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a b s t r a c t

In this paper we consider a one-dimensional piecewise linear discontinuous map in canon-
ical form, which may be used in several physical and engineering applications as well as to
model some simple financial markets. We classify three different kinds of possible dynamic
behaviors associated with the stable cycles. One regime (i) is the same existing in the con-
tinuous case and it is characterized by periodicity regions following the period increment by
1 rule. The second one (ii) is the regime characterized by periodicity regions of period incre-
ment higher than 1 (we shall see examples with 2 and 3), and by bistability. The third one
(iii) is characterized by infinitely many periodicity regions of stable cycles, which follow
the period adding structure, and multistability cannot exist. The analytical equations of
the border collision bifurcation curves bounding the regions of existence of stable cycles
are determined by using a new approach.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

A significant amount of research works have been
recently published regarding piecewise smooth and piece-
wise linear systems because of their wide use in applica-
tions. Several models in engineering and physical
sciences are of this kind (see [4–7,12,13,15,18–20,22,23,
31,37,42]), as well as in economics (see [35,36]).

The first results on piecewise smooth systems date back
to several years ago, for continuous models as well as for
discontinuous systems ([24,25,30]). The main point in the
analysis of non-smooth one-dimensional systems (contin-
uous and discontinuous) is the occurrence of border colli-
sion bifurcations (BCB henceforth). The term was
introduced by Nusse and Yorke in 1992 [32] (see also
[33,34]), and now it is widely used. A cycle undergoes a
BCB when a periodic point of the cycle collides with the
point in which the system changes definition. BCBs can
be responsible for example of the direct transition from a

stable fixed point to a cycle of any period, to chaotic
dynamics or to divergence.

Piecewise smooth systems can be classified in two
types with different properties, although both character-
ized by BCB, that is: continuous models and discontinuous
ones. The bifurcation properties of these two classes of
maps are in fact quite different. For example, the BCBs
occurring in the one-dimensional continuous unimodal
piecewise-linear map in canonical form,1 which can be
used for the analysis of any other BCB occurring in contin-
uous piecewise smooth maps, have been completely stud-
ied. The results can be found in some papers [26–28,32,34],
see also [38] for a review. While regarding discontinuous
one-dimensional maps, also piecewise-linear, only partial
results exist. Several properties have been described (see
[4,6,7]), but still the knowledge is far from a complete clas-
sification of all the possible dynamics. As recalled above,
the researches associated with discontinuous maps started
several years ago, with works by Leonov at the end of the
50th [24,25]. Recent results have been obtained in [21,8]
and the technique there described, associated with two
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linear increasing branches, will be used also here, applied
to the case of a piecewise linear discontinuous map with
increasing and decreasing branches.

In this work we are interested in a piecewise linear dis-
continuous map in canonical form, giving results and equa-
tions for the generic cases. This kind of models are also
used to describe some simple financial relations between
chartists and fundamentalists, as those recently called of
‘‘bull and bear dynamics’’ [39,40]. From the seminal papers
by Day [16,17], such simple models are up to date to inter-
pret the financial crises. In particular the map in canonical
form is used in [41], where we have analyzed some special
cases associated with linear pieces having both positive
slopes or both negative slopes. Other cases, associated with
two positive slopes, have been investigated in [21]. Here
we shall focalize the analysis to the case which is left to
investigate, that is: one increasing and one decreasing
branch, in which an equilibrium point always exists (stable
or unstable). A feedback mechanism exists, so that the tra-
jectories can never diverge, and the asymptotic dynamics
are either periodic, or quasiperiodic, or aperiodic in some
bounded cyclic chaotic intervals.

Our map includes as particular examples those consid-
ered in the recent literature (for example in [4,6,7]). As we
shall see from the analysis of the general case, the possible
dynamic occurrences are richer than those observed in the
cited papers. In particular, we shall introduce the distinc-
tion between three different regimes with qualitatively dif-
ferent dynamic behaviors. In fact, we shall see that the case
of a continuous map separates two different situations. In
one only particular cycles may be stable, called principal
(or maximal) cycles, whose periods follow the increment
rule by 1 unit and bistability cannot occur. In the second
one similar dynamics also occur, but besides the periodic-
ity regions of these cycles, there are also regions with two
different kinds of stable periodic orbits in families which
follow the period increment by units higher than 1, associ-
ated with overlapped periodicity regions, leading to bistabil-
ity (i.e. coexistence of two different attracting cycles,
with periods differing by a constant). A third region will
be classified (via the homoclinic bifurcation of the fixed
point), associated with the existence of infinitely many
periodicity regions, following the period adding structure
typical of the Farey rule, i.e. between two existing periodic-
ity regions associated with cycles of periods k1 and k2, also
another periodicity region associated with a cycle of period
p = k1 + k2 exists, and no coexistence of cycles can occur. It is
in this period adding structure that we can use a quite new
technique to determine the bifurcation curves analytically.
This technique comes from an idea introduced by Leonov
several years ago [24,25], in the case of increasing/increas-
ing branches, recently improved in [21] and extended in
[8]. Here it will be applied to different maximal cycles in
the increasing/decreasing case. We are mainly interested
in the families of stable cycles, and we shall see an iterative
process to calculate families of related BCB curves.

The plan of the work is as follows. In Section 2 we intro-
duce the map, a linear increasing branch in the left side (L)
of the discontinuity point and a linear decreasing one in
the right side (R), describing some of its properties, among
which the degeneracy of all the flip bifurcations of any

cycle, and the classification of the three cases (i), (ii) and
(iii). In Section 3 we determine the BCB curves associated
with the periodicity regions of cycles occurring in the re-
gion (i), having the symbolic sequence LkR, and the related
curves at which their degenerate flip bifurcation occurs. In
Section 4 we consider the BCB curves associated with the
periodicity regions of cycles occurring in the region (ii)
which are overlapped in pair, and thus with bistability,
illustrating a particular property in which three bifurcation
curves intersect (two BCB curves and one degenerate flip
bifurcation curve). In Section 5 we illustrate the properties
of region (iii) where infinitely many periodicity regions
exist associated with particular kinds of adding structure,
different from the one presented in [21] but with the same
dynamic properties. Section 6 concludes.

2. The map

The family of maps that we consider is given by

x0 ¼ TðxÞ ¼
fLðxÞ ¼ sLxþmL if x < 0;
fRðxÞ ¼ sRxþmR if x > 0;

�
ð1Þ

where the parameters satisfy the following restrictions:

sR < 0 < sL < 1; mL;R > 0; ð2Þ

where mL TmR, so that we have an increasing straight line
for x < 0 and a decreasing branch for x > 0. The shape of the
map (1) is shown in Fig. 1(a) and (b). However, the results
and properties determined in the cases here considered,
represented by the constraints in (2), also work when the
shape of the map is as shown in Fig. 1(c) and (d) due to
the symmetry property of the map T(x):

Tðx; sR; sL;mL;mRÞ ¼ �Tð�x; sL; sR;�mR;�mLÞ: ð3Þ

As we limit the branch on the left to a slope positive and
less than one, we have no equilibrium on the left side,2

and the iterated points are pushed on the right side, where
a negative slope exists, and in case of unstable fixed point,
necessarily the generic trajectory is forced to return (after
a finite number of iterations around the unstable fixed
point) on the left side, where an increasing sequence will
start again. Thus, the dynamics are in a natural way always
bounded: they can never diverge. It is interesting to inves-
tigate the relevant regimes which can occur in this situa-
tion, specially when the fixed point on the right side,
x�R ¼

mR
1�sR

, is unstable.
From Fig. 1(a) and (b) we can see the different situa-

tions which may occur:

(i) either the left branch ends above the right one,
fL(0) P fR(0), i.e. mL P mR, (as in Fig. 1(a)), and the
map is continuous in the case of mL = mR, discontin-
uous otherwise;

(ii) or the left branch ends below the right one and
above the fixed point x�R 6 fLð0Þ < fRð0Þ, i.e.
x�R 6 mL < mR (as in Fig. 1(b));

(iii) or the left branch ends below the fixed point,
0 < fLð0Þ < x�R (<fR(0)), i.e. 0 < mL < x�R (<mR).

2 As mL > 0 by assumption.
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The transition between the cases (ii) and (iii) is deter-
mined by the homoclinic bifurcation of the fixed point x�R.
In fact, it is immediate to see that x�R is homoclinic in
regime (ii) (also called a snap back repeller), and in that
regime chaotic dynamics can exist. While no homoclinic
point of x�R can exist in regime (iii). As we shall see, the
main property existing in regime (iii) is the transition to
regular dynamics, characterized by the non existence of
chaotic dynamics.

As our results are generic and depend on all the param-
eters of the model, the equations giving the BCB curves and
the degenerate flip bifurcations curves of the cycles occur-
ring in the continuous case are the same as those detected
for the discontinuous case in (i) with the particular choice
of parameters mL = mR. However, we notice that the bifur-
cation structures in the chaotic regimes (with cyclical cha-
otic intervals) in discontinuous and continuous maps are
different (and not investigated in this work).

Due to the linearity it is very easy to get the eigenvalue
associated with some cycle. A periodic orbit having period
k = p + q with p points in the L side and q points in the R
side, necessarily has eigenvalue k ¼ sp

L sq
R. Moreover, we

shall see that in the case (i) defined above, all the stable cy-
cles which may exist necessarily have negative eigenvalue,
so that they can have only a bifurcation with eigenvalue
k = �1, which in our piecewise linear map is always degen-
erate. A degenerate flip bifurcation of a k-cycle is such that
at the bifurcation value (when the eigenvalue is equal to
�1), the map possesses an interval filled with 2k-cycles
(with the k-cycle in between) (see [38]). This is also a bor-
der collision bifurcation (for the cycle on the boundary of
the interval), and what occurs after a degenerate flip bifur-

cation is not known in general. A unique 2k-cycle is left
(which may be stable or unstable), or the dynamics may
be chaotic (we shall see both occurrences in our model).

Let us start with the equilibrium of the map: the fixed
point which comes from the function on the right side.
From fRðx�RÞ ¼ x�R we have the fixed point x�R ¼

mR
1�sR

> 0
which is attracting for � 1 < sR < 0. A degenerate flip
bifurcation occurs when sR = �1, which means that at the
bifurcation value all the points of the absorbing interval I:

I ¼ ½f 2
R ð0Þ; fRð0Þ� ¼ ½0;mR�; ð4Þ

are cycles of period 2 (except for the fixed point). After the
bifurcation, only one cycle of period 2 may be left, or not. A
2-cycle must necessarily be of symbolic sequence LR, and
the two periodic points can be easily found, solving for
fL � fR(x) = x which gives the periodic point on the R side,
and solving for fR�fL(x) = x which gives the periodic point
on the L side, so that we obtain

x0 ¼
sRmL þmR

1� sLsR
< 0; x1 ¼

sLmR þmL

1� sLsR
> 0: ð5Þ

The 2-cycle, when existing, is stable for �1 < k2 = sRsL < 0.
Its existence is associated with the condition given by the
numerator of x0 (as the denominators are always positive).
That is: sR < �mR

mL
and the border collision bifurcation lead-

ing to its existence is sR ¼ �mR
mL

, at which x0 = 0, while the
second possible border collision bifurcation, associated
with x1 = 0 can never occur, as under our assumptions on
the parameters we always have (sLmR + mL) > 0.

So we can immediately see that in the continuous case,
when mL = mR, the BCB of the 2-cycle reduces to sR = �1
and thus it corresponds to the degenerate flip bifurcation

Fig. 1. Graph of the map at sR = �2.3, sL = 0.3, mR = 2. In (a) mL = 3. In (b) mL = 1. The conjugate cases in (c) and (d).
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of the fixed point x�R. While in the discontinuous case, when
mL > mR the BCB of the 2-cycle is associated with a value
�1 < sR < 0 to which there corresponds an attracting fixed
point. This means that the region of existence of the 2-
cycle is overlapping with the region of stability of the fixed
point, and the overlapped region is a region of bistability.
In fact, in our assumptions 0 < sL < 1, so that when the fixed
point is stable also the 2-cycle is stable. Thus, keeping fixed
the values of the parameters mL and mR, at the degenerate
flip bifurcation of the fixed point a 2-cycle will be left,
attracting if �1 < k2 = sRsL < 0 or repelling if sRsL < �1.

Differently, in the discontinuous case with mL < mR, the
BCB of the 2-cycle is associated with a value sR ¼ �mR

mL
< �1,

so that when the degenerate flip bifurcation of the fixed
point occurs (at sR = �1), a 2-cycle cannot exist and, as
we shall see, the system enters in a chaotic behavior.

As stated above, our results are valid in general, which-
ever are the values of the parameters, under the restriction
given in (2). However, and in order to simplify the exposi-
tion, in our figures we use a fixed value mR = 2 (but it can
be any positive value), and mL = 3, mL = 1 or mL = 0.1, which
can be substituted with any value mL P mR, x�R 6 mL < mR

or mL < x�R, respectively, obtaining qualitative figures and
bifurcations as described in the following sections, where
we shall analyze what kind of stable cycles occur in the
model when the fixed point x�R is unstable.

Fig. 2(a) presents the generic structure of the two-
dimensional bifurcation diagram in the slopes (sR,sL) for
case (ii), x�R 6 mL < mR, and we can see that there are two
typical scenarios. For small values of the slope sR, a
sequence of periodicity regions with increasing periods
exists, related to k-cycles with k P 1, which will be de-
scribed in Section 3 (of symbolic sequence LkR, with period
increment 1). In the enlargement (see Fig. 2(b)), between
the periodicity region of the fixed point x�R and the period-
icity region of the 2-cycle, there exists an infinite sequence
of periodicity regions of stable 2p-cycles, of even periods
only, of period increment with increment 2 (of symbolic
sequence LR2k+1), described in Section 4. While when
mL P mR the region of the stable fixed point leads directly
to the dynamics of the first kind, so that a stable 2-cycle is
always created, and only stable cycles of type LkR, with per-
iod increment 1, exist. The white region in Fig. 2 represents
parameters at which chaotic dynamics occur.

Differently, in the regime (iii), with 0 < mL 6 x�R, the
possible dynamics are shown in the bifurcation diagrams
of Fig. 2(c) and its enlargement in Fig. 2(d). We can see that
there is a region of period adding structure, below a stabil-
ity curve (S) (that will be explained in Section 5). There is a
family of regions of basic cycles, which in Fig. 2(d) is the
family of regions associated with cycles of symbolic se-
quence LkR2 for any integer k P 1, and the adding rule

Fig. 2. Two-dimensional bifurcation diagram in the plane (sR,sL) at mL = 1 and mR = 2 in (a) and the enlarged portion in (b). mL = 0.1 in (c) and the enlarged
portion in (d).
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works: between any two regions there are families of infi-
nite regions associated with cycles with the symbolic se-
quence constructed as in the usual adding structure, as
described in Section 5.

Another view of the periodicity regions existing in the
three different cases is shown in Fig. 3 in the plane (sR,mL)
at fixed values sL = 0.1 and mR = 2. In this figure we can see
the three regions: (i) and (ii) separated by the line mL = mR,
here mL = 2, and (ii) and (iii) separated by the curve

mL ¼ x�R ¼
mR

1� sR

� �
; ð6Þ

which corresponds, as remarked above, to the homoclinic
bifurcation of the fixed point.

In the region (ii) we can see the periodicity tongues
with overlapped portions leading to bistability, and de-
scribed in Section 4, while in the region (iii) we can appre-
ciate a period adding structure different from the one
shown in Fig. 2(d), as described in Section 5, below the
curve (S), boundary of the stability regime. We remark that
no overlapped regions exist in case (iii).

The chaotic regime in this kind of maps is associated
with cyclical chaotic intervals, and chaos is called robust(see
[14]) because it is persistent with respect to parameter
variations. Depending on the bifurcation structures occur-
ring in the adjacent periodic domain, the chaotic region is
organized by different bifurcation structures formed by
contact bifurcations (or crises) as recently reported in
[10]. Especially, close to the bifurcation structure described
in Section 4, the chaotic domain is organized by the re-
cently discovered bandcount incrementing structure, re-
ported in [1–3]. By contrast, close to the period adding
structure described in Section 5, the chaotic domain is or-
ganized by the self-similar bandcount adding structure
introduced in [5,9]. We shall see some typical numerical
examples for 1D bifurcation diagrams in the following sec-
tions. However, as already noticed, the different kinds of
cyclical chaotic intervals occurring in the model are not

investigated in this work. Here we are mainly interested
in the regimes associated with the attracting cycles, whose
periodicity regions are shown in Figs. 2 and 3.

3. Maximal cycles LkR

In this section we describe the BCB curves which are in-
volved in the period increment scenario in which the per-
iod increases by one. As it is clear from Figs. 2 and 3, such
periodicity regions are associated with periodic orbits hav-
ing the symbolic sequence LkR. To determine the border
collision bifurcation curves we compute the periodic point
of the (k + 1)-cycle, in order to find at which parameter
there is a collision with the discontinuity point x = 0, and
to have its existence regions.

Thus let us call x0 the point of the (k + 1)-cycle which is
immediately on the right of the discontinuity point x = 0.
Then the periodic point x0of the orbit of symbolic sequence
LkR can be obtained as the fixed point of the function
f k
L � fRðxÞ, that is, solving for f k

L � fRðxÞ ¼ x.3 We have:

f k
L � fRðxÞ ¼ sk

LðsRxþmRÞ þmL
1� sk

L

1� sL
;

so that

x0 ¼
sk

L

1� sk
LsR

mR þmL/
L
k

� �
; /L

k ¼
1� sk

L

ð1� sLÞsk
L

ð7Þ

and we notice that when the cycle exists, the denominator
is always positive. The BCB leading to its existence occurs
when the last periodic point of the cycle merges with the
discontinuity point, xk = 0, which also means fL(0) = x0 or
mL = x0, that is: 1�sk

L sR

sk
L

mL ¼ mR þmL/
L
k, leading to the BCB

curve given by the equation (for any k P 1):

BCBLkR : sR ¼ �/L
k�1 �

mR

mL
: ð8Þ

The curves bound the existence regions, given by
sR < �/L

k�1 �
mR
mL

, of these cycles of period (k + 1). We notice
that this first BCB cannot be followed by a second one lead-
ing to the disappearance of the cycle, because, as we have
seen for the cycle of period 2, for any such cycles we al-
ways have x0 > 0, so that it can never merge with the
boundary x = 0. It follows that it can only be attracting or
repelling, before or after the degenerate flip bifurcation,
which occurs when its eigenvalue kðLkRÞ ¼ sk

LsR crosses
through �1. Thus the equation of the degenerate flip bifur-
cation curve of an existent (k + 1)-cycle is given by
kðLkRÞ ¼ sk

LsR ¼ �1, that is:

sR ¼ �1=sk
L : ð9Þ

For k = 1 we get the points and the eigenvalue of the 2-
cycle, and we note that the formulas given in (9) and in
(8) also work for k = 0, giving the eigenvalue and the
degenerate flip bifurcation of the fixed point x�R in the R
side.

For increasing values of k, up to 6, the BCB curves given
in (8) are drawn in black in Fig. 4(b), while the degenerate
flip bifurcation curves given in (9) are drawn in red (grey).

Fig. 3. Bifurcation diagram in the plane (sR,mL) at fixed values sL = 0.1 and
mR = 2. 3 Clearly the 2-cycle is re-obtained for k = 1.
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Moreover, we have an intersection point for each
degenerate flip bifurcation curve with the BCB curve asso-
ciated with the appearance of the cycle, determining for
which values the cycle appears immediately unstable or
stable (and a degenerate flip curve exists after that). The
intersection point between the curves in (8) and in (9) sat-
isfies the following condition:

1� sk�1
L

ð1� sLÞsk�1
L

� 1
sk

L

þmR

mL
¼ 0; sR ¼ �

1
sk

L

; ð10Þ

giving the points on which the degenerate flip bifurcations
curves start from the curves BCBLkR.

Fig. 5 illustrates a one-dimensional bifurcation diagram
at sL = 0.3 fixed, showing the dynamics of the state variable
x as a function of the slope sR. As we can see, decreasing sR

the degenerate flip bifurcations are always followed by
cyclical chaotic intervals, which become a one-piece cha-
otic interval (after a short parameter interval).

We have described above the equations of the BCB
leading to the appearance of cycles with symbolic se-
quence LkR, and we have seen that a second BCB curve
does not exist. This is the only possible dynamic behavior
when mL P mR and the fixed point is unstable, as the fate
of the point fR(0) = mR is the same as that of fL(0) =
mL P mR. So we notice that in such regimes it does not
matter how is the definition of the map in the discontinu-
ity point, T(0) = mR or T(0) = mL, as both cases lead to
the same attracting set, i.e. we get the same kind of
dynamics.

This kind of dynamic behavior can exist also in case (ii),
when x�R 6 mL < mR, for parameters in the left region with
respect the 2-cycle, i.e. for sR 6 �mR

mL
(as shown in Fig. 2(a)),

while in the region (ii) with sR > �mR
mL

, as shown in the en-
larged part of Fig. 2(b), we can have a different dynamic
behavior, with periodicity regions which are overlapping,
giving regions in the parameter space at which we have
two coexisting attracting cycles, and the two different defini-
tions of the map in the discontinuity point are values con-
verging to two different cycles, as proved in the next
section.

4. Maximal cycles LRk

As stated above, the iterations may behave differently
when x�R 6 mL < mR, and the fixed point is unstable, as in
such a case the two points fL(0) = mL and fR(0) = mR may
have a different dynamic behavior. This is not a new phe-
nomenon. Indeed, when x�R 6 mL < mR we can have not
only cycles of the kind LkR (when sR 6 �mR

mL
), but also cycles

with symbolic sequence LRk (when sR > �mR
mL

), and the rea-
son is immediately clear looking at the graph in Fig. 1(b):
when the value fL(0) = mL is smaller than mR and higher
of x�R, we have that several applications of the function
fR(x) in the R side are necessary before reaching the L side.
Moreover, as we shall see below, the coexistence of two
stable cycles of symbolic sequence LRk and LRk+2 is allowed
in suitable regions, for any odd integer k P 1.4 In order to
determine the existence regions of these new kind of cy-
cles, let x0 be the point of the cycle immediately on the left
of the discontinuity point x = 0. Then the periodic point x0

of the orbit with symbolic sequence LRk can be obtained
looking for the fixed point of the function f k

R � fLðxÞ, that
is, solving for f k

R � fLðxÞ ¼ x. The computations are similar
to those already performed in the previous section, so that
we obtain the same expression as given in (7) with R and L
exchanged:

x0 ¼
sk

R

1� sk
RsL

mL þmR/
R
k

� �
; /R

k ¼
1� sk

R

ð1� sRÞsk
R

and setting x0 = 0 we get the BCB curve of equation:

BCBl
LRk : mL þmR/

R
k ¼ 0; ð11Þ

denoted as BCBl
LRk . The upper index l indicates that at the

border collision the periodic point x0 of the cycle collides
with the discontinuity point x = 0 from the left side. In

Fig. 4. Numerical (a) and analytical (b) BCB curves of the maximal cycles LkR.

4 As already noticed in [6], and as we shall describe later, the reason why
the change in the period occurs by two units is due to the number of steps
required for a point on the right side to reach the left one, which necessarily
changes by two units, due to the swirl around the unstable fixed point.
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the parameter plane (sR,sL) such curves are vertical lines
sR = const. where the constant value is determined by the
equations in (11). A few of such lines are shown in Fig. 6.

We notice also that the cycle undergoing a BCB at the
curve BCBl

LRk has a periodic point x1 ¼ fLðx0Þ > x�R. In fact,
by assumption at the bifurcation value we have fLð0Þ ¼
mL P x�R and thus the existent cycle starts with a periodic
point x1 ¼ fLðx0Þ > x�R, which implies that the periodic point
x1 may be mapped in the L side after necessarily an even
number of applications of the function fR(x), so that such
cycles exist only when k is an odd number, and the period
(k + 1) even.

Moreover, it is plain that such cycles exist only as long
as another border collision bifurcation occurs, due to the
periodic point xk�1 (which implies k > 1) merging with the
discontinuity point x = 0. Equivalently, the cycle exists as
long as the periodic point xk merges with the maximum va-
lue fR(0) = mR. That is to say, xk�1 = 0 iff xk = mR iff
x0 = fR(mR). We have thus the second BCB curve, obtained
by the equation x0 = mR(1 + sR), that is:

sk
R

1� sk
RsL

mL þmR/
R
k

� �
¼ mRð1þ sRÞ; ð12Þ

which leads to:

BCBr
LRk : sL ¼

1
sk

R

� mL

mRð1þ sRÞ
� /R

k

ð1þ sRÞ
; ð13Þ

denoted BCBr
LRk because at the border collision the periodic

point xk�1 of the cycle collides with the discontinuity point
x = 0 from the right side. A few BCB curves of both sides,
from (11) and (13), are shown in black in Fig. 6. We have
noticed above that such bifurcation curves BCBr

LRk exist
only for k > 1, as for k = 1 we have the 2-cycle, already com-
mented in Section 2.

From Fig. 6(a) we can see that the cycles here deter-
mined may be stable or unstable. The stability is associated
with the related eigenvalue, which we know must be neg-
ative, because we have an odd number of periodic points in
the R region, so that:

kðLRkÞ ¼ sLsk
R < 0 ð14Þ

and its degenerate flip bifurcation occurs at kðLRkÞ ¼
sLsk

R ¼ �1, that is

sL ¼ �1=sk
R: ð15Þ

Fig. 5. One-dimensional bifurcation diagram in (a) with an enlargement in (b).

Fig. 6. Numerical (a) and analytical (b) BCB curves of some maximal cycles LRk. The BCBl
LRk are the vertical lines, while the other black curves denote the

BCBr
LRk . The flip bifurcation curves are drawn in red (grey). (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)
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The related degenerate flip bifurcation curves are drown in
red in Fig. 6.

The green points in Fig. 6 also emphasizes that the cal-
culated degenerate flip bifurcation curves always intersect
in the same point two BCB curves. That is: each curve BCBl

LRk

and BCBr
LRkþ4 are intersecting in a point belonging to the

degenerate flip bifurcation curve of the cycle LRk+2, which
proves that at most two stable cycles can coexist. This prop-
erty can be easily verified from the related equations. In
fact, by using the relation

/R
kþ1 ¼ /R

k þ
1

skþ1
R

; ð16Þ

after some algebra, substituting /R
k ¼ �

mL
mR

from (11) and
sk

R ¼ � 1
sLs2

R
from (15) for the cycle LRk+2, it follows that the

equation of BCBr
LRkþ4 (from (13)) is identically satisfied.

The relevant result in this regime is that a stable cycle
may be not the only existent cycle, i.e. may be not globally
attracting, as we have seen that we can have a stable cycle
and also several unstable cycles placed on the basin
boundary of the stable one. Moreover, in particular over-
lapping stability regions we have coexistence of two stable
cycles.

Two different one-dimensional scenarios are shown in
Fig. 7, for the state variable x as a function of the slope sR

(at two different values of sL). In Fig. 7(a) we can see peri-
odicity regions for stable cycles separated by regions with
cyclical chaotic intervals, while in Fig. 7(b) we can see se-
quences of stable cycles only, and clearly we have coexis-
tence in small intervals between two different cycles of
even period k and k + 2. We notice that this regime denoted
by (ii) can include also different stability regions, and also
overlapping regions, associated with different period incre-
ment rules.

As we can see in Fig. 2(d), below the stability region of
the 3-cycle L2R there are other stability regions, overlap-
ping in pair, as well as on the right side of the stability re-
gion of the 2-cycle (as it will be better illustrated in the
enlargement in Fig. 11 in the next section). The technique
to determine the BCB curves is the same as the one used
in this section, and the overlapping stability regions have
the same properties. The main point is that in this region

(ii) we cannot have the period adding structure, which ex-
ists in regime (iii), as described in the next section.

5. Period adding structure

Let us now consider the case (iii) 0 < mL < x�R, where a
different and interesting dynamic behavior occurs, as it
can be clearly seen from Fig. 2(d) and Fig. 3 below the
curve mL ¼ x�R, that is, mL ¼ mR

1�sR
. Let us first detect the peri-

odic orbits from which the period adding structure shown in
Fig. 2(d) can be started. By assumption we have now
mL < x�R so that at the bifurcation value (of a point colliding
with x = 0 from the left side) we have fLð0Þ ¼ mL < x�R and
thus the existent cycle starts with a periodic point which
must do at least two steps around the unstable fixed point
before reaching the L side again. That is, such cycles have
the symbolic sequence given by LkR2, for k P 1, and the cy-
cle of least period (different from the fixed point) is a 3-cy-
cle with symbolic sequence LR2. Let us call x0 the point of
the cycle which is immediately on the left of the disconti-
nuity point x = 0. Then the periodic point x0 of the orbit of
symbolic sequence LkR2 can be obtained as the fixed point
of the function f k�1

L � f 2
R � fLðxÞ, that is, solving for

f k�1
L � f 2

R � fLðxÞ ¼ x. From:

fLðxÞ¼ sLxþmL;

f 2
R � fLðxÞ¼ s2

RsLxþ s2
RmLþ sRmRþmR;

f k�1
L � f 2

R � fLðxÞ¼ sk�1
L ½s2

RsLxþ s2
RmLþ sRmRþmR�þmL

1� sk�1
L

1� sL
;

we have

x0 ¼
sk�1

L

1� sk
Ls2

R

s2
RmL þ sRmR þmR þmL/

L
k�1

� �
; ð17Þ

where /L
k is defined in (7), and setting x0 = 0 we have the

BCB curve:

BCBl
LkR2 : sR

¼ 1
2mL

�mR �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

R � 4mLðmR þmL/
L
k�1Þ

q� 	
: ð18Þ

Both the branches, due to the ± components, are used to
draw the BCB curves in Fig. 8(b), determining the lower

Fig. 7. One-dimensional bifurcation diagrams.
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boundary of the periodicity regions shown in the stable re-
gime (the right side with respect to the set (S) which will
be described below), and the upper boundary in the unsta-
ble region (on the left side of the locus (S)).

Then such a cycle exists as long as the periodic point x0,
the first periodic point on the left side of the discontinuity
point x = 0, merges with the preimage of the origin on the
left side, i.e. the point xL

�1 ¼ f�1
L ð0Þ ¼ �

mL
sL

(or, equivalently,
as long as the periodic point of the cycle closest to 0 from
the right side merges with the discontinuity x = 0). So that
the other BCB curves, causing the disappearance of the cy-
cles, are obtained by the following equation x0 ¼ �mL

sL
, that

is:

sk�1
L

1� sk
Ls2

R

s2
RmL þ sRmR þmR þmL/

L
k�1

� �
¼ �mL

sL
;

which leads to the following BCB curves:

BCBr
LkR2 : sR ¼ �1� mL

mRsk
L

�mL

mR
/L

k�1; ð19Þ

a few of which (for k = 1, . . . ,8) are drown in Fig. 8, bound-
ing the regions for the existence of the cycles LkR2.

The periodicity regions in which stable cycles LkR2 exist
are disjoint, and it is expected the existence of cycles with
different periods in between. Here the Farey sequence
works. Let us remark that in the description of the period-
icity regions we can associate a rotation number to each re-
gion, in order to classify all the periods and several cycles
with the same period. In this notation a periodic orbit of
period k is characterized not only by the period but also
by the number of points in the two branches separated
by the discontinuity point x = 0, already denoted by L and
R, respectively. We can say that a cycle has a rotation num-
ber q

k if a k-cycle has q points on the R side and the others
(k � q) on the L side. Then, between any pair of periodicity
regions associated with the rotation numbers q1

k1
and q2

k2

there exists also the periodicity region associated with
the rotation number q1

k1
� q2

k2
¼ q1þq2

k1þk2
where � stands for the

so-called Farey composition rule, or summation rule (see
for example in [11]).

By extending a technique already proposed in
[24,25,29] (see also [ 30] pp. 56–61 and pp. 80–84), we
can call regions of first level of complexity those associated
with the basic cycles LkR2 for k P 1. Then between any pair
of consecutive regions of first level of complexity, say with
rotation numbers 2

k1
and 2

k1þ1, we can construct two infinite
families of periodicity regions, called regions of second level
of complexity via the sequence obtained by adding with the
Farey composition rule � iteratively the first one or the
second one, i.e. 2

k1þ1� 2
k1
¼ 4

2k1þ1 ;
4

2k1þ1� 2
k1
¼ 6

3k1þ1 ;
6

3k1þ1�
2
k1
¼ 8

4k1þ1 ; . . . and so on, that is:

2q
qk1 þ 1

for any q > 1 ð20Þ

and 2
k1
� 2

k1þ1 ¼ 4
2k1þ1, 4

2k1þ1� 2
k1þ1 ¼ 6

3k1þ2 ;
6

3k1þ2� 2
k1þ1 ¼ 8

4k1þ3 . . .,
that is:

2q
qk1 þ q� 1

for any q > 1; ð21Þ

which give two sequences of regions accumulating on the
boundaries of the two starting ones.

As the stable periodicity regions so obtained are dis-
joint, this mechanisms can be repeated: between any pair
of contiguous ‘‘regions of second level of complexity’’, for
example 2q

qk1þ1 and 2ðqþ1Þ
ðqþ1Þk1þ1, we can construct two infinite

families of periodicity regions, called ‘‘regions of third level
of complexity’’ via the sequence obtained by adding with
the composition rule � iteratively the first one or the sec-
ond one and so on. All the infinitely many possible rational
numbers are obtained in this way, giving all the infinitely
many periodicity regions.

The Leonov technique, which has been improved in
[21], can be used also in our context here, to get an itera-
tive map in the coefficients, which leads to the analytical
equations also of the border collision bifurcation curves
of second complexity level and of further levels. To show
the application of the process it is enough to notice that lo-
cally we are in the same situation. If we consider a parame-
ter point which is between two consecutive periodicity
regions of cycles of periods LkR2 and Lk+1R2, in a neighbor-
hood of the origin we have that the graph of the function

Fig. 8. Numerical (a) and analytical (b) BCB curves of cycles characterized by the symbolic sequence LkR2. For the lower boundaries given in (19), the
portions with + (resp. �) are on the right (resp. left) of the point sR ¼ � mR

2mL
here equal to �10.
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FLðxÞ ¼ f k
L � f 2

R � fLðxÞ for x < 0 and the graph of the function
FRðxÞ ¼ f k

L � f 2
R ðxÞ for x > 0 is that shown in Fig. 9, which is

the standard situation in which the adding structure
works. Thus considering the map F(x) so defined, we can
apply the iterative process described in [21].

That is, consider the operator for the coefficients defined
by

x0 ¼ FðxÞ ¼
FLðxÞ ¼ ALxþML if x < 0;
FRðxÞ ¼ ARxþMR if x > 0;

�
ð22Þ

where to determine the BCB curves of the second level, we
consider FLðxÞ ¼ f k

L � f 2
R � fLðxÞ and FRðxÞ ¼ f k

L � f 2
R ðxÞ, so that

we have

AL ¼ skþ1
L s2

R ð23Þ
AL ¼ sk

Ls2
R;

ML ¼ sk
L ½s2

RmL þ sRmR þmR þmL/
L
k�1 þmL/

L
k�;

MR ¼ sk
L ½sRmR þmR þmL/

L
k�1 þmL/

L
k�:

Then we obtain one family of the second complexity level
by considering the functions TðxÞ ¼ Fn

R � FLðxÞ ¼ An
RALxþ

MLAn
R þMR

1�An
R

1�AR
for n P 1. We obtain the periodic point x⁄

of T(x) (of the cycle with symbolic sequence (LkR2)nLk+1R2)
which is the first on the left of the origin, as follows:

MR 6 x� ¼ 1
1� An

RAL
½MLAn

R þMR
1� An

R

1� AR
� 6 0 ð24Þ

and we have the BCB curves via the equations MR = x⁄ and
x⁄ = 0.

The second family is obtained similarly, by considering
the functions TðxÞ ¼ Fn

L � FRðxÞ ¼ An
L ARxþMRAn

L þML
1�An

L
1�AL

for
n P 1, the periodic point x⁄ of T(x)(of the cycle with sym-
bolic sequence (Lk+1R2)n LkR2) which is the first on the right
of the origin, is given by:

ML P x� ¼ 1
1� An

L AR
MRAn

L þML
1� An

L

1� AL

� 	
P 0 ð25Þ

and we have the BCB curves via the equations ML = x⁄ and
x⁄ = 0.

The two families of the second level can be seen in the
enlargement of Fig. 10 for k = 2, the first one accumulating
on the periodicity region of the cycle LkR2 and the second
family accumulating on Lk+1R2. And so on, iteratively.
Between any two pair of consecutive regions, we can con-

struct in a similar way two infinite sequences of periodicity
regions.

From Figs. 8 and 10 we can see that all the BCB curves
bounding the stable cycles (of first complexity level LkR2

as well as all those of higher complexity level) intersect
each other on a straight line of equation

ðSÞ : mLð1� sRÞ �mRð1� sLÞ ¼ 0; ð26Þ

which is the locus in which the eigenvalues of all the cycles be-
come equal to 1. To prove this statement we follow the
arguments already used in [21] for the map with positive
slopes.

Let us consider first the intersection point of the BCB
curves of equations given in (18) and (19), bounding the
existence region of the cycle LkR2 (whose eigenvalue is gi-
ven by k ¼ sk

Ls2
RÞ. Parameters which satisfy (18) are such

that (from (17)):

s2
RmL þ sRmR þmR þmL/

L
k�1 ¼ 0;

s2
RmL þ sRmR ¼ �mR �mL/

L
k�1;

s2
R

mL

mR
þ sR ¼ �1�mL

mR
/L

k�1

and substituting into (19) we obtain:

sR � 1� mL

mRsk
L

�mL

mR
/L

k�1;

sR ¼ �
mL

mRsk
L

þ s2
R

mL

mR
þ sR;

sk
Ls2

R ¼ 1:

This proves that on the locus (S) the cycles of first level of
complexity have all the eigenvalue equal to 1. To prove
that also all the infinitely many cycles constructed from
them by the composition rule have eigenvalue equal to 1
it is enough to prove that for the BCB curves detected by

Fig. 9. The standard situation for applying the Leonov technique,
occurring with the graph of the function FLðxÞ ¼ f k

L � f 2
R � fLðxÞ for x < 0

and the graph of the function FRðxÞ ¼ f k
L � f 2

R ðxÞ for x > 0.

Fig. 10. BCB curves of the second and higher complexity level.
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using the Leonov mechanisms shown above, on the locus
(S) the following relation is also satisfied:

MLð1� ARÞ �MRð1� SLÞ ¼ 0; ð27Þ

from which it follows that the cycles related with the
functions TðxÞ ¼ Fn

R � FLðxÞ and TðxÞ ¼ Fn
L � FRðxÞ have

eigenvalue 1.
We notice that although we see periodicity regions fill-

ing the portion on the right side of the set (S) up to the sta-
bility region of the fixed point, the region is not filled by
the existence of periodic orbits or the BCB curves. Some
points in between are left, the complementary set, which
is a set of zero Lebesque measure, and to such values of
the parameters there correspond quasiperiodic trajectories
(not chaotic, as no Cantor set of points can here exist). Also
for the parameter points on the set (S): at a point of inter-
section of two BCB curves the map is conjugated with a lin-
ear rotation with rational rotation number (all the points
are periodic with the same period), for the residual set of
parameter values the map is conjugated with a linear rota-
tion with irrational rotation number.

So the set (S) denotes the change of stability of all the
cycles on the right side of the set: they also exist on the left
side, but are unstable. For example, the existence region of
the unstable cycles of first complexity level is between the
curves with the same equations given in (18) and (19), but
on the left side of (S).

Up to now we have described the region of adding
structure existing above the stability region of the 3-cycle
LR2. However the adding structure exists also below the re-
gion of the 3-cycle LR2. This can be seen in Fig. 11 which
shows enlargements of the regions shown in Fig. 2(c) and
(d) and of the leftmost corner of Fig. 8. In Fig. 11(b) the
regions of first complexity level are those with symbolic
sequence (LR2)kR2.

In Fig. 11 we can also see that region (ii) includes a dif-
ferent family of bistability regions following the period
increment scheme with increment of three (via LR2).

We have already recalled that the existence of the set
(S) and its role has been described also in [21], associated
with the same map, but in a regime with positive slopes
only, in which the adding structure applies to the periodic-
ity regions of principal (or maximal) cycles, and in that
case it was a separator between region with only stable cy-

cles or quasiperiodic orbits or only chaos. Here also we
have the same property: in case (iii) either we are below
the locus (S) in a regular regime, or we are in the region be-
tween the locus (S) and the curve of equation mL ¼ x�R in
which chaos exists, and no stable overlapping regions can
be found.

In Fig. 12 we show that region (iii) includes several
kinds of adding structure. In fact, the periodicity regions
of the adding structure in Fig. 12 can be obtained starting

Fig. 11. Enlarged portions of two-dimensional bifurcation diagrams.

Fig. 12. Two dimensional bifurcation diagram in the plane (sR,mL).

Fig. 13. One-dimensional bifurcation diagram at mL = 0.1, mR = 2, sR = �2,
showing the region of period adding structure.
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from the family of first level of complexity of symbol se-
quence LR2k, for k P 1, and the mechanisms to detect the
BCB bounding the periodicity regions is similar to the
one described above.

We close this section showing in Fig. 13 a path in the re-
gion of stable cycles, where the structure associated with
the period adding can be appreciated in the state variable
x as a function of the parameter sL at fixed sR = �2.

6. Conclusions

In this work we have considered the generic piecewise
linear discontinuous map with one stable increasing
branch in the L side and a decreasing branch in the R side
and positive offsets. We have determined the border colli-
sion bifurcation curves leading to the existence of stable
cycles in three qualitatively different regimes for the
values of the jump. In the case called (i), for mL P mR, only
stable cycles of symbolic sequence LkR can exist, whose
BCB curves are given in Section 3. In the case (ii), for
x�R 6 mL < mR there are all the stable cycles LRk for
sR 6 �mR

mL
, while in the region�mR

mL
< sR < �1 there are over-

lapping periodicity regions for stable cycle of even periods
only, of period increment type, whose BCB curves have
been determined in Section 4, as well as other overlapping
regions, always following the period increment rule. In the
third case (iii), 0 < mL < x�Rð< mRÞwe have detected, in Sec-
tion 5, stability regions of period adding structure, starting
from the cycles of first complexity level with symbolic se-
quence LkR2 and other families also exist. Still some regions
are not explored, and some parameter constellations, for
the models here considered, are left for further studies.
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