors can be explained by using
the virtual �xed point. We prove the following
Proposition 2. The center bifurcation of the 4-cycle Cs4 is supercritical for

c < 0, subcritical for c > 0; critical (conservative) for c = 0 with rational rotation
number 1

6
for map T 4 = T 2R � TL � TR:

Proof. Let us consider the region in which the center bifurcation curve of equation
det(JRLR2) = 1; that is (a2 � c2)(a � c)2 = 1, is crossed starting from the stability
region (where there is an attracting 4-cycle focus), which is evidenced in dark blue
and indicated by an arrow in Fig.5(a).
For c > 0 it occurs for a > 1 and a > c, in a region in which we have DL =

(a+c) > 1 and DR = (a�c) 2 (0; 1): However, the product is DLDR = (a
2�c2) > 1

(in fact, since (a� c)2 < 1 in order to have (a2 � c2)(a� c)2 = 1 it must necessarily
be (a2 � c2) > 1).
Di¤erently, for c < 0 det(JRLR2) = 1 occurs for �c < a < 1 in a region in

which we have DL = (a + c) 2 (0; 1) and DR = (a � c) > 1, but the product is
DLDR = (a2 � c2) < 1 (since (a � c)2 > 1 to have (a2 � c2)(a � c)2 = 1 it must
necessarily be (a2 � c2) < 1).
Recall that the symbolic sequence of the repelling 4-cycle is LLRR, thus the
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determinant of the Jacobian of map T 4 in the regions of the �xed points of the
saddle 4-cycle is given by (DLDR)

2 and thus it is greater than 1 for c > 0, smaller
than 1 for c < 0. This makes the di¤erence between the two portions of the center
bifurcation curve.
Considering c < 0, in the stability region of the 4-cycle close to the center

bifurcation where DR = (a� c) > 1 we have (besides 0 < DL < 1 and 0 < DLDR <
1) det(JRLR2) 2 (0; 1) and det(JL2R2) 2 (0; 1) which means that no cycle repelling
node can exist, and the P.E. is repelling, no divergent trajectories can exist for map
T 4. Saddle cycles can exist and the stable set of the saddle 4-cycle comes from the
P.E.. At the center bifurcation value, det(JRLR2) = 1 and det(JL2R2) 2 (0; 1); for
map T 4; so that the invariant closed curve or the invariant polygon bounding Cs4
and tangent to LC�1 cannot be a closed curve repelling from outside, since before
the bifurcation a repelling closed curve, which for map T 4 is generically a saddle-
repelling node connection, cannot exist. The bifurcation is not at a conservative
case, being det(JL2R2) 2 (0; 1): Thus the center bifurcation is supercritical. The
existing closed curve bounding the invariant area for T 4 belongs to an invariant area
(of the basin) whose boundary is given the stable set of the saddle 4-cycle Cu4 .
Vice versa, considering c > 0, in the stability region of the 4-cycle, for a > 1,

we have det(JRLR2) 2 (0; 1) and det(JL2R2) > 1 which means that the P.E. may
be attracting, and at the bifurcation value it is det(JRLR2) = 1 and det(JL2R2) > 1
which means that map T 4 cannot have any attracting cycle. The invariant closed
curve or the invariant polygon bounding Cs4 cannot be a closed curve attracting
from outside (and after the center bifurcation a connection saddle-attracting node
cannot exist). Thus, the center bifurcation cannot be of supercritical type, nor a
conservative case, being det(JL2R2) > 1, but necessarily subcritical.
In both cases c > 0 and c < 0 we cannot have a conservative map, but for c = 0

the center bifurcation curve of Cs4 is crossed at a = 1 and we already know that map
T is conservative in that point of the parameter space. In particular, for the 4-cycle
it is tr(JRLR2) = 1 and det(JRLR2) = 1 with eigenvalues �1;2 = 1

2
� i

p
3
2
; which means

a rational rotation number 1
6
for the map T 4 = T 2R � TL � TR. �

Considering the stable 4-cycle Cs4 for c = 0 and increasing the value of a, it can be
observed the progressive increase of coexisting cycles of map T : all those existing for
a = 1 must be created by fold-BCB increasing a in the range 0 < a < 1. An example
of the phase plane when a is close to 1 is shown in Fig.5(b). The four colors represent
the 4 basins of the �xed points of the 4-cycle Cs4 for map T 4; the 4-cycle saddle Cu4 is
homoclinic on both sides, and the white regions represent areas including attracting
cycles of di¤erent periods (besides P �L, attracting cycles of period 13, 17 and 35 are
evidenced). Notice that in this range it is DL 2 (0; 1) and DR 2 (0; 1) so that the
P.E. is repelling (no repelling node nor divergent trajectories can exist).
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Fig.5 In (a) existence region of 4-cycles in the (a; c) parameter plane. In the dark blue
colored area for c > 0 and c < 0 the center bifurcation of the 4-cycle Cs4 changes from
subcritical to supercritical, respectively. In (b) phase space of map T at a = 0:9999 and
c = 0, close to the area preserving case, when several attracting cycles of di¤erent

periods coexist.

Both in the center bifurcation of the �xed point P �L and of the 4-cycle Cs4 the
bifurcation point (a; c) = (1; 0) separates the two arcs of subcritial and supercritical
type, and plays the role of the Chenciner point in the Neimark-Sacker bifurcation
for smooth systems, and also here for parameters in a neighbourhhod of this point,
homoclinic bifurcations occur [Kuznetsov, 2004].

5 Center bifurcations related to the 3-cycle Cs3
In this section we complete our investigation of the center bifurcation of the cycles
determined in Section 2, where we have obtained also a pair of 3-cycles, and we
have shown two portions of bifurcation curves in which the attracting 3-cycle Cs3
undergoes a center bifurcation.
In the cases considered up to now, in Sec.3 and Sec.4, the virtual �xed point

P �R was either an attracting �xed point or a repelling focus, and this determines
a particular behavior of the points of the phase plane. A similar behavior occurs
also for the lower branch of the center bifurcation of the 3-cycle Cs3. In fact, the
lower branch belongs to a region in which the map is invertible, the real �xed point
P �L is a repelling focus (DL = (a + c) > 1) while the virtual �xed point P �R is an
attracting focus (DR = (a � c) 2 (0; 1)): Thus, all the trajectories from the left
side rotate to the right side and from here the trajectory rotate again to the left
side. Inside the stability region close to the bifurcation we have a 3-cycle attracting
focus, DRLR = (a � c)2(a + c) 2 (0; 1); while the repelling 3-cycle Cu3 is a saddle
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with determinant DLLR = (a � c)(a + c)2 >> 1: Thus, at the center bifurcation of
the 3-cycle, in a neighborhood of the invariant area, for map T 3; it is DRLR = 1
and DLLR >> 1 which implies that map T 3 cannot have attracting cycles, neither
after the center bifurcation (when it is also DRLR > 1) a saddle-attracting node
connection cannot exist. Thus, at the bifurcation the border of the invariant areas
around Cs3 of map T 3 cannot be a closed curve attracting from outside. It is not a
conservative system, and a subcritical center bifurcation must occur. We have so
proved the following

Proposition 3. The center bifurcation of the 3-cycle Cs3 occurring in the lower
branch of the center bifurcation curve is of subcritical type.

An example is shown in Fig.6. In Fig.6(a) before the bifurcation, one branch
of the unstable set of the 3-cycle saddle Cu3 is homoclinic while the other branch
tends to the attracting 3-cycle, and the stable set of the saddle bounds the basin
of attraction of Cs3. In Fig.6(b), close to the center bifurcation, the saddle Cu3 is no
longer on the basin boundary of Cs3, and both branches of the unstable set of the
3-cycle saddle are homoclinic. The transition is similar to the one commented in
the previous section related to the 4-cycle.

Fig.6 Phase space around P �L; with the basins of the three �xed points of C
s
3 for map T

3

in three di¤erent colors. In (a) a = 1:6451; c = 1:1 the boundaries are the stable set of
the saddle Cs3 ; having one branch already homoclinic. In (b) a = 1:69; c = 1:1 the
boundaries are closed repelling invariant curves. Very close to the subcritical center

bifurcation of Cs3 .

Di¤erently, the center bifurcation in the upper branch of the 3-cycle Cs3 occurs
in a parameter region with a > 0:5 and c > 1 + a

2
in which map T is noninvertible,

P �L is a repelling focus and the virtual �xed point P
�
R is a saddle. We show that the

P.E. is neither attracting nor repelling.
In fact, from the eigenvalues of P �R given in (8) for c > 1+

a
2
we have �+ 2 (0; 1)

and �� < �1: The eigenvector vR(�+) related to the positive eigenvalue �+ has a
positive slope (vR(�+) is given by the straight line y =

1��+
a
(x + 1)), which means
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that necessarily an invariant half-line issuing from the P.E. exists in x > 0; so that
the P.E. has a repelling branch.
Moreover, below the curve of the center bifurcation, it can be shown the existence

of a bifurcation curve related to the appearance of a 2-cycle repelling node via
transcritical bifurcation. In fact, looking for the solutions of the equation TL �
TR(x; y) = (x; y) considering

TL � TR(x; y) =
�
�(1 + a) a(1 + c)
(1� c) (c2 � a)

� �
x
y

�
+

�
�a
1� c

�
(27)

we obtain a solution Cu2 = (xu2;R; yu2;R) given by

(xu2;R; y
u
2;R) =

�
a2

2c2 � (a2 + 2a+ 2) ;
2(c� 1)

2c2 � (a2 + 2a+ 2)

�
(28)

which belongs to the right partition for xu2;R > 0; which holds for c >
q
1 + a+ a2

2
.

In such a case, its image is

(xu2;L; y
u
2;L) =

�
a2 � 2a(c� 1)

2c2 � (a2 + 2a+ 2) ;
2(c� a� 1)

2c2 � (a2 + 2a+ 2)

�
(29)

and xu2;L < 0 is always satis�ed. From the Jacobian matrix, having trace TrRL =
c2�2a�1 and determinant DRL = �(c2�a2); the characteristic polynomial PRL(�)
leads to PRL(1) = a2 + 2a + 2 � 2c2; PRL(�1) = a(a � 2): Thus the cycle appears
via degenerate transcritical bifurcation when PRL(1) = 0 (the denominator in (28)
becomes zero) at

�(Cu2 ) : c2 = 1 + a+
a2

2
(30)

For c >
q
1 + a+ a2

2
the 2-cycle Cu2 exists, and it is PRL(1) < 0 (increasing

c, PRL(1) decreases) so that, of the two eigenvalues �� = 1
2
((c2 � 2a � 1) �p

(c2 � 2a� 1)2 + 4(c2 � a2)); it is always �+ > 1: Moreover, from PRL(�1) =
a(a� 2) we have that for a < 2 the 2-cycle is a repelling node (�� < �1), while for
a > 2 it is a saddle as long as �1 < �� < 1: The bifurcation value a = 2 will be
commented below, since it is a degenerate �ip bifurcation of subcritical type.
The eigenvector vRL(�+) related to the eigenvalue �+ > 1 (which always exists

after the appearance of the 2-cycle) is given by

y = yu2;1 +m(�+)(x� xu2;1) ; m(�+) =
�+ + 1 + a

a(1 + c)
>
1

a
(31)

where 1
a
is the slope of the critical line in the region x > 0 associated with the second

iterate T 2. Recall that the critical lines of T 2 are given by LC�1 (x = 0) and its rank-
1 preimages with the inverses T�1R and T�1L ; which are the straight lines of equations
y = 1

a
x and y = � 1

a
x; respectively. Thus the eigenvector vRL(�+) is an half-line
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(whose points are diverging) issuing from the periodic point (xu2;R; y
u
2;R) of Cu2 and

completely included in the region in which it is a �xed point of map TL � TR(x; y).
Clearly, the image by T of the eigenvector vRL(�+) gives the unstable branch issuing
from the other point of the 2-cycle (in the left partition). That is, on these two half-
lines invariant for map T 2 the P.E. is attracting. While the eigenvector vR(�+) has
a slope 1��+

a
smaller than 1

a
and in the region in which TR � TR(x; y) applies, the

P.E. is repelling on this half-line for map T 2.
The phase plane of the map in this case is shown in Fig.7(a). In the same �gure

we show the branch which is issuing from the P.E. eigenvector vR(�+) of the virtual
�xed point, and the eigenvector vRL(�+) issuing from the right point of the 2-cycle
(here repelling node). In Fig.7(b) it is shown the set of nondivergent trajectories
of map T 3 showing the three basins of the attracting 3-cycle focus Cs3 with three
di¤erent colors. The points in the gray region have divergent trajectories.

Fig.7 In (a) phase plane with the critical lines of map T 2, evidencing the four regions in
which the di¤erent composite functions apply. The eigenvector vR(�+) is a stable branch
of the virtual �xed point, the eigenvector vRL(�+); is an unstable branch of the 2-cycle

repelling node. In (b), a = 1; c = 1:61; phase space showing in gray divergent
trajectories, and the basins of the three �xed points of Cs3 for map T

3 in three di¤erent
colors. The 2-cycle repelling node belongs to the boundary of divergent trajectories.

It follows that the P.E. is neither attracting nor repelling, and the arguments used up
to now cannot be applied in this case. We cannot give a general proof, but we have
evidence that in the considered upper branch the center bifurcation is supercritical,
and we can illustrate the mechanism via an example.
Let us �x the value a = 1, at which it can be shown that for c = 1 the 3-cycle is

almost globally attracting and the P.E. is repelling. As c is increased, other cycles
may appear and indeed we observe divergent trajectories (i.e. the P.E. may become
partially attracting) also before the appearance via transcritical bifurcation of the
2-cycle detected above, and the unstable 3-cycle from saddle becomes a repelling
node. Before the center bifurcation the phase plane has the 3-cycle focus as unique
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attractor, with a complex structure in the frontier of the three basins for the third
iterate of the map, T 3, as shown in Fig.7(b). An enlargement is shown in Fig.8(a)
to evidence the points of the 3-cycle attracting focus and the 3-cycle repelling node.

Fig.8 In (a) enlargement of the phase plane around P �L at a = 1; c = 1:61; close to the
center bifurcation of the 3-cycle, showing the basins of the three �xed points of Cs3 for
map T 3 in three di¤erent colors. The existence of a closed area bounded by four critical
segments is shown in (b), together with three closed areas around Cs3 bounded by a �nite
number of critical segments. In (c) a = 1; c = 1:6181; soon after the supercritical center

bifurcation of the 3-cycle, showing in three di¤erent colors the basins of the three
attracting closed invariant curves for map T 3 (around the repelling focus Cs3).

The noninvertibility of the map is clearly visible from the disconnected and multiply
connected structure of the three basins of attraction. From the noninvertibility we
have that a closed area mapped into itself and bounded by segments of critical curves
can be found. This holds both for map T and for map T 3: In Fig.8(b) we show four
images of the segment (0; 0)�(0; 1) of LC�1, which bound an area invariant for map
T . Inside this area, with a �nite number of images of the smaller segment of LC�1
there evidenced, three areas (each one mapped into itself for map T 3) around the
attracting 3-cycle focus Cs3 are obtained. These areas are internal to the three basins
of Cs3 for map T 3; which have on their boundaries the repelling node Cu3 and the �xed
point P �L (repelling focus). The value of the parameter c is very close to the center
bifurcation, so that the invariant areas existing at the center bifurcation must be
internal to that basin, which still exists at the center bifurcation. This implies that
the bifurcation must be supercritical, as shown in Fig.8(c): Soon after the center
bifurcation the trajectory of a point close to the 3-cycle repelling focus converges to
three cyclical closed curves and the basins of map T 3 do not change signi�cantly.
Similar arguments hold when crossing the upper center bifurcation curve also in

other points.
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6 Conclusions

In the present paper we have considered some bifurcations occurring in the two-
dimensional continuous piecewise linear map (x0; y0) = T (x; y) de�ned in (2). This
subject is nowadays one of the richest in terms of bifurcations to be investigated
and open problems. In this work we have mainly faced the problem related to
the center bifurcation of �xed points and cycles. In section 2 we have determined
the real �xed point P �L and related stability region, showing its coexistence with
attracting cycles of period 3 and 4. But also the virtual �xed point P �R is relevant
in qualifying the center bifurcation of the real �xed point P �L, as we have shown
in section 3: when the virtual �xed point is attracting then the center bifurcation
is supercritical, when the virtual �xed point is a repelling focus then the center
bifurcation of P �L is subcritical. The conservative case separates the two di¤erent
kind of bifurcations, and is similar to Chenciner point. A similar result holds for the
center bifurcation of the 4-cycle determined attracting in section 2: The conservative
case separates the two di¤erent kind of bifurcations, subcritical and supercritical.
As for the �xed point, when the Poincaré Equator is attracting/repelling the center
bifurcation of the 4-cycle is subcritical/supercritical, as shown in section 4. For the
center bifurcation of the 3-cycle we have two di¤erent situations, as shown in section
5. In one case the Poincaré Equator is attracting and the center bifurcation of the
3-cycle can be shown be of subcritical type. Di¤erently, in the upper branch of the
center bifurcation curve the Poincaré Equator is neither attracting nor repelling,
and we cannot apply the previous arguments to determine which kind of center
bifurcation occurs. Numerical simulations evidence that it occurs of supercritical
type.
Clearly, our arguments are not conclusive and cannot be applied in all the possi-

ble situations. Thus, further investigations are necessary to characterize the center
bifurcations, as well as other bifurcations occurring in these classes of maps, which
are left for future works.

ACKNOWLEDGMENTS
The work of L. Gardini has been done within the activities of the GNFM (Na-

tional Group of Mathematical Physics, INDAM Italian Research Group). The sec-
ond author is supported by the Centre of Excellence in Mathematics, Thailand
Research Fund and Pibulsongkram Rajabhat University, and is grateful to the Uni-
versity of Urbino for the hospitality during his visiting period.

REFERENCES
Aharonov D., Devaney R.L. & Ellas U. [1987], The dynamics of a piecewise linear

map and its smooth approximation, IJBC 7(2), 351-372.
Avrutin V., Schanz M. & Gardini L. [2010] On a special type of border-collision

bifurcations occurring at in�nity, Physica D 239, 1083-1094
Avrutin V., Zhusubaliyev Z.T., Saha A., Banerjee S., Sushko I. & Gardini L.

25



[2016] Dangerous Bifurcations Revisited, Int. J. Bifurcation Chaos, 26(14)1630040
(24 pages) DOI: 10.1142/S0218127416300408
Banerjee S., Yorke J.A. & Grebogi C. [1998] Robust chaos, Phys. Rev. Lett 80,

pp.3049-3052.
Banerjee, S. and C. Grebogi [1999] �Border-collision bifurcations in two-dimensional

piecewise smooth maps�, Physical Review E, ,59(4), 4052-4061.
Banerjee S & Verghese G.C. [2001] Nonlinear Phenomena in Power Electronics,

Attractors, Bifurcations, Chaos, and Nonlinear Control, IEEE Press.
Boyland P [1986] Bifurcations of circle maps: Arnol�d tongues, bistability and

rotation intervals, Commun. Math. Phys. 106, pp. 353-381.
Botella-Soler, V, Castelo, JM, Oteo, JA, & Ros, J [2011] Bifurcations in the Lozi

map. J. Phys. A, Math. Theor. 44, 1-17.
Brogliato B. [1999] Nonsmooth mechanics models, dynamics and control, New

York, Springer-Verlag.
di Bernardo M., Budd C.J., Champneys A.R. & Kowalczyk P [2008] Piecewise-

smooth Dynamical Systems: Theory and Applications, Applied Mathematical Sci-
ences, Vol. 163, Springer.
Cannings C., F. C. Hoppensteadt and L. A. Segel (ed.s), Epidemic Modelling:

An Introduction, Cambridge University Press, 2005.
Cull P., Di¤erence Equations as Bilogical Models, Scientiae Mathematicae Japon-

icae e-2006, 965�981 965
Devaney R.L. [1984] A piecewise linear model for the zones of instability of an

area-preserving map, Physica 10D, 387-393.
Elhadi Z. Lozi Mappings [2014] Theory and Applications, CRC Press, Taylor &

Francis Group.
Glendinning P. & Wong C.H. [2011] Two-dimensional attractors in the border-

collision normal form, Nonlinearity 24, 995-1010.
Glendinning P. [2016] Bifurcation from stable �xed point to two-dimensional

attractor in the border collision normal form, IMA J. Appl. Math. 81, 699 doi:
10.1093/imamat/hxw001
Gonchenko S.V. & L.P. Shilnikov [2000] On two-dimensional area-preserving dif-

feomorphisms with in�nitely many elliptic islands. J. Stat. Phys., 101(1/2), 321�
356.
Grove, E.A. &Ladas, G [2005] Periodicities in Nonlinear Di¤erence Equations.

Chapman Hall, New York.
Ing J., Pavlovskaia E., Wiercigroch M. & Banerjee S. [2010] Bifurcation analysis

of an impact oscillator with a one-sided elastic constraint near grazing, Physica D
239, 312 321.
Kuznetsov, Y. [2004] Elements of Applied Bifurcation Theory, Applied Mathe-

matical Sciences, vol. 112, Springer-Verlag, New York.
Lozi, R. [1978] Un attracteur etrange du type attracteur de Henon. J. Phys.

(Paris) 39, 9-10

26



Ma Y., Agarwal M. & Banerjee S. [2006] Border collision bifurcations in a soft
impact system, Phys. Lett. A 354 (4) 281�287.
Mira C., Gardini L., Barugola A. & Cathala J.C. [1996] Chaotic Dynamics in

Two- Dimensional Nonivertible Maps, World Scienti�c, Singapore.
Newhouse S.E. [1974] Di¤eomorphisms with in�nitely many sinks. Topology, 12,

9�18.
Nusse H.E. & Yorke J.A. [1992] Border-Collision Bifurcations including �period

two to period three�Bifurcation for Piecewise Smooth Systems, Physica D 57 (1992),
pp. 39-57.
Nusse H.E. & Yorke J.A. [1995] Border-collision bifurcations for piecewise smooth

one dimensional maps, Int. J. Bifurcation Chaos, 5, pp. 189-207.
Simpson, D. J. W. & Meiss, J. D. [2008] Neimark�Sacker bifurcations in planar,

piecewise-smooth, continuous maps, SIAM J. Appl. Dyn. Syst. 7, 795�824.
Simpson D. J. W. [2010] Bifurcations in piecewise-smooth continuous systems,

World Scienti�c.
Simpson D. J. W. [2014a] Sequences of Periodic Solutions and In�nitely Many

Coexisting Attractors in the Border-Collision Normal Form, Int. J. Bifurcation and
Chaos, 24(6), 1430018
Simpson D. J. W. [2014b] Scaling Laws for Large Numbers of Coexisting At-

tracting Periodic Solutions in the Border-Collision Normal Form. Int. J. Bifurcation
Chaos, 24(9), 1450118
Sushko, I. & Gardini, L. [2008] Center Bifurcation for Two-Dimensional Border-

Collision Normal Form, Int. J. Bifurcation and Chaos, 18(4), 1029-1050.
Sushko I. & Gardini L. [2010] Degenerate Bifurcations and Border Collisions in

Piecewise Smooth 1D and 2D Maps, Int. J. Bifurcation Chaos 20, 2045-2070.
Tikjha W., Lenbury Y. & Lapierre E.G. [2010] On the Global Character of

the System of Piecewise Linear Di¤erence Equations x_{n+1} = jxnj-yn -1 and
y_{n+1} = xn -jynj, Advances in Di¤erence Equations Article ID 573281 (14 pages
), doi:10.1155/2010/573281
Tikjha W., Lapierre E.G. & Sitthiwirattham T. [2017], The stable equilibrium of

a system of piecewise linear di¤erence equations, Advances in Di¤erence Equations,
V.67 (10 pages)
DOI 10.1186/s13662-017-1117-2
Zhusubaliyev Zh.T. & Mosekilde E. [2003] Bifurcations and Chaos in piecewise-

smooth dynamical systems, Nonlinear Science A, Vol. 44, World Scienti�c.
Zhusubaliyev, Zh. T. & Mosekilde, E. [2006a] Birth of bilayered torus and torus

breakdown in a piecewisesmooth dynamical system,�Phys. Lett. A 351, 167�174.
Zhusubaliyev, Zh. T. & Mosekilde, E. [2006b] �Torus birth bifurcation in a

DC/DC converter,�IEEE Trans. Circuits Syst.-I 53, 1839�1850.
Zhusubaliyev, Zh. T., Mosekilde, E., Maity, E., Mohanan S.M. & Banerjee,

S. [2006c] Border collision route to quasiperiodicity: Numerical investigation and
experimental con�rmation, Chaos 16, 023122.

27



Zhusubaliyev Zh. T, Mosekilde E. & Banerjee S. [2008] Multiple-attractor bifur-
cations and quasiperiodicicity in piecewise-smooth maps, International Journal of
Bifurcation and Chaos, Vol. 18, No. 6, 1775�1789

28




