
November 23, 2020 20:37 WSPC/S0218-1274 2030040

International Journal of Bifurcation and Chaos, Vol. 30, No. 14 (2020) 2030040 (29 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0218127420300402

Milnor and Topological Attractors in a Family
of Two-Dimensional Lotka–Volterra Maps

Laura Gardini∗
Department DESP,

University of Urbino, Italy
laura.gardini@uniurb.it

Wirot Tikjha
Faculty of Science and Technology,
Pibulsongkram Rajabhat University,

Phitsanulok 65000, Thailand
Centre of Excellence in Mathematics,

PERDO, CHE, Thailand
wirottik@psru.ac.th

Received March 26, 2020

In this work, we consider a family of Lotka–Volterra maps (x′, y′) = (x(a − x − y), bxy) for
a > 1 and b > 0 which unfold a map originally proposed by Sharkosky for a = 4 and b = 1.
Multistability is observed, and attractors may exist not only in the positive quadrant of the
plane, but also in the region y < 0. Some properties and bifurcations are described. The x-axis
is invariant, on which the map reduces to the logistic. For any a > 1 an interval of values for b
exists for which all the cycles on the x-axis are transversely attracting. This invariant set is the
source of several kinds of bifurcations. Riddling bifurcations lead to attractors in Milnor sense,
not topological but with a stable set of positive measure, which may be the unique attracting
set, or coexisting with other topological attractors. The riddling and blowout bifurcations are
described related to chaotic intervals on the invariant set, and these global bifurcations have
different dynamic results. Chaotic intervals which are not topological attractors may have all
the cycles transversely attracting and as Milnor attractors. We show that Milnor attractors may
also be related to attracting cycles on the x-axis at the bifurcation associated with the transverse
and parallel eigenvalues. We show particular examples related to topological attractors with very
narrow basins of attraction, when the majority of the trajectories are divergent.

Keywords : Lotka–Volterra family; noninvertible map; Milnor attractor; homoclinic bifurcation;
riddling bifurcation; blowout bifurcation.

1. Introduction

Since the celebrated paper by Milnor [1985] focus-
ing on the existence of invariant sets which are not
attractors in the Lyapunov sense, but may attract a
set of points of positive measure, many papers have
been published dealing with this kind of invariant
sets, also called nontopological Milnor attractors.

In particular, this notion has been widely used in
the study of systems in discrete time with symme-
tries, having an invariant set on which the restric-
tion is a lower-dimensional map and to which trajec-
tories may converge even if there is not a topological
attractor on it. This kind of studies also gave rise to
the investigation of new kind of global bifurcations,
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called riddling bifurcations and blowout bifurca-
tions [Ashwin et al., 1996; Lai & Grebogi, 1996;
Buescu, 1997; Nagai & Lai, 1997; Viana & Grebogi,
2001] to cite a few. In symmetric maps the syn-
chronization phenomena, in particular chaos syn-
chronization achieved in the long run, has been
investigated by many authors, especially for the
intermittency phenomena [Pecora & Carroll, 1990,
2015; Alexander et al., 1992; Ott & Sommerer, 1994;
Maistrenko et al., 1998; Viana et al., 2003].

Less studied are these dynamic behaviors in
systems described by nonsymmetric maps, in which
some invariant set exists, related to a lower-
dimensional map. For example, the generalized
two-dimensional Lotka–Volterra maps of the kind
(x′, y′) = (xF (x, y), yG(x)), having the x-axis
invariant and on which the restriction of the map
reduces to x′ = xF (x, 0).

In this work, we consider the particular family
of Lotka–Volterra maps (x′, y′) = T (x, y) given by

T (x, y) :=

{
x′ = x(a − x − y),

y′ = bxy,
(1)

where the parameters a, b are real numbers subject
to a > 1 and b > 0.

This system has been investigated by many
authors in the particular case (a, b) = (4, 1) pro-
posed by Sharkovsky [1993], see e.g. [Swirszcz, 1998;
Balibrea et al., 2006; Guirao & Lampart, 2008; Mal-
icky, 2012; Gasull & Mañosa, 2020]. For such values
of the parameters the map is chaotic in the trian-
gle Δ bounded by the segments [0, a] on the axes
of the phase plane (x, y) and the diagonal connect-
ing (0, a)− (a, 0). Also in this particular case, there
are still properties not completely proved. A first
unfolding of the particular case at fixed parameter
values has been considered in [Gardini & Tikjha,
2020], for b = 1 and a > 1. In that paper, previous
results related to (a, b) = (4, 1) are recalled and the
transitions to chaotic behaviors for 1 < a < 4 via
snap-back repeller bifurcations of many cycles are
commented. Moreover, some properties in the case
b = 1 were left not proved, for example, the nonexis-
tence of 2-cycles internal to Δ, which can be proved
now with the unfolding here considered, with b > 0.

As already mentioned, map T is invariant on
the line y = 0, and the restriction is the one-
dimensional map f(x) = x(a − x) which is topo-
logically conjugate to the standard logistic map
g(x) = ax(1−x) since we have h−1 ◦f ◦h(x) = g(x)
with the conjugacy h(x) = ax.

As a Lotka–Volterra map, the interest of the
dynamics of map T may be mainly in attractors
belonging to the positive quadrant, in particular
internal to the triangle Δ, and indeed we shall prove
that for a wide range of parameters’ values this set is
mapped into itself, T (Δ) ⊂ Δ. But in the unfolded
range b > 0 cycles not belonging to the x-axis may
exist also external to Δ. Moreover, we shall prove
the existence of several regimes in which the trajec-
tories are attracted to the x-axis, either to a topo-
logical attractor or to a Milnor attractor, which may
be the unique one or coexisting with some other
attractor.

From [Milnor, 1985], a Milnor attractor may be
a topological one or nontopological, but for the sake
of clarity we prefer to use different terms for the two
different cases, so let us give a few definitions that
are used in the present work.

Definitions. Let A be a compact invariant set (i.e.
such that T (A) = A).

(i) The stable set of A, W S(A), consists of
the points (x, y) whose ω-limit set satisfies
ω(x, y) ⊆ A.

(ii) A is a topological attractor (or asymptotically
stable or Lyapunov stable) if for any neigh-
borhood V (A) an open neighborhood U(A)
exists, A ⊂ U(A) ⊂ V (A), such that for any
(x, y) ∈ U(A), it is T n(x, y) ∈ V (A) for any
n and ω(x, y) ⊆ A, and it does not exist for
any compact subset A′ ⊂ A with the same
property.

(iii) For a topological attractor the stable set
W S(A) (which includes an open neighborhood
of A) is also called basin of attraction, and
denoted B(A).

(iv) We say that A is a Milnor attractor when it is
not a topological attractor and W S(A) is a set
of positive Lebesgue measure.

Map T may have topological attractors internal
to Δ, external to Δ or belonging to the x-axis, and
in particular we shall investigate those belonging
to the x-axis, since belonging to an invariant set
these may have particular transverse bifurcations,
and may be topological or Milnor attractors.

It is plain that for a topological attractor the
global basin of attraction can also be defined via
B(A) = U∞

n=0T
−n(U(A)), while it is more difficult

to detect the stable set of a Milnor attractor belong-
ing to the invariant x-axis, and we shall mainly use
numerical evidence for this. Moreover, we have to
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mention the techniques which have been used in the
literature, especially when the invariant set of the
one-dimensional map consists of chaotic intervals
[Ashwin et al., 1996; Buescu, 1997].

For any point (x, 0) of the invariant line we have
two eigenvalues, one related to the eigenvector along
the x-axis, λ‖(x), and one related to the eigenvector
transverse to it, λ⊥(x). The transverse Lyapunov
exponent related to the orbit {xi = f i(x0), i ≥ 0}
of a point x0 for the one-dimensional map f(x) is
defined by

Λ⊥ = lim
N→∞

1
N

N∑
i=0

ln|λ⊥(xi)|. (2)

Clearly, for a point x0 of a k-cycle of f(x) this leads
to Λ⊥(x0) = ln|∏k−1

i=0 λ⊥(xi)| and the k-cycle is
transversely attracting for Λ⊥(x0) < 0. This defini-
tion becomes particularly relevant when it is asso-
ciated with an invariant attracting set A on the
x-axis consisting of chaotic intervals. In that case,
the periodic orbits are dense in A but the generic
trajectory is aperiodic and dense in A. Thus, con-
sidering a generic point x0 (neither periodic nor
preperiodic) the associated exponent Λ⊥ is the so-
called natural transverse Lyapunov exponent, which
represents the average transverse attractiveness of
the chaotic set A. It is relevant especially when the
invariant set on the restriction has a natural trans-
verse parameter, that is, a parameter which influ-
ences only the transverse eigenvalue, as we shall see
to be the parameter b in our system.

Considering the system as a function of the
transverse parameter we can define a spectrum
of transverse Lyapunov exponents [Ashwin et al.,
1996; Buescu, 1997], in our case as a function of b:

Λmin
⊥ < · · ·Λnat

⊥ < · · · < Λmax
⊥ . (3)

When all the cycles of A are transversely attract-
ing, then it is Λmax

⊥ < 0 and the invariant set A may
be a topological attractor for the two-dimensional
map T , it is so if a neighborhood exists as in the
definition given above. When, varying b, one cycle
becomes transversely repelling then we have the
transition from Λmax

⊥ < 0 to Λmax
⊥ > 0 which causes

the transition to a Milnor attractor A. In fact, the
invariant set is no longer an attractor, because an
open neighborhood belonging to its basin of attrac-
tion no longer exists. This is due to the prop-
erty that all the cycles in the invariant chaotic
intervals have preimages which are dense in the

chaotic intervals, which implies that the unstable
branches issuing transversely from the cycle have
also infinitely many unstable branches issuing from
the dense preimages. It follows that for any point
(x, 0) belonging to the chaotic intervals it holds
that in any neighborhood of (x, 0) there are points
with unstable branches issuing from the neighbor-
hood. However, there are still infinitely many other
saddle cycles in the chaotic intervals which are
transversely attracting, and for each of them it
is also true that there are infinitely many preim-
ages dense in the chaotic intervals. This influences
the global behavior, because when on average such
transversely attracting cycles are dominating, and
occurs for Λnat

⊥ < 0, then the invariant chaotic inter-
vals have a stable set of positive measure, numeri-
cally and experimentally observable, and this leads
to a Milnor attractor A. Notice that this stable set
W S(A) does not include any open set, because for
any point (x, y) ∈ W S(A) it holds that in any open
neighborhood of the point there are points not con-
verging to A, and in order to identify such a behav-
ior, the term riddled basin was introduced, whose
meaning is exactly the nonexistence of open sets
in the stable set. That is, the stable set of a Mil-
nor attractor may be a kind of “basin riddled in
something else” [Alexander et al., 1992; Lai & Gre-
bogi, 1996; Lai et al., 1996; Buescu, 1997]. This is
especially observed when the system has, besides
A, a coexisting attracting set and the transition
of A from topological attractor to Milnor attrac-
tor is also called riddling bifurcation. But, as we
shall see, a different attracting set may also not
exist, in which case the riddling phenomenon is not
observed.

As long as Λnat
⊥ < 0 is a function of the trans-

verse parameter b, on average, the cycles in the
chaotic intervals still have dominating transversely
attracting eigenvalues, and A persists as Milnor
attractor. The so-called blowout bifurcation occurs
when the natural transverse Lyapunov exponent
Λnat
⊥ from negative becomes positive, which means

that in the chaotic intervals the cycles which are
transversely repelling are dominating [Nagai & Lai,
1997]. Although many transversely attracting cycles
may still exist, the stable set of A becomes a set of
zero Lebesgue measure in the (x, y)-plane. When all
the cycles in the chaotic intervals are transversely
repelling, leading to Λmin

⊥ > 0, then A becomes fully
transversely repelling, and it is also called a chaotic
saddle.
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We shall see different examples of riddled basins
and blowout bifurcations associated with attractors
consisting of chaotic intervals on the x-axis, but
not only. In fact, Milnor attractors may be related
also to the transverse bifurcations of cycles, or to
the parallel eigenvalue, and we shall see several
examples.

Moreover, in [Gardini & Tikjha, 2020] is shown
the existence of infinitely many intervals (for the
parameter a) in which the so-called maximal cycles
with symbolic sequence RLn on the x-axis (hav-
ing the largest number of periodic points on the
left side of the critical point) are topological attrac-
tors of map T . As we shall see, this implies that
these cycles become transversely repelling for b > 1,
when Δ is shown to be no longer mapped into itself.
Instead, the majority of the points in the positive
quadrant as well as in Δ have divergent trajectories,
and despite this, it is possible to have also coexis-
tence of topological attractors for T.

After this Introduction, some properties of map
T are described in Sec. 2. We determine the bifur-
cations of the fixed points of the map, and of the 2-
cycles, among which is the one not belonging to the
x-axis, showing that it is associated with a subcrit-
ical flip bifurcation of the internal fixed point and
that it does not exist for b = 1. It is proved that the
stable set of the origin is particular, and belongs to
the boundary of the basin of divergent trajectories.
We show that for any a > 1 an interval of values
for b exists for which all the cycles on the x-axis
are transversely attracting. Thus, an attracting set
for f(x) on the x-axis is a topological attractor also
for map T , and some bifurcation scenarios are com-
mented on. In Sec. 3, we consider the invariant set
A as chaotic intervals on the x-axis both when it
is a topological attractor and when it is not, since
a set of chaotic intervals may have all the cycles
transversely attracting without being a topological
attractor. We describe, via numerical simulations,
the riddling bifurcations and the blowout bifurca-
tions in different cases, all of which have some pecu-
liar behavior. As we shall see, after a riddling bifur-
cation it is possible that almost all the points in
the triangle Δ are attracted to the Milnor attrac-
tor on the x-axis. Section 4 deals with topological
attracting cycles on the x-axis, which may become
Milnor attractors at the bifurcation related to the
transverse eigenvalue, and in some cases the Milnor
attractors persist for an interval of values of b. Par-
ticular behaviors are numerically observed when the

topological attractors are the maximal cycles with
symbolic sequence RLn on the x-axis, for n ≥ 2. We
show that also when the largest part of the points in
Δ have divergent trajectories, topological attractors
of map T exist and Milnor attractors at the bifur-
cation related to the transverse eigenvalue may be
observed. Some conclusions are given in Sec. 6.

2. Some Properties and Bifurcations
of Map T

Map T in (1) has three fixed points, with two of the
restrictions on the axis y = 0, the origin O and P0,
and P ∗ in the region x > 0 which may belong to
the positive quadrant:

O := (0, 0), P0 := (a − 1, 0),

P ∗ := (x∗, y∗) =
(

1
b
, a − 1 − 1

b

)
.

(4)

Map T is noninvertible and its inverses, say
T−1(u, v), can be obtained by solving the system{

u = x(a − x − y),

v = bxy,

to get the values for (x, y). Let (u, v) satisfy

D(u, v) =
(a

2

)2 −
(
u +

v

b

)
≥ 0 (5)

then we have two inverse functions of T , leading to
points on opposite sides of the critical line LC−1

(following the notation introduced in [Mira, 1987;
Mira et al., 1996]) of equation x = a

2 (denoted as L
and R for short), given by

T−1
L/R(u, v) = (xL/R, yL/R)

=

(
a

2
∓
√(a

2

)2 −
(
u +

v

b

)
,

v

bxL/R

)
.

(6)

Clearly, the set of points (x, y) satisfying D(x, y) =
0 corresponds to the critical curve LC of map T ,
whose Cartesian equation is given by y = b

(
a2

4 −x
)
:

LC−1 : x =
a

2
, LC : y = b

(
a2

4
− x

)
. (7)

In particular, the preimage of P ∗ different from
itself under T is P ∗,−1 = (a − 1

b ,
1
b − 1

ab−1 ), while
the preimage of P0 different from itself under T is
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the point P−1
0 = (1, 0), which is independent of the

values of the parameters.
The Jacobian matrix of map T is given by

JT (x, y) =

[
a − 2x − y −x

by bx

]
(8)

leading to

Tr(JT ) = a − 2x − y + bx,

det(JT ) = bx(a − 2x).
(9)

The critical lines of map T separating zones of
points having a different number of preimages sat-
isfy det(JT ) = 0, so that we have x = 0 and x = a

2 .
However, the y-axis is mapped into one point, the
origin O, a property of the fixed point O of map (1)
which holds for any value of the parameters for
b �= 0, and thus it is not a separator of zones (since
that property implies that O is a focal point of
the inverse map with prefocal line the y-axis, as
remarked in [Bischi et al., 1999]). The only critical
line LC−1 is the one evidenced above, x = a

2 , and it
is mapped into LC. In fact T (a

2 , t) = (a2

4 − a
2 t, ba

2 t),
and eliminating the parameter t we get Eq. (7),
but its role (and definition) is due to the fact that
any point (x, y) ∈ LC has two preimages merging
into one point of LC−1 as immediately from the
inverses in (6). The point LC ∩ LC−1 is given by(

a
2 , ab

4 (a − 2)
)
.

For a point of the x-axis on the Jacobian matrix
is upper triangular, so that from JT (x, 0) we have
immediately the eigenvalues parallel and transverse
to the x-axis:

λ‖(x) = a − 2x, λ⊥(x) = bx (10)

and for an n-cycle on the x-axis with periodic points
{x1, . . . , xn}, which are necessarily all positive, the
eigenvalues are given by:

λn,‖ =
n∏

i=1

(a − 2xi), λn,⊥ = bn
n∏

i=1

xi > 0. (11)

The eigenvalue λn,‖ is the one well known from the
logistic map f(x), while the transverse eigenvalue
λn,⊥ determines when the n-cycle on the x-axis is
transversely attracting (0 < λn,⊥ < 1) or repelling
(λn,⊥ > 1), and the bifurcation value is given by
λn,⊥ = 1 which corresponds to the condition

b =
1(

n∏
i=1

xi

)1/n
. (12)

Another peculiarity occurs for an n-cycle with peri-
odic points {(x1, y1), . . . , (xn, yn)} not belonging to
the x-axis. From the definition of map T we have
that it must satisfy y1 = bnxn · · · x1y1 so that, being
y1 �= 0, it must be bn

∏n
i=1 xi = 1. Thus, we have

a relation between the product of the values xi of
the periodic points of the cycle and the parame-
ter b, which corresponds to the same condition given
in (12). It follows that if under parameter variation,
a cycle of the x-axis undergoes a transverse bifurca-
tion with eigenvalue which changes from 0 < λn,⊥ <
1 to λn,⊥ > 1, since the bifurcation cannot be a fold
one, then either it is a trancritical bifurcation or a
pitchfork bifurcation (although we conjecture that
it is a trancritical bifurcation).

Proposition 1. Let λn,⊥ = bn
∏n

i=1 xi = 1 for
an n-cycle on the x-axis with periodic points
{x1, . . . , xn}, then it is merging with an n-cycle not
belonging to the x-axis, which undergoes a trancrit-
ical bifurcation or a pitchfork bifurcation.

2.1. Stability of the fixed points

For the origin O, it is λ1,‖(O) = a and λ1,⊥(O) =
0 (related to the y-axis which is mapped into O),
so that for a > 1, it is always a particular kind
of saddle, whose stable set will be commented on
below.

For the fixed point P0, we have λ1,‖(P0) = 2 −
a, λ1,⊥(P0) = b(a − 1) and, as it is well known,
it becomes unstable on the x-axis for a > 3 (the
flip bifurcation at a = 3 leads to a 2-cycle on
the x-axis) while it is transversely attracting for
b(a− 1) < 1. Since a > 1, a bifurcation occurs with
λ1,⊥(P0) = 1 at

b =
1

a − 1
(13)

and at b = 1
a−1 , it is x∗ = 1

b = a − 1 and y∗ = a −
1 − 1

b = 0, leading to the merging of the two fixed
points, P0 = P ∗, due to a transcritical bifurcation
with respect to the transverse eigenvalue. In fact,
for the fixed point P ∗ given in (4), we make use of
the Jacobian matrix evaluated in P ∗, with

Tr(J∗) = 2 − 1
b
, Det(J∗) = a − 2

b
(14)

and of the characteristic polynomial P(λ) = λ2 −
Tr(J∗)λ + Det(J∗), since it is well known that for
the stability we can consider the three conditions
P(1) = 1 − Tr(J∗) + Det(J∗) > 0, P(−1) = 1 +
Tr(J∗) + Det(J∗) > 0, Det(J∗) < 1, and explicitly
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(a) (b)

Fig. 1. Two-dimensional bifurcation diagrams in the parameter plane (a, b). In (a) are evidenced the bifurcation curves related
to b = b0, b = bf , b = bNS, and for a > 3 the curve b = 4/a2 below which all the cycles existing on the x-axis are transversely
attracting. Different colors represent attracting cycles of different periods. The gray points denote divergence. In orange (resp.,
yellow) the stability region of P0 (resp., P ∗). In (b) an enlargement of the rectangle shown in (a), where some periods are
indicated, and the colored regions above the curve b = bf denote bistability, P ∗ is attracting as well as an attractor on the
x-axis.

we have

P(1) = a − 1 − 1
b

> 0 i.e. b > b0 :=
1

a − 1
(15)

P(−1) = 3 + a − 3
b

> 0 i.e. b > bf :=
3

3 + a

(16)

Det = a − 2
b

< 1 i.e. b < bNS :=
2

a − 1
.

(17)

In the parameter plane (a, b), the three bifurca-
tion curves occurring at P(1) = 0, P(−1) = 0 and
Det = 1 related to the fixed point P ∗ are evidenced
in Fig. 1. The curves P(1) = 0 and P(−1) = 0 (flip
bifurcation of one eigenvalue) are intersecting at the
point (a, b) = (3, 0.5). The curves P(−1) = 0 and
Det = 1 are intersecting in (a, b) = (9, 0.25). The
bifurcation occurring at P(1) = 0 corresponds to
the merging of the fixed point P ∗ with P0 already
commented above, the fixed point P ∗ is below the
x-axis for P(1) < 0 while it is above the x-axis
for P(1) > 0, and it corresponds to a transcriti-
cal bifurcation related to the transverse eigenvalue,
which has different dynamic behaviors depending
on a < 3 or 3 < a < 9.

The bifurcation occurring at Det = 1 is a
Neimark–Sacker bifurcation, while in the next sub-
section, we shall prove that the flip bifurcation

occurring at P (−1) = 0 is of subcritical type and
associated with a 2-cycle not belonging to the x-
axis, whose periodic points are explicitly given.

2.1.1. 2-cycles and related stability

Besides the 2-cycle on the invariant x-axis, map T
can have a 2-cycle not belonging to the invariant
line. The one on the x-axis is related to the flip
bifurcation of P0 with the eigenvalue λ1,‖(P0) = 2−
a, occurring at a = 3, and it is given (for a > 3) by
{(ξ−, 0), (ξ+, 0)} where

ξ± =
1
2
(a + 1 ±

√
(a + 1)(a − 3)). (18)

As it is well known from the logistic map, this 2-
cycle on the x-axis is attracting on the invariant line
as long as it is λ2,‖ > −1. From (11) we have

λ2,‖ = (a − 2ξ−)(a − 2ξ+) = −a2 + 2a + 4,

λ2,⊥ = b2ξ−ξ+ = b2(1 + a)
(19)

so that the bifurcation related to λ2,‖ = −1 occurs
for a2 + 2a + 4 = −1 leading to a = 1 +

√
6 ≈

3.449489743. The transverse eigenvalue is λ2,⊥ =
b2ξ−ξ+, and a bifurcation for λ2,⊥ = 1 leading to
b = 1√

1+a
.

A second 2-cycle C2 may exist, external to
the x-axis. In fact, considering the solutions of
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T 2(x, y) = (x, y) we obtain the system{
x = x(a − x − y)[a − x(a − x − y) − bxy]

y = b2x2y(a − x − y)
(20)

that is{
1 = (a − x − y)[a − x(a − x − y) − bxy]

1 = b2x2(a − x − y),

from the second equation we have

y = − 1
b2x2

+ a − x (21)

and from the first equation:

b(1 − b)x3 − bax2 + ax − 1 − b

b2
= 0.

Since a solution is the fixed point P ∗ we can factor-
ize as (

x − 1
b

)
(αx2 + βx + γ) = 0 (22)

where

α = b(1 − b), β = (1 − b − ab), γ =
1 − b

b
(23)

so that the solutions (x±, y±) exist for b �= 1 and

(β2 − 4αγ) = (3 − 3b − ab)(b − ab − 1) > 0
(24)

which corresponds to b > 3
3+a , i.e. b > bf , and it is

x± =
ab + b − 1 ±√(3 − 3b − ab)(b − ab − 1)

2b(1 − b)
(25)

while the values y± come from (21). Notice that this
also proves that for b = 1 the 2-cycle C2 does not
exist.

It is easy to see that for b = bf , the two peri-
odic points are merging with P ∗, that is (x±, y±) =
(x∗, y∗) = (1

b , a − 1 − 1
b ).

The 2-cycle C2 so determined, whose appear-
ance is related to the flip bifurcation of the fixed
point P ∗, also evidences that increasing b the 2-
cycle exists after the flip bifurcation related to one
eigenvalue of P ∗ for b > bf , which means that for
a < 3 this transition leads from P ∗ repelling node
in the region y < 0, to saddle and the internal 2-
cycle saddle C2 appears in the region y < 0, while
for a > 3 this transition leads from P ∗ saddle in the

region y > 0 to P ∗ attracting node, and the 2-cycle
saddle C2 appears in the region y > 0.

The 2-cycle C2 is also related to the transcrit-
ical bifurcation of the 2-cycle on the x-axis, occur-
ring, as detected above, for λ2,⊥ = 1. In fact, when
the parameters satisfy b2(1 + a) = 1, from (23)
we have

α = b(1 − b), β = −1 − b

b
, γ =

1 − b

b

so that x± are the roots of the equation

b2x2 − x + 1 = 0 (26)

and from (21) we have that y = − 1
b2x2 + a − x = 0

holds when x± are the roots of the same equation
in (26). Thus, when λ2,⊥ = 1 holds then the 2-cycle
C2 merges with the 2-cycle on the x-axis. Note that
fixing the value of the parameter a and increasing b,
we have that bf = 3

3+a < 1√
1+a

holds for a > 3. We
have so proved the following:

Proposition 2. At b = bf (bf = 3
3+a) the fixed point

P ∗ undergoes a subcritical flip bifurcation associated
with the 2-cycle C2, whose periodic points (x±, y±)
exist for b > bf and are given by

x± =
ab + b − 1 ±√(3 − 3b − ab)(b − ab − 1)

2b(1 − b)
,

(27)

y± = − 1
b2x±2

+ a − x±. (28)

For 3 < a < 9 the 2-cycle C2 is a saddle at its
appearance, and undergoes a transcritical bifurca-
tion with the 2-cycle on the x-axis at b = 1√

1+a

(from the region y > 0 to the region y < 0, increas-
ing b). For b = 1 and a > 1 the 2-cycle C2 cannot
exist.

2.2. Stable set of O and boundary
of B(∞)

It is known that for the logistic map on the x-axis
the origin O and it preimage O−1 (x = a) belong
to the boundary of the set of divergent trajectories
denoted by B(∞). For map T the y-axis is mapped
into the origin O so that it belongs to its stable set.
That is, this fixed point is not a regular saddle with
a branch of stable set having points with trajecto-
ries convergent to the fixed point. Any point (0, y)
is mapped into O in one iteration, and the stable
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set of O consists of all the preimages of any rank of
the point itself: W S(O) = U∞

n=0T
−n(0, 0). Since O

belongs to the border of B(∞), it follows also that
all its preimages of any rank satisfy the same prop-
erty, starting from the y-axis which is T−1(0, 0), and
related preimages due to the points of the half-line
of the y-axis below LC, which we denote by ω0, that
is, the half-line on x = 0 belonging to the region Z2,
for y ≤ ba2

4 . We have the following:

Proposition 3. The stable set W S(O) = {x = 0} ∪
U∞

n=1T
−n(ω0) belongs to the boundary ∂B(∞).

It is worth to investigate in more detail the
structure of W S(O), to be used in the next sec-
tions. From (6) the two inverses of a point (0, t) of
ω0 are given by

ω−1 : x =
a

2
± 1

2

√
a2 − 4

t

b
,

y =
t

bx
; y = a − x

(29)

and eliminating the parameter t from these equa-
tions, we have that the points belong to the line of
equation y = a−x, on which the two half-lines ω−1

1,2
are separated from the point (a

2 , a
2 ).

To have a further preimage, let us consider
a point (t, a − t) belonging to Z2 and we take
the preimages from (6) obtaining the parametric
equations

ω−2 : x =
a

2
± 1

2

√
a2 − 4

(
t +

a − t

b

)
,

y =
a − t

bx

(30)

from which, eliminating the parameter t, we get the
following Cartesian equation for b �= 1:

ω−2 : y =
a − (a − x)x

x(b − 1)
(31)

while for b = 1 the preimages ω−2 are two half-lines
at x = a

2 ± 1
2

√
a2 − 4a.

Besides the stable set of the origin, let us take
note that the unstable branch of the origin in the
region x < 0 has divergent trajectories for any a >
1, the unstable branch for x > 0 is the interval [0, c]
for a ≤ 4, where c denotes the critical point of f(x).
Such points are also related to the intersection of
the critical lines LCi with the x-axis, let us denote
c−1 = a

2 and c = f(c−1) = a2

4 . For a > 4 also the
unstable branch for x > 0 has almost all the points

with divergent trajectories (since it is c = a2

4 > a),
although the origin always belongs to a Cantor set
of zero measure bounded in [0, a].

2.3. Attracting sets of map T on
the x-axis

As we can argue from the transverse eigenvalue of
the cycles belonging to the x-axis, it is possible that
all of them are transversely attracting, in which
case the attracting sets on the x-axis are topological
or Milnor attractors for map T , as unique attract-
ing set or coexisting with some other attracting
set of T .

The bifurcations occurring on the invariant set
on the x-axis related to the logistic map f(x) are
well known (see [Mira, 1987; Devaney, 1989; Mira
et al., 1996]), and increasing a, for a > 3, we have
attracting cycles of period 2n up to the first Feigen-
baum point, after which the attracting set (a cycle
or invariant cyclical chaotic intervals or a critical
set [Jacobson, 1981; Mira, 1987; Sharkovsky et al.,
1997; Thunberg, 2001]) is always located in the
interval [c1, c] bounded by the critical points c and
c1 of f(x), where c1 = f(c) = a2

4 (a − a2

4 ).
It is also well known that any attracting cycle

is attracting (for the logistic) for an open inter-
val of values of a, and that the set of values of
a at which we have chaotic intervals is of posi-
tive Lebesgue measure [Jacobson, 1981; Thunberg,
2001]. For a > 4 the bounded invariant set is a Can-
tor set of points in [0, a] with chaotic dynamics, and
of zero measure.

Since for any cycle different from O it is λn,⊥ =
bn
∏n

i=1 xi > 0 and any periodic point satisfies 0 <

xi < c = a2

4 we have 0 < λn,⊥ < (ba2

4 )n so that a
sufficient condition to have λn,⊥ < 1 for any cycle
is ba2

4 < 1. We have so proved the following:

Proposition 4

(i) Let 0 < b < 0.25, then for any a ∈ [1, 4] all the
cycles existing on the x-axis are transversely
attracting.

(ii) Let a > 1, then for b < 4/a2 all the cycles
existing on the x-axis are transversely attract-
ing.

(iii) Any n-cycle on the x-axis different from O with
periodic points {x1, . . . , xn} is transversely
attracting for b < 1/(

∏n
i=1 xi)1/n.
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From Proposition 4 we have that whenever an
attracting cycle of the logistic map exists (which
occurs for an open interval of values for a), then
it is also a topological attractor for map T at low
values of the parameter b, and the condition given
in the proposition is only a sufficient condition to
have all the cycles transversely attracting. For any
single cycle the transversality condition changes at
any fixed value of a and increasing b (since fixing
a the periodic points do not change). As we have
seen above, the 2-cycle given in (18), which exists
as attracting in a given interval [a−, a+], becomes
transversely repelling at b = 1/

√
1 + a.

Clearly, if in the region y > 0 or y < 0
some different attracting set exists, then we have
coexistence, at least bistability. In effect, in gen-
eral, the attracting sets not belonging to the x-
axis are located in the triangle Δ in the region
y > 0, bounded by the segments [0, a] on the axes
of the phase plane (x, y) and the diagonal connect-
ing (0, a) − (a, 0), which is a portion of the preim-
age ω−1, but not always. It is very interesting for
this class of maps to determine attracting cycles or
attracting chaotic sets also in the region y < 0, as
we shall see in the following sections.

The property of positive transversal eigenval-
ues for cycles belonging to the x-axis also leads to
the fact that the x-axis is an invariant set which
separates regions having often, when the x-axis is
not attracting, different dynamic behaviors. This is
due to the fact that points close to the invariant set
on opposite sides are repelled in different directions,
above and below it. In particular, it is interesting
the already mentioned triangle Δ, which has been
considered in the literature related to this map for
b = 1 and a > 1, since it may include the fixed
point P ∗ in its interior. Also in our more general
case b > 0 this region plays an important role, espe-
cially when it is mapped into itself. We prove the
following:

Proposition 5. Let 1 < a < 4 and 0 < b < 4/a,
then T (Δ) ⊂ Δ (strictly).

Proof. As it is immediate to see, a point (x, y) ∈ Δ
has (x′, y′) = T (x, y) belonging to the first quadrant
of the plane. The assumptions on the parameters a
and b are such that the segment of LC in the first
quadrant is inside Δ and LC is below the diago-
nal of Δ, segment of ω−1, so that all the points of
the positive quadrant above this arc of LC belong
to the region Z0, which means that no point can

be mapped there. In particular, no point can be
mapped in the region between this arc of LC and
the diagonal of Δ, so that T (Δ) is strictly mapped
into itself. �

Clearly, this triangle Δ mapped into itself is
candidate to host attracting and repelling sets, and
although it cannot attract points from the invariant
x-axis, it may attract points from the region y < 0.

2.4. Bifurcation sequences for
1 < a < 3 as a function of b

As determined above, the bifurcation sequences
increasing the transverse parameter b at each fixed
value of the parameter a is different for a < 3 (when
P0 is attracting on the x-axis) and 3 < a < 9 (when
P0 is repelling on the x-axis). For 1 < a < 3 and
increasing b from 0, the fixed point P ∗ is a repelling
node in the region y < 0 and belongs, with all its
preimages, to the boundary ∂B(P0) as well as to
∂B(∞). Increasing b first the bifurcation P(−1) = 0
(at b = bf ) occurs, leading to a 2-cycle saddle in
the region y < 0, and then the bifurcation P(1) = 0
(at b = b0) after which P0 becomes a saddle trans-
versely repelling and P ∗ an attracting node in the
region y > 0.

An example is shown in Fig. 2 at a = 2.7 and
fixed and increasing b > 0. In Fig. 2(a) at b = 0.52
the fixed point P0 is an attracting node for map T ,
and we have evidenced its basin of attraction in
red (separating the set of points having divergent
trajectories), and the boundary, besides the stable
set of the origin, includes the repelling node P ∗ and
all its preimages. At b = bf ≈ 0.5363 the fixed point
P ∗ becomes a saddle and the saddle 2-cycle C2 also
belongs to ∂B(∞).

Increasing b, the saddle 2-cycle C2 undergoes a
subcritical flip bifurcation, becoming an attracting
node, and leaving a saddle 4-cycle on the bound-
ary ∂B(∞). Thus we have coexistence of two topo-
logical attractors, besides P0 on the x-axis there is
the 2-cycle C2 attracting node in the region y < 0
[shown in Fig. 2(b)]. Increasing b the 2-cycle C2

becomes unstable and belongs to the boundary
∂B(∞) [see Fig. 3(a)] before the bifurcation of the
two fixed points, when P ∗ and P0 are merging,
occurring at b = b0 ≈ 0.588, leaving P ∗ attract-
ing node and unique attractor. The simulations [see
Fig. 3(b)] show that its basin of attraction is the tri-
angle Δ. Increasing b the fixed point P ∗ undergoes
a NS bifurcation at b = bNS.
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(a) (b)

Fig. 2. Phase plane at a = 2.7. In (a) b = 0.52, P0 is attracting, its basin of attraction is in red, and on the boundary the
repelling node P ∗ and its preimage P ∗,−1 are observed. In (b) b = 0.53, P0 is attracting, its basin of attraction is in red,
coexisting with the 2-cycle C2 attracting node, whose basin is in white. The gray points denote divergence.

2.5. Transitions for 3 < a < a∞
Differently, for 3 < a < 9 and increasing b first the
merging bifurcation P(1) = 0 (at b = b0) occurs,
leading P0 from saddle to repelling node, and the
repelling node P ∗ from y < 0 to a saddle in the
region y > 0. This means that the attracting set
existing for the logistic map f(x) on the x-axis, for
a < 4, persists as a topological attractor for map T
also after the bifurcation at b = b0. But clearly, by
increasing b several bifurcations may occur in the
region y > 0, and not only, since also in the region
y < 0 bifurcations can take place.

As a typical example in the range before the
first Feigenbaum point a∞ ≈ 3.56994567 in which
the attracting set for the logistic map is a 2n-cycle,

let us consider the case at a = 3.55. At this value,
on the x-axis the fixed point P0, the 2-cycle and
the 4-cycle are unstable in the parallel direction,
and saddle of map T at low values of b, while an
attracting 8-cycle exists, which is the only attrac-
tor also for map T . When P ∗ and P0 are merg-
ing, occurring at b = b0 ≈ 0.392156, as well as
soon after the bifurcation, the only attracting set
of map T is the 8-cycle on the x-axis, up to the
subcritical flip bifurcation of P ∗ which takes place
at b = bf ≈ 0.458 leading to P ∗ attracting, so that
map T has two coexisting topological attractors.
The 2-cycle saddle C2 belongs to the border of the
basins of P ∗ and of the attracting 8-cycle on the x-
axis. An example is shown in Fig. 4(a). Increasing b,

(a) (b)

Fig. 3. Phase plane at a = 2.7. In (a) b = 0.55, P0 is attracting, its basin of attraction is in red, and on the boundary the
saddle P ∗, its preimage P ∗,−1, and the unstable 2-cycle C2 are observed. In (b) b = 0.6, P ∗ is the only attractor internal to
Δ, in yellow is its basin of attraction. The gray points denote divergence.
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(a) (b) (c)

Fig. 4. Phase plane at a = 3.55. In (a) b = 0.46, P ∗ is the only attractor internal to Δ, its basin of attraction is in yellow,
in pink is the basin of attraction of the attracting 8-cycle on the x-axis. In (b) b = 0.4625, besides the two attractors as in
(a) one more chaotic attractor exists in the region y < 0, in white is its basin of attraction. In (c) b = 0.4626, P ∗ is attracting
and coexists with an attracting 8-cycle internal to Δ, the 8-cycle on the x-axis is transversely repelling, here the white points
have a chaotic transient and then diverge. The gray points denote divergence.

when the 8-cycle is still attracting for T , but close
to the transverse bifurcation, one more attracting
set for T appears in the region y < 0, with chaotic
dynamics, as shown in Fig. 4(b) and we conjecture
that an 8-cycle saddle from the region y < 0 on
the frontier below the x-axis is merging with the
attracting 8-cycle on the x-axis at the transverse
bifurcation, when λ8,⊥ = b8

∏8
i=1 xi = 1. After the

transcritical bifurcation, an 8-cycle attracting node
exists above the x-axis, it is numerically observable,
as shown in Fig. 4(c), while the 8-cycle on the x-
axis becomes transversely repelling, a saddle for T .
Thus, two different topological attractors exist in
the region y > 0, while in the region y < 0 related
to the former attracting set, we detected tran-
sient chaotic dynamics before ending in divergent
trajectories.

3. Milnor Attractors, Riddled
Basins and Blowout Bifurcations

As mentioned in the Introduction, we are interested
in the bifurcations occurring in the transverse direc-
tion, when the attracting set A on the x-axis, for
the logistic map f(x), consists of chaotic intervals.
We know that for each value of a only one attract-
ing set exists for f(x) on the x-axis. In particular,
after the first Feigenbaum point there are homo-
clinic bifurcations of cycles of even periods leading
to cyclic chaotic intervals. As an example, we con-
sider those related to the merging of 2n+1 absorbing
intervals into 2n chaotic intervals, bounded by the

first 2n+1 images of the critical point c−1 = a/2,
f i(c−1) for i = 1, . . . , 2n+1, and first homoclinic
bifurcation of the 2n cycle internal to the 2n chaotic
intervals, occurring at particular bifurcation values
for a.

We shall consider the merging of eight absorb-
ing intervals into four chaotic intervals A at the
first homoclinic bifurcation of the 4-cycle with sym-
bolic sequence (LR)2, occurring approximately at
a = 3.574805, the merging of four absorbing inter-
vals into two chaotic intervals A =[c1, c3] ∪ [c2, c]
at the first homoclinic bifurcation of the 2-cycle at
a = 3.592572184, and the merging of two absorbing
intervals into one chaotic interval A =[c1, c] at the
first homoclinic bifurcation of the fixed point P0 at
a = 3.67857351.

Recall that b is a normal parameter, it influ-
ences only the transverse eigenvalue of a point of
the x-axis. In all the three cases mentioned above
A is a chaotic attractor for the logistic map, and
from Proposition 4 at low values of b, it is also a
topological attractor of map T , since all the saddle
cycles existing in the chaotic intervals are trans-
versely attracting [that is, Λmax

⊥ in (3) is negative].
Clearly, as soon as one of the cycles existing in A
becomes transversely repelling, A becomes a Milnor
attractor with a stable set which may be riddled into
some other basin of attraction. This stable set has a
positive Lebesgue measure but it does not include
any open neighborhood. In our case, the natural
transverse Lyapunov exponent [from (2)] related to
the aperiodic orbit {xi = f i(x0), i ≥ 0} of a point
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x0 for map f(x) is given by

Λnat
⊥ = lim

N→∞
1
N

N∑
i=0

ln|bxi|

= ln(b) + lim
N→∞

1
N

N∑
i=0

ln(xi) (32)

which can be numerically computed. Thus, as long
as it is Λnat

⊥ < 0 (which means that on average are
dominating the cycles in the chaotic intervals which
are transversely attracting) the chaotic attractor A
of f(x) leads to a Milnor attractor for T , since
there exists a stable set of positive measure. We
know that the increase of b leads to more and more
cycles transversally repelling. Thus, as b increases
the stable set of A has a positive Lebesgue measure
which decreases and Λnat

⊥ increases, approaching 0.
The blowout bifurcation occurs when the trans-
verse Lyapunov exponent Λnat

⊥ becomes positive,
which means that the transversely repelling cycles
are dominating and the stable set of A becomes of
zero Lebesgue measure.

In all the cases mentioned above, it is interest-
ing to describe the effect of the riddling bifurcations
(transition from a topological attractor to a Mil-
nor attractor), and in particular the blowout bifur-
cations, since these are global bifurcations whose
results depend on the global behaviors of the map.

3.1. Transitions with four chaotic
intervals at a = 3.574805

Let us consider a = 3.574805 at which the logis-
tic map f(x) on the x-axis has four cyclic chaotic
intervals A, at the first homoclinic bifurcation of
the 4-cycle (LR)2 for which the product of the four
periodic points is

∏4
i=1 xi = 22.4146. It follows that

the 4-cycle is transversely attracting as long as the
condition λ4,⊥ = b4

∏4
i=1 xi < 1 holds, that is,

b < 0.459586. The fixed point P ∗ becomes attract-
ing at b = bf = 0.456287, and for 0 < b < bf

the only attracting set observed numerically is the
chaotic set A on the x-axis, and it is possible that
all the cycles belonging to the four chaotic intervals
are transversely attracting, an example is shown in
Fig. 5(a) at b = 0.45. For bf < b < 0.459586 the
internal fixed point P ∗ is attracting and the four
chaotic intervals on the x-axis are also attracting a
set of points with positive measure, since it seems
Λmax
⊥ = ln(λ4,⊥). So, after the transverse bifurca-

tion of the 4-cycle (corresponding to the riddling

bifurcation), for b > 0.459586 we have that P ∗ is a
topological attractor while A is a Milnor attractor
with a stable set riddled into B(P ∗). An example is
shown in Fig. 5(b) at b = 0.4601.

Computing the transverse Lyapunov exponent
of a chaotic trajectory on the x-axis we have Λnat

⊥ <
0 at b = 0.4601, while it is Λnat

⊥ > 0 at b =
0.4602. Thus, between these two values, we have the
blowout bifurcation. We show in Fig. 6 at b = 0.4602
that the invariant set on the x-axis is no longer a
Milnor attractor (it has a stable set of zero mea-
sure), and the effect of the global bifurcation in
this case is the appearance of two more topological
attractors, coexisting with the attracting fixed point
P ∗, two distinct 4-pieces chaotic attracting sets, one
in the region y < 0 and one in the region y > 0, as
clearly shown in the enlargement of Fig. 6(b).

The two new topological attractors persist for
an interval of values of b, increasing in size, and
farther from the x-axis. Moreover, increasing b an
attracting cycle of period 24 appears via saddle-
node bifurcation in the region y > 0, leading to
four coexisting topological attractors, as shown in
Fig. 7 at b = 0.4603.

3.2. Transitions with two chaotic
intervals at a = 3.592572184

A different dynamic behavior occurs when we con-
sider a = 3.592572184 (at which for the logistic
map f(x) the chaotic attractor A consists of two
cyclical intervals). Increasing b, the fixed point P ∗
enters the region y > 0 at b = b0 = 0.38571732
and becomes attracting at the subcritical flip bifur-
cation, at b = bf = 0.455057588. The two chaotic
intervals now include a 2-cycle and a 4-cycle, and
the 4-cycle is the one which first becomes trans-
versely repelling, the product of the periodic points
gives

∏4
i=1 xi = 22.81058478, from which it fol-

lows that the transversal direction is attracting as
long as b < 0.4575788. While the 2-cycle on the x-
axis has the product of the periodic points given
by
∏2

i=1 xi = 4.592572184, and it is transversely
attracting as long as b < 0.466629299 (this trans-
verse bifurcation is also the bifurcation at which the
2-cycle C2 merges with the 2-cycle on the x-axis).

It follows that for 0 < b < bf the only attracting
set is A on the x-axis while for bf < b < 0.4575788
the fixed point P ∗ is also attracting, so that we have
two coexisting attractors, an example is shown in
Fig. 8(a).
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(a) (b)

Fig. 5. Phase plane at a = 3.574805, on the x-axis, the four cyclic chaotic intervals A are attracting for map f(x). In (a)
b = 0.45,A is the only attractor, in pink is its basin of attraction. In (b) b = 0.4601, P ∗ is attracting (its basin is in yellow)
and coexisting with the Milnor attractor on the x-axis, the four cyclic chaotic intervals A (its stable set is in dark green). The
gray points denote divergence.

(a) (b)

Fig. 6. Phase plane at a = 3.574805, b = 0.4602, on the x-axis, the four cyclic chaotic intervals A are attracting for map f(x),
but after the blowout bifurcation its stable set for map T is of zero measure. In (a) there are three topological attractors, P ∗,
with basin in yellow, and two 4-cyclical chaotic sets on opposite sides of the x-axis, evidenced in the enlargement in (b) and
basins of different colors.

(a) (b)

Fig. 7. Phase plane at a = 3.574805, b = 0.4603, on the x-axis, the four cyclic chaotic intervals A are attracting for map
f(x), but its stable set for map T is of zero measure. In (a) there are four topological attractors, besides the three shown in
Fig. 6, there is an attracting cycle of period 24 whose basin is shown in green, the two cyclical chaotic sets on opposite sides
of the x-axis, and the 24-cycle, are evidenced in the enlargement in (b) with basins of different colors.
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(a) (b)

Fig. 8. Phase plane at a = 3.592572184, on the x-axis, the two cyclic chaotic intervals A are attracting for map f(x). In
(a) b = 0.456, P ∗ is attracting (its basin is in yellow) and coexisting with the attractor A, whose basin is in pink. In (b)
b = 0.458, P ∗ is attracting in the yellow basin, and coexisting with the Milnor attractor on the x-axis, the two cyclic chaotic
intervals A (its stable set is in dark green). The gray points denote divergence.

The 4-cycle is responsible for the riddling bifur-
cation, and for b > 0.4575788 the 4-cycle on the
x-axis (internal to the chaotic intervals) is trans-
versely repelling, so that A becomes a Milnor
attractor, an example is shown in Fig. 8(b) at
b = 0.458. Increasing b, besides the fixed point P ∗
and the Milnor attractor A of two chaotic intervals
on the x-axis, we observe the appearance of one
more topological attractor consisting of four chaotic
pieces numerically observed close to the x-axis in
the region y > 0 (before the blowout bifurcation),
an example is shown in Fig. 9(a) at b = 0.4589,
where the enlargement in Fig. 9(b) shows the new
chaotic topological attractor. Clearly, increasing b

the stable set of the Milnor attractor on the x-axis
decreases, an example at b = 0.4609 is shown in
Fig. 9(c), where the attracting set with basin in
red, coexisting with P ∗, is now a 4-cycle (obtained
from the chaotic pieces via a sequence of reverse
bifurcations).

Computing the natural transverse Lyapunov
exponent on the x-axis we have Λnat

⊥ < 0 at b =
0.4609 [Fig. 9(c)], while it is Λnat

⊥ > 0 at b = 0.461
so that the blowout bifurcation occurs in this inter-
val, after which only the two topological attractors
shown in Fig. 9(c) are left, and the stable set of A
becomes of zero measure. In our numerical compu-
tations the blowout bifurcation now does not lead

(a) (b) (c)

Fig. 9. Phase plane at a = 3.592572184, on the x-axis, the two cyclic chaotic intervals A are attracting for map f(x). In (a)
b = 0.4589, two topological attractors exist, P ∗, whose basin is in yellow, and a 4-cyclical chaotic set whose basin is in red,
and the Milnor attractor on the x-axis whose basin is in dark green, as evidenced in the enlargement in (b). In (c) b = 0.4609,
close to the blowout bifurcation the stable set of the Milnor attractor (in dark green) is reduced, but still of positive measure,
and the attracting set with basin in red is now a 4-cycle.
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to an attracting set in the region y < 0, where the
generic trajectory is divergent.

3.3. Transitions with one chaotic
interval at a = 3.67857351

The fixed point P0 (which is in the interior to
the chaotic interval A =[c1, c]) becomes transversely
repelling when the fixed point P ∗ enters (as a sad-
dle) the region y > 0 at b = b0 = 0.373333, and this
is also the riddling bifurcation of A, from topolog-
ical attractor (for 0 < b < b0) to Milnor attractor.
However, for b > b0 close to the bifurcation there is
no other attracting set numerically observable, thus
the stable set of A is a set not riddled in some other
basin of attraction, and its closure is a whole area,
an example is shown in Fig. 10(a).

The peculiarity of this case is that between
the riddling bifurcation and the blowout bifurca-
tion there is only the Milnor attractor A. In fact,
the fixed point P ∗ becomes attracting at b = bf =
0.44919772 and computing Λnat

⊥ on the x-axis, we
have Λnat

⊥ < 0 at b = 0.426, while it is Λnat
⊥ > 0 at

b = 0.428. Thus, the blowout bifurcation occurs at
a value bblow in the interval (0.426, 0.428) when P ∗
is still a saddle. It follows that for b0 < b < bblow

map T has no topological attractor, but only the
chaotic interval A as Milnor attractor on the x-axis.
In the example shown in Fig. 10(a) at b = 0.426,
it is Λnat

⊥ < 0 and almost all the points without
a divergent trajectory have the ω-limit set on the
x-axis, in the chaotic interval A, so that the Milnor

attractor attracts almost all the points not belong-
ing to B(∞).

For bblow < b < 0.44919772 the internal fixed
point P ∗ is still a saddle, and on the x-axis it is
Λnat
⊥ > 0 so that the stable set of the chaotic inter-

val, i.e. the points having the ω-limit set on the
x-axis, now constitute a set of zero measure (for
example, related to the preimages of P0 which are
dense in the chaotic interval [c1, c], and similarly
for the other transversely repelling cycles), and A
is no longer a Milnor attractor. The effect of the
blowout bifurcation at b = bblow is the appearance of
a chaotic attracting set in the region y > 0 (while no
attracting set is observed in the region y < 0). An
example is shown in the enlargement of Fig. 10(b)
at b = 0.428 (at which Λnat

⊥ > 0) where almost
all the points without a divergent trajectory have
the ω-limit set consisting of a chaotic set which is
very close, but not attached, to the x-axis, and it
consists of two pieces, which are invariant for the
second iterate of the map, T 2, as it is for the invari-
ant set on the x-axis, since the invariant interval
A =[c1, c] consists of two intervals [c1, P0] and [P0, c]
with P0 = c2 invariant for the map f2(x).

This chaotic set seems a topological attractor,
as it becomes more evident when increasing b, so
that its area increases, as shown in Fig. 10(c) at b =
0.439, since an open neighborhood exists around it,
belonging to its basin of attraction.

In both the examples shown in Figs. 10(b)
and 10(c) the images of an arc of critical line LC−1

are shown, LC and LC1 on the external boundaries

(a) (b) (c)

Fig. 10. Phase plane at a = 3.67857351, on the x-axis, the chaotic interval A is attracting for map f(x). In (a) b = 0.426,
after the riddling bifurcation, A is a Milnor attractor and attracts almost all the nondivergent trajectories. In (b) b = 0.428,
the enlargement close to the x-axis, after the blowout bifurcation, A is no longer a Milnor attractor, its stable set is of zero
measure, a chaotic attractor in two pieces is observed, which is invariant for the second iterate, map T 2, and the two pieces
are shown in different colors. The images of an arc of critical line LC−1 are shown in red. In (c) b = 0.439, the enlargement
close to the x-axis, shows a wider chaotic attractor in two pieces, invariant for map T 2, and the images of an arc of critical
line LC−1 are shown in red.
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(a) (b)

Fig. 11. Phase plane at a = 3.67857351, b = 0.44, on the x-axis, the chaotic interval A is attracting for map f(x), but its
stable set for map T is of zero measure. In (a) there are two topological attractors, besides the chaotic attractor in two pieces,
with basin in red, there is an attracting cycle of period 6 whose basin is shown in green, which are evidenced in the enlargement
in (b).

of the chaotic set, while all the other images LCn

are issuing from the fixed point P0, since this is the
first homoclinic bifurcation of P0, occurring when
f3(c−1) = c2 = P0. The lower and upper bound-
aries of the chaotic attractor may be related to the
unstable set of some saddle cycle.

This is the unique attracting set numerically
observed when increasing b, up to a value at which
a pair of internal 6-cycles appears via saddle-node,
leading to a 6-cycle attracting node (before the
bifurcation at b = bf leading to P ∗ attracting).
An example of bistability is shown in Fig. 11 at
b = 0.44.

The 6-cycle is still attracting at b = 0.4405 but
no longer at b = 0.441. It is possible that other
coexisting attractors appear before the bifurcation
of the fixed point, although we have not observed
them in our numerical simulations.

At b = 0.45 > bf the fixed point P ∗ is attract-
ing, and the stable set of the internal saddle 2-cycle
separates the two basins, P ∗ and the chaotic attrac-
tor. Now the chaotic attractor is larger, portions
of its boundary are given by segments of critical
lines LCi, an area bounded from above can be easily
obtained, while the lower part is now quite far from
the x-axis, as shown in the enlargement of Fig. 12.

(a) (b)

Fig. 12. Phase plane at a = 3.67857351, b = 0.45, on the x-axis, the chaotic interval A is attracting for map f(x), but its
stable set for map T is of zero measure. In (a) there are two topological attractors, besides the chaotic attractor in two pieces,
with basin in red, there is the attracting fixed point P ∗, whose basin is in yellow. The two-piece chaotic attractor is evidenced
in the enlargement in (b).
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3.4. Nontopological chaotic
intervals as Milnor attractors

In the examples mentioned above map T has the
chaotic intervals which are true attractors of map
f(x), occurring at the merging of a pair of absorb-
ing intervals (for map f4, or f2 or f). However,
chaotic intervals also occur at an expansion bifurca-
tion [Avrutin et al., 2019] when the boundary of the
intervals include a repelling cycle which undegoes a
homoclinic bifurcation, the effect of the bifurcation
is the transition to a wider absorbing interval. The
values of the parameter a at which this occurs are
accumulation points of several kinds of bifurcations
[Mira, 1987]. Clearly, also in such a case Proposi-
tion 4 holds and at low values of b all the cycles in
the chaotic intervals are transversely attracting, and
thus the set of chaotic intervals is a Milnor attractor
for map T for an interval of b values, and undergoes
a blowout bifurcation with increasing b. Moreover,
a peculiarity of such chaotic set is that in any neigh-
borhood of any of its points, there are points which
are mapped on the boundary, in the repelling cycle.
This is due to the fact that at the expansion bifur-
cation the cycle on the border is an image of finite
rank of the critical point c−1 = a/2 which, on its
turn, has preimages which are dense in the chaotic
intervals [Mira, 1987; Avrutin et al., 2019].

In order to investigate a similar case we con-
sider the value of a related to the homoclinic bifur-
cation of the 3-cycle of the logistic map, which
bounds the immediate basin of the three-piece
attracting set before the expansion bifurcation,
occurring when the unstable 3-cycle merges with
the critical point on the boundary of the absorbing
intervals. This leads to three chaotic intervals hav-
ing on the boundary an unstable 3-cycle on the x-
axis, but transversely attracting at low values of b,
and also all the cycles with periodic points dense
in the chaotic intervals are transversely attracting.
In our simulations we fix a = 3.8568, in the inter-
val 0 < b < bf the only observed attracting set is
this Milnor attractor on the x-axis. In the interval
bf < b < bblow (i.e. as long as it is Λnat

⊥ < 0) we
have some attracting set in the triangle Δ and the
Milnor attractor on the x-axis. The blowout bifur-
cation occurs approximately at bblow = 0.62 < bNS

when the attracting set is the fixed point P ∗ after
which the stable set of the chaotic intervals becomes
a set of zero measures, and the basin of attraction
of the attracting set in Δ is left, besides the set of
divergent trajectories.

One more interesting case occurs at a = 4, when
the first homoclinic bifurcation of the fixed point
in the origin occurs. The logistic map is chaotic in
the interval I = [0, 4], which is not an attracting
interval, since the endpoints of the interval include
a cycle repelling in the other direction, and in
this case it belongs to the boundary of divergent
trajectories.

3.4.1. Transitions at a = 4

For the particular case occurring at a = 4, on the
x-axis we have a chaotic interval I = [0, 4] (with
periodic points dense in [0, 4]), which cannot be a
topological attractor since in any neighborhood of
any point of the interval there are points mapped
into O in a finite number of iterations, as well as
points having divergent trajectories. In fact, the
first rank preimage of the vertical axis x = 0, ω−1

[given in (29)], intersects the x-axis exactly at the
point with x = 4, so that, as we know, the end-
points are repelling from outside. Moreover, the arc
of the preimage ω−2 [given in (31)] is tangent to
the x-axis in the region y ≤ 0 at the critical point
c−1 (x = 2), and its preimages are also tangent to
the x-axis in the region y ≤ 0 in the preimages of
the critical point c−1 which are dense in the chaotic
interval [0, 4]. Thus, it can only be a Milnor attrac-
tor as long as its stable set is of positive measure,
as it occurs when all the cycles existing in I are
transversely attracting, at low values of b.

Also in this case, we have an interval of values
of b in which the stable set of the chaotic interval,
Milnor attractor, is not riddled in anything else,
and attracts almost all the points having bounded
trajectories, an example is shown in Fig. 13(a).

Increasing b, the first cycle which becomes
transversely repelling most likely is the fixed point
P0 when it merges with P ∗, which occurs at b =
b0 = 1/3. The fixed point P ∗ becomes attracting at
b = bf = 0.42857142857, and undergoes the NS
bifurcation at b = bNS = 2/3. For 0 < b < bf

we have detected only trajectories converging to
the Milnor attractor (i.e. the stable set is not rid-
dled into another basin of attraction), while for
bf < b < bNS we have a topological attractor (the
fixed point P ∗) and a Milnor attractor on the x-
axis, as shown in Fig. 13(b), the stable set of I is
riddled into the basin of attraction B(P ∗).

After the NS bifurcation of P ∗ we have some
other topological attractor [an example is shown
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(a) (b) (c)

Fig. 13. Phase plane at a = 4, on the x-axis the chaotic interval I = [0, 4] is not an attractor for map f(x). In (a) b = 0.3, I
is a Milnor attractor and attracts almost all the nondivergent trajectories. In (b) b = 0.45, I is a Milnor attractor and attracts
a set of positive measure, and there is the attracting fixed point P ∗, whose basin is in yellow. In (c) b = 0.7, after the NS
bifurcation of P ∗ the attractor is a closed invariant curve.

in Fig. 13(c)], which becomes a chaotic attracting
set quite large in dimensions, and approaches the
boundary of its basin of attraction. That is, for
b > bNS as long as another attracting set coexists
with I, Milnor attractor, we have that the stable set
of I is riddled into the basin of another attracting
set, which becomes a chaotic area as b increases.

A contact bifurcation occurs between the
chaotic area and the boundary of its basin of attrac-
tion at a value of b very close to the example shown
in Fig. 14(a), after which we have a chaotic repeller
in Δ and again almost all the points are attracted
to the x-axis [see Fig. 14(b)] which is still a Milnor
attractor.

The dynamics are the same up to b = 1 when
the critical line LC merges with the preimage ω−1

and the triangle Δ becomes invariant. The partic-
ular case (a, b) = (4, 1) has been investigated in
several papers, and still it has not been proved that
the set of points having the ω-limit set on the x-axis
is a set of zero Lebesgue measures, but we conjec-
ture that this is true and that the blowout bifurca-
tion occurs exactly at b = 1, after which almost all
the trajectories are divergent. However, the chaotic
interval I = [0, 4] is not a chaotic saddle. In fact, in
[Gardini & Tikjha, 2020] it is evidenced that there
are still many cycles on the x-axis which are trans-
versely attracting, not only at b = 1 but also at

(a) (b)

Fig. 14. Phase plane at a = 4, on the x-axis the chaotic interval I = [0, 4] is not an attractor for map f(x). In (a) b = 0.84374, I
is a Milnor attractor and the topological attractor is a chaotic area, close to the boundary of its basin of attraction (in yellow).
In (b) b = 0.85, after the contact bifurcation a chaotic repeller is left and the Milnor attractor I attracts almost all the
nondivergent trajectories.
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b �= 1, for example, all the maximal cycles having
symbolic sequence RLn for any n > 2.

It is interesting to investigate the particular
role played by the maximal cycles having symbolic
sequence RLn for n ≥ 2 not only at b = 1 but as b
increases from 0, as considered in Sec. 5.

However, let us first remark that the peculiar
behavior after a riddling bifurcation associated with
a stable set not riddled into some other basin of
attraction is not a rare phenomenon, since it may
occur also for the bifurcation of cycles, as evidenced
in the next section.

4. Milnor Attractors Related to
Attracting Cycles of Map T

In the previous section, we have seen that Mil-
nor attractors are common, increasing b, whenever
the parameter a of the logistic map corresponds to
chaotic intervals, and it is known that the set of
values of a at which this occurs is a set of positive
measure [Jacobson, 1981; Thunberg, 2001]. For each
fixed value of a there exists an interval of values b at
which the chaotic set on the x-axis is a topological
or Milnor attractor for map T . However, there are
values of a at which also the logistic map f(x), as
a one-dimensional map on the x-axis, has a Milnor
attractor. In fact, this happens for a∞ < a < 4
at any fold (or tangent) bifurcation of the map,
when the graph of the function fn(x) becomes tan-
gent to the diagonal (leading to an attracting cycle
and a repelling one). At the fold bifurcation the
two n-cycles are merging into a unique n-cycle, say
C∗

n, which is attracting from one side and repelling
from the other side (where it also has homoclinic
points), so that it is not a topological attractor, but
it attracts almost all the points of the interval [0, a],
and thus it is a Milnor attractor for f(x).

The question is if such a cycle (at the fold bifur-
cation) is a Milnor attractor also for map T . And the
answer is yes, as long as it is transversely attracting.
Thus, denoting {x∗

1, . . . , x
∗
n} as the periodic points

of the cycle C∗
n at the fold bifurcation value, we see a

Milnor attractor of map T as long as λn,⊥(C∗
n) < 1,

which occurs (from Proposition 4) for

0 < b <
1(

n∏
i=1

x∗
i

)1/n
. (33)

So, for such transitions, we have Milnor attrac-
tors which are robust, or persistent, with respect
to the parameter b (although not with respect to
the parameter a).

Differently, in the examples given in the follow-
ing, the attractors are not robust, because they are
related (for each value of a) to the bifurcation value
of b giving λn,⊥ = 1.

We know that the values of the parameter a at
which we have an attracting cycle for the logistic
map lead to a set of positive measures (since it is
the union of open intervals of values). For each fixed
value of a of this kind we know that at low values of
b such an n-cycle is also a topological attractor for
map T , and that it becomes transversely repelling
at the bifurcation λn,⊥ = 1. Thus, is it possible that
at the bifurcation value the n-cycle on the x-axis
becomes a Milnor attractor?

Here we have no unique answer because it
depends on the kind of cycle which is merging with
that on the x-axis, there are examples in which
the answer is yes (some evidences are given below
and in the next section), and other cases in which
it is no.

For example, for a fixed value a ∈ (1, 3) at
which the fixed point P0 is attracting on the x-axis,
the transverse direction becomes repelling at the
bifurcation P(1) = 0, when the fixed point P ∗ (sad-
dle) from the region y < 0 merges with it and then
enters the region y > 0 as an attracting node. In all
such cases, at the bifurcation value b = b0 the fixed
point P0 = P ∗ repels points in the region y < 0
while it attracts points in the region y > 0, from
the triangle Δ, in a set of positive measures, and
thus it is a Milnor attractor (an example is given in
Sec. 2.4).

Differently, for a > 3, when the attracting set
on the x-axis is the 2-cycle flip bifurcated from P0,
then the bifurcation in the transverse direction of
this topological attractor occurs when the saddle 2-
cycle C2 flip bifurcated from P ∗ merges with the
2-cycle on the x-axis from the region y > 0, at
b = 1√

1+a
(from Proposition 2). After the trans-

verse bifurcation the 2-cycle in the region y < 0 is a
repelling node. At the bifurcation value the result-
ing cycle is not a Milnor attractor, since the trans-
verse direction in the region y > 0 leads the points
to converge to the attracting fixed point P ∗ while
those of the transverse direction in the region y < 0
leads the points to a divergent trajectory.
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However, in the cases of the attracting cycles
with period 2n for n > 1 before the Feigenbaum
point a∞, we conjecture that at the transverse
bifurcation, we always have a Milnor attractor. This
is due to the fact that the transition of the eigen-
value from λ2n,⊥ < 1 to λ2n,⊥ > 1 seems to occur
with a saddle 2n-cycle which from the region y < 0
enters the region y > 0 becoming an attracting node
(as we have shown in the example with the 23-cycle
in Sec. 2.5), which implies that at the bifurcation,
when λ2n,⊥ = 1, the x-axis still has an attracting set
of positive measures from points of the triangle Δ.

5. Milnor Attractors Related to the
Transverse Bifurcation of
Attracting Maximal Cycles

It is interesting to investigate the particular role
played by the maximal cycles having symbolic
sequence RLn for n ≥ 2 which occur at values of
a close to 4, in particular for the cases with n ≥ 3
because we know (see [Gardini & Tikjha, 2020])
that the bifurcation related to the transverse eigen-
value occurs at values b > 1 which means that the
basin of divergent trajectories B(∞) is dominant in
the triangle Δ. In fact, from the equations of the
straight lines LC in (7) and ω−1 in (29) it follows
that for any fixed value of a, for b > 4/a the basin
B(∞) of divergent trajectories intersects the trian-
gle Δ and the portion between ω−1 and LC has
infinitely many preimages in Δ, because the stable
set of the origin is expanded inside it, and thus also
the basin of divergent trajectories. Often, this is a

kind of “final bifurcation” which leads to divergence
for almost all the points in Δ, but it is not true in
our case, as described in this section, through some
examples.

We describe the dynamics occurring at the
transverse bifurcation of the attracting 3-cycle RL2,
the attracting 4-cycle RL3 and the 8-cycle flip bifur-
cated from it, which seem related to Milnor attrac-
tors (but only at the transverse bifurcation value).
What characterizes the different dynamic behavior
of RLn for n = 2 and n > 2 is that the transverse
bifurcation of the 3-cycle occurs when there exists
a topological attracting set in the triangle Δ, while
for all the other cycles with n > 2 (and also for
the related cycles obtained via flip bifurcations from
them) when the transverse bifurcation occurs (and
it is for b > 1) there are no attracting sets internal
to the triangle Δ, but mainly divergent trajectories.

It is clear that a dynamic behavior similar to
the one shown below may occur for any other max-
imal cycle RLn, n > 2.

5.1. Transverse bifurcation of the
attracting 3-cycle RL2

Let us consider fixed the value a = 3.83 so that
on the x-axis there is an attracting 3-cycle, which
is also transversely attracting for b < 0.6179 (from
λ3,⊥ = b3

∏3
i=1 xi < 1 and

∏3
i=1 xi = 4.238775261),

and thus the 3-cycle is a topological attractor also
for the two-dimensional map T . In Fig. 15(a) we
show the immediate basin of the periodic point of
the 3-cycle close to the critical point a/2 for the

(a) (b) (c)

Fig. 15. Parameter a = 3.83. In (a) enlargement of f3(x) in a neighborhood of c−1 = a/2 evidencing the immediate basin of
a point of the attracting 3-cycle on the x-axis. In (b) b = 0.43, the 3-cycle on the x-axis is the only attractor of map T, its
basin is in pink. In (c) b = 0.44, two attractors of map T coexist, the 3-cycle on the x-axis (basin in pink) and the attracting
fixed point P ∗ (basin in yellow).
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third iterate of the logistic map, leading to the
immediate basin on the x-axis for the logistic map,
whose global basin has however a fractal structure,
that is, the frontier includes a chaotic repeller. It
seems the only attractor of T up to the stabil-
ity of P ∗. Here P ∗ enters the region y > 0 at
b = b0 = 0.35335689 and becomes attracting at
b = bf = 0.439238653.

In Fig. 15(b) the 3-cycle on the x-axis is the
unique attractor, although a chaotic repeller exists,
not only on the x-axis, but also inside the trian-
gle Δ. This can be observed numerically when P ∗
becomes attracting, an example with the two topo-
logical attractors is shown in Fig. 15(c) at b = 0.44,
where the fractal structure of the two basins (due
to a chaotic repeller inside Δ) can be seen.

Increasing the parameter b the basin of the
attracting fixed point P ∗ becomes larger, while the
basin of the attracting 3-cycle decreases more and
more. Recall that increasing b only the transverse
eigenvalue changes, thus the 3-cycle persists as a
topological attractor as long as λ3,⊥ < 1 and thus
up to b = 0.6179 at which a transcritical bifurcation
occurs. For b < 0.6179 close to the transverse bifur-
cation a saddle 3-cycle exists in the region y > 0
belonging to the boundary of the basin of attraction
of the 3-cycle, an example is shown in Fig. 16 and
the two 3-cycles are evidenced in the enlargement
(the attracting one on the x-axis and the saddle one
on the basin boundary).

At b = 0.6179 the two 3-cycles merge on the
x-axis, and the transverse direction is repelling in
the region y > 0 (where the points converge to the

attracting fixed point P ∗) but it is attracting in the
region y < 0 and we have numerical evidence that
the set of points whose trajectory converges to the
3-cycle on the x-axis is a set of positive measure, so
that we conjecture that it is a Milnor attractor.

For b > 0.6179 the 3-cycle on the x-axis is a
saddle, transversely repelling, but the bifurcation
leads to the appearance of an attracting 3-cycle in
the region y < 0, an example is shown in Fig. 17
and in the enlargement the two cycles of period 3 are
evidenced. Now the stable set of the saddle 3-cycle
on the x-axis also for map T is restricted to the
interval [0, a]. The x-axis separates points having
different behavior in the regions above and below
the x-axis itself. In fact, in the region y > 0 in Δ
the points converge to the attracting fixed point P ∗
while in the region y < 0 the points either converge
to the new attracting 3-cycle of T or diverge.

5.2. Transverse bifurcation of the
attracting 4-cycle RL3

A different behavior can be seen at a = 3.9603
when there exists an attracting 4-cycle RL3 of the
logistic map, which is transversely attracting for
b < 1.0926482984745 (for which λ4,⊥ < 1), and it is
a topological attractor also for map T . In Fig. 18(a)
we show the immediate basin of the fourth iterate
of the logistic map of the periodic point of the 4-
cycle close to the critical point a/2, leading to the
immediate basin on the x-axis for the logistic map,
whose global basin has however a fractal structure,
and also for the two-dimensional map T , as shown

(a) (b)

Fig. 16. Parameters a = 3.83, b = 0.6. In (a) the two attractors of map T still coexist, the basin of the 3-cycle (in pink)
is smaller in size, the basin of P ∗ is in yellow. The enlargement in (b) shows a saddle 3-cycle on the basin boundary of the
attracting 3-cycle, before the bifurcation related to the transverse eigenvalue.
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(a) (b)

Fig. 17. Parameters a = 3.83, b = 0.618. In (a) after the bifurcation related to the transverse eigenvalue, two attractors
of map T coexist, the attracting fixed point P ∗ (basin in yellow), and the 3-cycle in the region y < 0 (basin in azure). The
enlargement in (b) shows the attracting 3-cycle and the saddle 3-cycle on the x-axis.

in Fig. 18(b) where the fractal structure is evident
in the region y < 0. It seems the only attractor of T
up to the stability of P ∗. Here P ∗ enters the region
y > 0 at b = b0 = 0.3378036 and becomes attracting
at b = bf = 0.4310159.

In Fig. 18(b) the 4-cycle is the unique attractor,
although a chaotic repeller exists on the x-axis, and
it may also exist inside the triangle Δ. When P ∗
becomes attracting, there are two coexisting topo-
logical attractors (P ∗ and the 4-cycle), an example
is shown in Fig. 18(c) at b = 0.44.

There are two coexisting topological attrac-
tors also in Fig. 19(a), after the NS bifurcation of
P ∗ (occurring at b = bNS = 0.3378036) but now
the attractors are a closed invariant curve and the

4-cycle is on the x-axis, the enlargements evidence
the fractal structure of the basin of the 4-cycle.

There are coexisting topological attractors also
in the many bifurcations occurring (for increasing
b) near the closed invariant curve leading to chaotic
attractors. The example shown in Fig. 20(a) evi-
dences that the chaotic attractor is close to the
boundary of its basin of attraction (separating this
basin from that of the attracting 4-cycle on the x-
axis) and thus close to having a contact bifurcation
with the frontier.

The contact leads to a chaotic repeller, leaving
as unique topological attractor the 4-cycle on the
x-axis. Figure 21 seems like a compact basin, but it
is not, inside it the former attractor has a chaotic

(a) (b) (c)

Fig. 18. Parameter a = 3.9603. In (a) enlargement of f4(x) in a neighborhood of c−1 = a/2 evidencing the immediate basin
of a point of the attracting 4-cycle on the x-axis. In (b) b = 0.4, the 4-cycle on the x-axis is the only attractor of map T, its
basin is in pink. In (c) b = 0.44, two attractors of map T coexist, the 4-cycle on the x-axis (basin in pink) and the attracting
fixed point P ∗ (basin in yellow).
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(a) (b) (c)

Fig. 19. Parameters a = 3.9603, b = 0.7. In (a) two attractors of map T coexist, the 4-cycle on the x-axis (basin in pink) and
the attracting closed invariant curve after the NS bifurcation of P ∗ (basin in yellow). In (b) enlargement of a strip around the
x-axis. In (c) enlargement of a strip of (b) around the critical point c−1.

(a) (b)

Fig. 20. Parameters a = 3.9603, b = 0.933. In (a) two attractors of map T coexist, the 4-cycle on the x-axis (basin in pink)
and a chaotic area (basin in yellow) close to a contact with the frontier of its basin boundary. In (b) enlargement of a strip
around the x-axis.

(a) (b)

Fig. 21. Parameters a = 3.9603, b = 1.01. In (a) the 4-cycle on the x-axis is again the only attractor of map T, its basin is in
pink. The preimage ω−2 of the origin is near the crossing of ω−1 and LC. In (b) enlargement of the rectangle shown in (a)
around the critical point c−1.
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(a) (b)

Fig. 22. Parameters a = 3.9603, b = 1.02. In (a) the 4-cycle on the x-axis is the only attractor of map T, its basin is in pink,
but the majority of the points in Δ have divergent trajectories. In (b) enlargement of the rectangle shown in (a) around the
critical point c−1.

repeller left. In the enlargement it can be seen that
in the region y < 0 the basin has a saddle 4-cycle on
the boundary of the immediate basin. In Fig. 21(a)
we can also see that the preimage ω−2 of the y-axis,
bounding the divergent trajectories, is close to the
upper limit of the basin (given by ω−1), and when
ω−2 crosses the critical line LC we have an explo-
sion of the stable set W S(O) separating the basin
of the attractor from the points having divergent
trajectories, as shown in Fig. 22(a) whose enlarge-
ment evidences that the 4-cycle is still a topological
attractor for map T.

Increasing b the basin of the 4-cycle decreases,
as shown in Fig. 23, and it remains a topological
attractor up to the bifurcation related to the trans-
verse eigenvalue, which now occurs with a saddle

4-cycle (on the basin boundary) approaching the x-
axis from the region y < 0.

At the bifurcation λ4,⊥ = 1 the two 4-cycles
merge on the x-axis, and the transverse direction
is repelling in the region y < 0 (where the points
have divergent trajectories) but it is attracting in
the region y > 0 and from the numerical simula-
tions we conjecture that the set of points whose
trajectory converges to the 4-cycle on the x-axis is
a set of positive measures, so that it is a Milnor
attractor.

After the bifurcation, the 4-cycle on the x-axis
becomes a saddle while an attracting 4-cycle node
appears in the region y > 0, so that another topo-
logical attractor is created, whose basin is evidenced
in red in Fig. 24, and it has positive Lebesgue

(a) (b)

Fig. 23. Parameters a = 3.9603, b = 1.092. In (a) the 4-cycle on the x-axis is the only attractor of map T, its basin in pink
becomes smaller and smaller, the majority of the points in Δ have divergent trajectories. In (b) enlargement of a small portion
of (a) around the critical point c−1, showing that the 4-cycle is close to the bifurcation related to the transverse eigenvalue.
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(a) (b)

Fig. 24. Parameters a = 3.9603, b = 1.09269. In (a) the 4-cycle on the x-axis is a saddle transversely repelling, the only
attractor of map T is a 4-cycle in the region y > 0, its basin is in red, the majority of the points in Δ have divergent
trajectories. In (b) enlargement of a small portion of (a) around the critical point c−1.

measure, attracting points of the triangle Δ, even if
the largest part of points in Δ have divergent tra-
jectories, as shown in Fig. 24.

5.3. Transverse bifurcation of the
attracting 8-cycle

It is well known that from each cycle RLn for n ≥ 3
a cascade of period-doubling bifurcations occur, all
leading to topological attractors of map T at least
for low values of b, and for all of them a transi-
tion similar to the one described above for the 4-
cycle may occur. We only comment here the bifur-
cations associated with the 8-cycle (flip bifurcated

from the 4-cycle of the previous subsection at a �
3.9603). Let us consider a = 3.961 fixed, at which
there exists an attracting 8-cycle of the logistic
map, which is also transversely attracting for b <
1.0981667422 (obtained from the related condition
λ8,⊥ < 1), so that it is a topological attractor for
the two-dimensional map T . In Fig. 25(a) we show
an enlargement of the eighth iterate of the logistic
map close to the critical point a/2, and the immedi-
ate basin of the periodic points of the 8-cycle close
to the critical point, leading to the immediate basin
of the logistic map on the x-axis. It seems the only
attractor of T up to the stability of P ∗ occurring at
b = bf = 0.43097256, an example of bistability with

(a) (b)

Fig. 25. Parameter a = 3.961. In (a) enlargement of f8(x) in a neighborhood of c−1 = a/2 evidencing the immediate basin
of two points of the attracting 8-cycle on the x-axis which is also an attractor of map T . In (b) b = 0.44, two attractors of
map T coexist, the 8-cycle on the x-axis (basin in pink) and the attracting fixed point P ∗ (basin in yellow).
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(a) (b) (c)

Fig. 26. Parameter a = 3.961. In (a) b = 0.7, two attractors of map T coexist, the 8-cycle on the x-axis (basin in pink) and
an attracting closed invariant curve, after the NS bifurcation of P ∗ (basin in yellow). In (b) b = 0.9, two attractors of map
T coexist, the 8-cycle on the x-axis (basin in pink) and chaotic attractor (basin in yellow). In (c) b = 0.95, after the contact
bifurcation the only attractor of map T is the 8-cycle on the x-axis (basin in pink).

P ∗ is shown in Fig. 25, while the NS bifurcation
occurs at b = bNS = 0.675447484.

Two (at least) topological attractors, one inside
the triangle Δ and one on the x-axis, exist up to the
contact bifurcation of the chaotic attractor (existing
after the NS bifurcation of P ∗) with the boundary
of its basin of attraction, see Figs. 26(a) and 26(b),
after which almost all the points belong to the basin
of the attracting 8-cycle on the x-axis, as shown in
Fig. 26(c).

As in the previous case one more relevant bifur-
cation occurs when Δ is no longer mapped into
itself, changing drastically the structure of the basin
of attraction of the 8-cycle. The preimages of the

line x = 0 enter the triangular region Δ from above
and then crossing LC there is an expansion of the
stable set W S(O), at the same time expanding the
area of points in Δ having divergent trajectories, as
shown in Fig. 27 and its enlarged portion.

However, it is interesting to see that also in
these situations, map T can still have two coex-
isting topological attractors, as shown in Fig. 28.
The enlargement clearly evidences the existence of
a chaotic attractor in eight pieces (only two of which
are shown in the enlargement), when the 8-cycle on
the x-axis is still a topological attractor of T . Thus,
even if in the triangular region Δ the majority of
the points have a divergent trajectory [as shown in

(a) (b)

Fig. 27. Parameters a = 3.9603, b = 1.04. In (a) the 8-cycle on the x-axis is the only attractor of map T, its basin in pink
is very small (but of positive measure), the majority of the points in Δ have divergent trajectories. In (b) enlargement of the
rectangle shown in (a) around the critical point c−1.
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(a) (b)

Fig. 28. Parameters a = 3.9603, b = 1.0981. In (a) two topological attractors of map T coexist, with very small basins, the
8-cycle on the x-axis (its basin is in pink) and a chaotic attractor in eight cyclical pieces (with basin in red), the majority of
the points in Δ have divergent trajectories. In (b) enlargement of the rectangle shown in (a) around the critical point c−1,
showing that the 8-cycle is close to the bifurcation related to the transverse eigenvalue.

(a) (b)

Fig. 29. Parameters a = 3.9603, b = 1.0982. In (a) two topological attractors of map T coexist, with very small basins, an 8-
cycle in the region y < 0 after the bifurcation related to the transverse eigenvalue (its basin is in azure) and a chaotic attractor
in eight cyclical pieces (with basin in red), the majority of the points in Δ have divergent trajectories. In (b) enlargement of
the rectangle shown in (a) around the critical point c−1.

Fig. 28(a)], there are still two sets of positive mea-
sure, basins of attraction of two topological attrac-
tors. The bifurcation in the transverse direction of
the 8-cycle on the x-axis occurs with its merging
with an 8-cycle saddle from the region y > 0, which
becomes an 8-cycle attracting node in the region
y < 0 after the bifurcation, for b > b8,⊥, thus
still keeping two topological attractors, as shown
in Fig. 29. Also in this example, at the transverse
bifurcation occurring at b = b8,⊥ the 8-cycle on the
x-axis is repelling in the region y > 0, but attract-
ing in the region y < 0, and numerically it seems

to be a Milnor attractor with a stable set similar to
the one existing for b > b8,⊥ for the new 8-cycle in
the region y < 0.

6. Conclusions

In this work, we have investigated some bifurca-
tions related to the family of Lotka–Volterra maps
(x′, y′) = T (x, y) = (x(a − x − y), bxy) for a > 1
and b > 0. The recent literature is mainly focused
on attracting sets belonging to the triangle Δ in
the positive quadrant of the plane. However, the
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existence of an invariant set on the x-axis leads
to unexpected dynamic behaviors, related to both
topological and Milnor attractors on the x-axis. We
have evidenced some properties of map T , among
which those related to a 2-cycle not belonging to
the x-axis, the stable set of the origin O which
belongs to the boundary of B(∞), showing that for
any a ∈ (1, 4] at low values of b the set existing in
the interval [0, a] of the x-axis is attracting (as topo-
logical or Milnor attractor). In particular, we have
considered in Sec. 3 cases in which the set on the x-
axis consists of chaotic intervals (attracting or not)
and the related riddling and blowout bifurcations,
mainly via numerical simulations, in order to show
the dynamic result of these global bifurcations. Per-
sistent cases of Milnor attractors are also associated
with standard bifurcations of cycles on the x-axis,
as shown in Sec. 4. Many results are not rigorously
proved, and given as conjectures, since we do not
have enough instruments for an exact evaluation.
In particular, this happens with the outcomes of
Milnor attractors related to cycles which are topo-
logical attractors both of map f(x) and map T , as
described in Sec. 5, in which the bifurcation in the
transverse direction leads to topological attractors
of map T in the region y > 0 or y < 0 in a context in
which the majority of the trajectories are diverging.

Several others properties of map T are worth to
be investigated further. For example, we have not
given space to the NS bifurcation of the internal
fixed point P ∗, to the coexistence of attracting sets
inside the triangle Δ and to the snapback repeller
bifurcations of P ∗ and other internal cycles, which
are also interesting to study that we leave for future
work.
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