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The aim of this work is to study discontinuous one-dimensional maps in the case of slopes and
offsets having opposite signs. Such models represent the dynamics of applied systems in several
disciplines. We analyze in particular attracting cycles, their border collision bifurcations and
the properties of the periodicity regions in the parameter space. The peculiarity of this family
is that we can make use of the technical instrument of the first return map. With this, we can
rigorously prove properties which were known numerically, as well as prove new ones, giving a
complete characterization of the overlapping periodicity regions.
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1. Introduction

It is well-known that several models are described
by piecewise smooth dynamical systems (PWS for
short). The essential feature in PWS systems (con-
tinuous or discontinuous) is the presence of a change
of definition in the functions defining the map under
study, when a suitable border is met or crossed.
This leads to the existence of border collision bifur-
cations (BCB henceforth). The first works on this
subject date back to [Leonov, 1959, 1962] and [Mira,
1978, 1987], and have been studied more recently
by [Nusse & Yorke, 1992, 1995; Maistrenko et al.,
1993; Maistrenko et al., 1995; Maistrenko et al.,
1998]. In the last few years, many papers have been
published which deal with PWS systems, due to
their wide use in the applied context. We recall,
for example, the books [Banerjee & Verghese, 2001;
Zhusubaliyev & Mosekilde, 2003; di Bernardo et al.,
2008]. Besides the works cited above, piecewise
smooth systems are applied in power electronic cir-
cuits [Halse et al., 2003; Banerjee et al., 2000],

impacting systems ([Nusse et al., 1994; Ing et al.,
2008; Sharan & Banerjee, 2008] to cite a few),
piecewise smooth nonlinear oscillators [Pavlovskaia
et al., 2004; Pavlovskaia & Wiercigroch, 2007] and
in many other applications [Banerjee & Grebogi,
1999; di Bernardo et al., 1999; Sushko et al., 2005,
2006].

The observed dynamics (and BCB properties)
differ depending on continuous or discontinuous
models. Here, we are interested in discontinuous
ones, which have also been studied in some par-
ticular cases in recent works (see, for example,
[Kollar et al., 2004; Avrutin & Schanz, 2005, 2006,
2008; Avrutin et al., 2006]). The characteristic fea-
tures are the particular bifurcation structures which
follow the so-called period adding and period incre-
ment scheme. The results, however, are particu-
larly important with respect to the bifurcations
occurring to the chaotic intervals as studied in
[Avrutin et al., 2007, 2008a, 2008b, 2009; Avrutin
et al., 2010c].
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In this paper, we consider the one-dimensional
canonic form suitable for studying the bifurcations
occurring in discontinuous one-dimensional maps
already introduced by Leonov, and considered in
[Gardini et al., 2010] and [Avrutin et al., 2010b],
with particular restrictions on the parameters, as
the analysis of the bifurcations occurring in all the
possible cases is still far from complete. Here we
contribute to the study of another particular situa-
tion in the parameter space of this one-dimensional
map in canonic form, related to the cases of slopes
and offsets having opposite signs. We are inter-
ested in the bifurcations occurring in the period-
icity regions of attracting cycles. The occurrence
of the period increment scheme is well-known, but
the properties related to this bifurcation structure
have not been fully described up to now. This is
the object of the present work. Let us consider the
one-dimensional piecewise linear map in canonical
form:

x′ = f(x) =

{
fL(x) = aLx + µL, if x < 0

fR(x) = aRx + µR, if x > 0
(1)

in which the slopes and the offsets have opposite
signs. That is, we consider the parameter space
with:

aRaL < 0, µLµR < 0 (2)

We recall that (as already remarked by Leonov)
although by rescaling the state variable one param-
eter may be set to a constant value, we keep the
notation in full because this simplifies the expres-
sions in the formulas of the BCB curves.

In order to study the dynamic behaviors of
f(x), the considered restriction in the parameters,
given in (2), allows for a suitable use of the tech-
nique of the first return map. With the first return
map we have found a simplified expression for some
BCB curves of the stable cycles, and particular
properties associated with the points of intersection
of the BCB curves and the flip bifurcation curves.
In particular, we shall recover and rigorously prove
the properties of the parameter regions which are
associated with the period increment behaviors. As
is well-known, in that region at most two attracting
cycles can coexist. Moreover, we shall see that, as
long as the map is invertible in the invariant absorb-
ing interval, when only one stable cycle exists, then
at most one unstable cycle can coexist (and clearly
no chaotic set). When the map is noninvertible in
the invariant absorbing interval, chaos may occur in

attracting cyclic chaotic intervals, and is robust (fol-
lowing [Banerjee et al., 1998]), as persistent under
parameter perturbations, or chaos may occur only
in a chaotic repellor. In the parameter region asso-
ciated with chaotic dynamics, regions (or islands)
of stable cycles can exist but not a pair of attractors.

The work is organized as follows. Some general
properties are recalled in Sec. 2, while in Sec. 3, we
shall consider the particular case aLaR = −1, show-
ing that we can have coexistent cycles also with four
different periods. The particular case aLaR = 0 is
considered in Sec. 4, showing that only one attract-
ing cycle can exist. The analysis of the generic cases
in the parameters (2) is performed in Sec. 5. Here in
different subsections, by using the first return map,
we shall prove peculiar properties of the overlapping
(in pair) stability regions, also giving a simplified
expression of the BCB curves already determined
in other works ([Gardini et al., 2010; Avrutin et al.,
2010b], and references therein), as well as the proof
of the properties listed above.

2. General Properties

Let us consider the map in the generic form given
in (1), assuming aL > 0 and aR < 0, when the shape
of the function is increasing for x < 0, let us say on
the L side, and decreasing for x > 0, let us say on
the R side. Then the dynamics associated with the
signs µL < 0 and µR > 0 are very simple, because
a fixed point always exists on the R side, Q∗ =
µR/(1 − aR) > 0 (stable or unstable, depending on
the slope aR) while on the L side P ∗ = µL/(1 −
aL) < 0 exists only if it is stable, and in both cases
the related dynamics are quickly seen.

The interesting cases are associated with µL >
0 and µR < 0, when the shape of the function is
as shown in Fig. 1(a). Then inverting the signs of
the two slopes the reasoning is the same, and the
maps are topologically conjugated. In fact, the map
in Fig. 1(b) is conjugated with that in Fig. 1(a) via
the following symmetry property of f(x):

f(x, aR, aL, µL, µR)

= −f(−x, aL, aR,−µR,−µL) (3)

It follows that we can restrict our analysis to the
case aL > 0 and aR < 0 with µL > 0 and µR < 0
(whose shape for aL > 1 is shown in Fig. 1(a)).

It is clear that considering a point on the R side,
in one iteration it is mapped to the other (L) side,
from where either the trajectory is divergent or the
map fL is applied until the iterated point enters the
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(a) (b)

Fig. 1. Qualitative shape of the map considered in this work.

positive side again. Under our assumptions there is
no fixed point on the R side, and as long as 0 <
aL ≤ 1 there is also no fixed point on the L side.
In this case (0 < aL ≤ 1) all the trajectories of the
map will enter in the invariant absorbing interval

I = [aRµL + µR, µL] (4)

in a finite number of iterations (and its basin of
attraction will be the entire real line). The fixed
point P ∗ on the L side exists when it is unstable,
for aL > 1, and then all the points below P ∗ have
a trajectory which is divergent to −∞, while the
negative points above P ∗ (i.e. for µL/(1 − aL) <
x < 0) have a trajectory which enters the absorbing
interval I, as long as the following inequality holds:

P ∗ =
µL

1 − aL
< aRµL + µR (5)

which guarantees that the invariant interval I has
no contact with its basin of attraction, so that it
is absorbing. In this case, the basin of divergent
trajectories is given by

B(∞) = ]−∞, P ∗[∪ ]P ∗
−1,+∞[ (6)

where P ∗
−1 is the preimage of the fixed point on

the R side, given by the solution of the equation
P ∗ = aRx + µR, that is:

P ∗
−1 =

µL − µR + µRaL

aR(1 − aL)
(7)

Here the denominators in P ∗ and P ∗
−1 are assumed

different from zero, as the particular cases with

aL = 1 or with aR = 0 are considered in separate
sections. Clearly the complementary set of B(∞)
(given in (6)) in the real line, gives us the basin of
attraction of the absorbing interval I:

B(I) = ]P ∗, P ∗
−1[ =

]
µL

1 − aL
,
µL − µR + µRaL

aR(1 − aL)

[
(8)

as we exclude the frontier, which is itself an invari-
ant set. As remarked above, the equality in (5)
denotes a bifurcation. When the condition

χdiv:
µL

1 − aL
= aRµL + µR (9)

holds, a contact of the invariant interval I with its
basin of attraction occurs, and this denotes a “final
bifurcation” because it is followed by a dynamic
made up of almost all divergent trajectories when
P ∗ > aRµL + µR.

Thus we are interested in parameters which sat-
isfy the condition in (5) for which we can restrict
the study of the map inside the absorbing interval
I. Moreover, as noticed above, we can fix an ini-
tial condition on the R side, 0 < x < µL. That is,
let JR = [0, µL] = I ∩ {x ≥ 0}, then we can simply
construct the “first return map FR” in JR, given by:

FR: x ∈ JR → fm(x) ∈ JR, JR = [0, µL] (10)

where m is the first integer for which fm(x) ∈ JR.
This map FR describes all the BCB occurring to
the map f in I. We remark that in general there
is not a unique integer m for all the points of JR.
The analysis of the particular cases performed in the
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next Secs. 3 and 4 provides examples of the power
of the investigation of the dynamics using the first
return map FR.

3. Particular Case aL = 1 and
aR = −1

In this particular case, the map is only a function
of the offsets µR (< 0) and µL (> 0):

x′ = f(x) =

{
fL(x) = x + µL, if x < 0

fR(x) = −x + µR, if x > 0
(11)

It is easy to see that we cannot have fixed points
of f , and the dynamics are trapped in the invariant
absorbing interval

I = [−µL + µR, µL] (12)

as any other point is mapped into I in a finite num-
ber of steps. Depending on the parameters, it is pos-
sible to have stable (but not attracting) periodic
orbits of any period, as shown in the bifurcation
diagram in Fig. 2, as a function of µL. Such peri-
odic orbits are not attracting because of the par-
ticular case, and all the eigenvalues of the existing
cycles are either +1 or −1. We shall see that any
point of the absorbing interval I is a periodic point,
i.e. it belongs to some cycle of a given period, and
as a consequence, any point outside I is preperiodic
(which means that it is mapped into a periodic point
in a finite number of steps).

Clearly the period of the cycle depends on the
values of parameters µR and µL. Moreover, at any
fixed value of the parameters there is no unique
period, but two and even four different periods.

To see this and to describe the bifurcations lead-
ing to the changes in the periods of the cycles we
make use of the first return map FR.

We know that the discontinuity point behaves
as a critical point, in determining the BCB (as a
collision occurs due to a merging with the disconti-
nuity point). A particular role is also played by the
trajectories associated with the two values in the
discontinuity point: fR(0) = µR and fL(0) = µL.
Here, we have a unique critical trajectory, as it can
be immediately seen that

fR(0) = µR = fL ◦ fR(µL)
= fL ◦ fR ◦ fL(0) (13)

and a particular integer determines the first return
of the critical orbit in the interval JR for the return
map FR. In fact, let d = FR(µL), then this point
d separates the interval of definition of the return
map (JR = [0, µL]) in two different subintervals,
having different properties. Let k ≥ 1 be the integer
defining the number of iterations (with fL) to apply
to µR in order to get a positive point, say d, that is:

d = fk
L(µR) = fk+1

L ◦ fR(µL) > 0 (14)

and in explicit form:

d = µR + kµL (15)

We shall see that when the critical point d is posi-
tive, it separates the interval JR into two pieces:

JR = Cl(J ′ ∪ J ′′), J ′ = ]0, d[, J ′′ = ]d, µL[
(16)

(where Cl denotes the closure) such that all the
points in J ′ are periodic of period p′ = 2(k + 1)

(a) (b)

Fig. 2. (a) One-dimensional bifurcation diagram as a function of µL at µR = −1. (b) An enlargement is shown.
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(a) (b)

Fig. 3. Graph of the map f at µR = −1 and (a) µL = 0.3, (b) µL = 0.5.

and all the points in J ′′ are periodic of period
p′′ = 2(k + 2). We arrive at a BCB whenever we
have an integer k such that d = µR + kµL = 0. For
now, we can consider the subintervals in (16) with-
out the critical points defining their boundaries. As
we shall see below, however, we can also define them
as closed intervals, specifying the behavior of the
suitable choice at the discontinuity point.

We notice that the point d can also be deter-
mined as the first integer k giving a preimage (of
rank (k+1)) of the discontinuity point x = 0 in the
interval JR (i.e. the first positive preimage). That is,
the first integer k such that d = f−1

R ◦f−k
L (0) > 0. In

fact, given this definition, then we have fk
L◦fR(d) =

0 which implies −d+µR+kµR = 0, from which (15)
is recovered. From this, we have that each point
x < d takes (k + 1) iterations to return to the

positive side, while a point x > d takes (k + 2)
iterations, and, as before, d = 0 denotes a BCB.

In the case shown in Fig. 3(a) we have k = 4,
thus all the points in the interval J ′ have prime
period p′ = 10 except for the point in the middle of
the interval, which has prime period 5; while all the
points in the interval J ′′ have prime period p′′ = 12
except for the point in the middle of the interval,
which has prime period 6. Figure 4(a) shows the
related first return map. Let us prove the following:

Property 1. Let k be the first integer such that
d = µR + kµL ≥ 0. When d > 0 then the first
return map FR is made up of two pieces with slopes
−1, defined in J ′ and in J ′′ given in (16), separated
by the discontinuity point d. The intersection points
with the diagonal (i.e. two fixed points of the return

(a) (b)

Fig. 4. Graph of the first return map FR in the cases shown in Fig. 3, at µR = −1 and (a) µL = 0.3, (b) µL = 0.5.
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map FR) are periodic points of f with prime period
(k + 1) in J ′ and (k + 2) in J ′′, while all the other
points are periodic points of f with even periods:
2(k + 1) in J ′ and 2(k + 2) in J ′′.

To prove this property, consider any point x ∈
J ′ (and thus d − x > 0) then we have:

fR(x) = −x + µR ∈ [−µL + µR, µR]

fk
L ◦ fR(x) = −x + µR + kµL

= −x + d > 0 ∈ J ′

fR ◦ fk
L ◦ fR(x) = x − d + µR

(fk
L ◦ fR)2(x) = x − d + µR + kµL = x

which confirms the proposition for points in J ′. Sim-
ilarly, let us consider any point x ∈ J ′′ (and thus
µL − x > 0) then we have:

fR(x) = −x + µR ∈ [−µL + µR, µR]

fk+1
L ◦ fR(x) = −x + µR + (k + 1)µL

= −x + d + µL > d ∈ J ′′

fR ◦ fk+1
L ◦ fR(x) = x − d − µL + µR

(fk+1
L ◦ fR)2(x) = x − d − µL + µR + (k + 1)µL

= x

which confirms the proposition for points in J ′′. As
all the points in J ′ and in J ′′ so proved have even
periods 2(k+1) and 2(k+2) and each periodic orbit
has two points in the intervals J ′ and J ′′, respec-
tively, it follows that the middle points of these
intervals have prime periods (k + 1) and (k + 2),
respectively. Or also, analytically, let x = d/2 then

fR

(
d

2

)
= −d

2
+ µR

fk
L ◦ fR

(
d

2

)
= −d

2
+ µR + kµL = −d

2
+ d =

d

2

while considering x∗ = (µL + d)/2 then we have

fR(x∗) = −x∗ + µR

fk+1
L ◦ fR(x∗) = −x∗ + d + µL = x∗

which ends the proof.
Regarding the critical point d, we notice that

if the point d is considered belonging to the first
interval J ′, defining f(0) = fR(0) = µR then d is

periodic of period 2(k + 1), in fact:

fR(d) = −d + µR

fk
L ◦ fR(d) = −d + µR + kµL = 0

(fk
L ◦ fR)2(d) = fk

L ◦ fR(0) = fk
L(µR)

= µR + kµL = d

while if the point d is considered belonging to the
second interval J ′′, defining f(0) = fL(0) = µL,
then d is periodic of period 2(k + 2), in fact:

fR(d) = −d + µR

fk+1
L ◦ fR(d) = −d + µR + (k + 1)µL = µL

(fk
L ◦ fR)2(d) = fk+1

L ◦ fR(µL) = fk+1
L (−µL + µR)

= −µL + µR + (k + 1)µL = d

As stated above, a bifurcation in the periods of the
first return map are associated with the trajectory
of the critical point ending in the discontinuity point
x = 0. That is, when d = 0 occurs. Let us prove the
following:

Property 2. Let k be the first integer such that d =
µR+kµL ≥ 0. When d = 0 then the first return map
FR is made up of one piece with slope −1, defined
in J ′′. The intersection point with the diagonal (i.e.
the fixed point of the return map FR) is a periodic
point of f with prime period (k + 2), while all the
other points are periodic points of f with even period
2(k + 2).

An example is shown in Fig. 3(b), where
k = 2, and the related first return map is shown
in Fig. 4(b): All the positive points in J ′′ are of
period 8 = 2(k + 2) and the point in the middle
of the interval has prime period 4 = (k + 2). To
prove Property 2 consider the point x = µL/2, then
fk+1

L ◦ fR(µL/2) = µL/2, as

fR

(µL

2

)
= −µL

2
+ µR

fk+1
L ◦ fR

(µL

2

)
= −µL

2
+ µR + (k + 1)µL

= −µL

2
+ µL =

µL

2

while for any other point x in (0, µL) we have (fk+1
L ◦

fR)2(x) = x, in fact,

fR(x) = −x + µR ∈ [−µL + µR, µR]

fk+1
L ◦ fR(x) = −x + µR + (k + 1)µL
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= −x + µL > 0 ∈ J ′′

fR ◦ fk+1
L ◦ fR(x) = x − µL + µR

(fk+1
L ◦ fR)2(x) = x − µL + µR + (k + 1)µL = x

which ends the proof.

Regarding the critical points when we have
d = 0, notice that defining f(0) = fR(0) = µR, then
we have

fk
L ◦ fR(0) = 0

and thus d = 0 is of period (k+1), and µL is prepe-
riodic, while defining f(0) = fL(0) = µL, then we
have

fk+1
L ◦ fR ◦ fL(0) = 0

and thus in such a case we have that d = 0 is of
period (k + 3), and the trajectory includes all the
critical points.

It is interesting to see that all the cycles of any
period can exist, and keeping fixed µR the period
tends to infinity as µL tends to 0. Moreover, as
suggested by Fig. 2(a), after a specific value of µL

the bifurcations in the periods no longer occur. In
fact, we have seen that the period decreases as µL

increases, however the value of k cannot be lower
than 1, and k = 1 occurs whenever µL > −µR.
It follows that the last BCB takes place when
µL = −µR giving d = 0 for k = 1 [see an exam-
ple in Fig. 5(a)]. Then for any higher value of µL,
we always have that the image of µR, fL(µR), enters
JR in one iteration, and thus k = 1. This means that

(a) (b)

(c)

Fig. 5. (a) Graph of the map f at µL = −µR, and µR = −1. (b) Graph of the map f at µR = −1 and µL = 1.4 for which
k = 1. (c) The related first return map is shown.
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the simplest situation consists of points belonging
to 4-cycles in J ′ (a 2-cycle in the middle point),
and points of 6-cycles in J ′′ (a 3-cycle in the middle
point). A qualitative picture of this simplest case is
shown in Fig. 5(b) and the related first return map
in JR is shown in Fig. 5(c).

As well, we note that all the preperiodic points
of the cycles can be easily obtained by taking the
preimages f of the intervals J ′ and J ′′.

Summarizing, we have so proved the following
theorem.

Theorem 1. Let aR = −1, aL = 1, µR < 0 and
µL > 0, I = [−µL + µR, µL], K = −(µR/µL). If K
is not an integer, let k = 	K
 + 1, then d = µR +
kµL > 0, J ′ ∪ J ′′ = ]0, d[∪ ]d, µL[, and Property 1
holds (all the points in J ′ are 2(k + 1)-cycles and
the middle point d/2 is a (k + 1)-cycle, while all
the points in J ′′ are 2(k + 2)-cycles and the middle
point x∗ = (µL + d)/2 is a (k + 2)-cycle). When
k = K is an integer then d = µR + kµL = 0, a
BCB occurs and Property 2 holds (all the points in
J ′′ are 2(k + 2)-cycles and the middle point x∗ =
(µL + d)/2 is a (k + 2)-cycle). The critical points
and the periodic points cover the whole interval I.
On the real line, the preperiodic points of the cycles
in I are obtained by the preimages of the points in I.

4. Particular Case aRaL = 0

Here, we consider the particular case in which one
of the functions defining the map is constant. Let
us assume aR = 0, as the other case comes from

the property in (3). In this section, we consider the
map

x′ = f(x) =

{
fL(x) = aLx + µL, if x < 0

fR(x) = µR, if x > 0
(17)

where µR < 0 and µL > 0. As any point on
the right-hand side is mapped into a unique point
(µR < 0), it follows that we only have to consider
the trajectory of this point. Obviously, when not
divergent, i.e. when (5) holds, µL/(1 − aL) < µR,
this trajectory is periodic and the only question is of
which period. This information is given immediately
by the first return map, which completely explains
this case, and the related BCB curves, which can
be seen in Fig. 6.

In Fig. 6 the region with negative values of aL is
not represented because, as we shall see in the next
section, that region only includes a stable 2-cycle
or divergence. The integer that gives the period of
the trajectories is obtained by the trajectory of the
critical point µR: since fL(x) = µR for any x > 0,
we apply the map fL to the point µR as long as we
have a positive point again (no matter which one it
is), thus from

fk
L ◦ fR(0) = fk

L(µR)

= ak
LµR + µL

1 − ak
L

1 − aL
if aL �= 1

fk
L ◦ fR(0) = fk

L(µR)

= µR + kµL if aL = 1

(18)

(a) (b)

Fig. 6. (a) Two-dimensional bifurcation diagram at aR = 0 and µR = −1. (b) The analytical BCB curves that bound the
stability regions of the cycles with symbol sequence RLk, for k = 1, . . . , 20.
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let k ≥ 1 be the first integer such that fk
L(µR) > 0,

then we have a (k + 1)-cycle. The curve of equation
fk

L(µR) = 0, that is:

ak
LµR + µL

1 − ak
L

1 − aL
= 0, if aL �= 1

µR + kµL = 0, if aL = 1

(19)

denotes a BCB from the region of a (k + 1)-cycle
to that of a (k + 2)-cycle. In the region in which
fk

L(µR) > 0 the dynamics of the map f converge
to a (k + 1)-cycle. In Fig. 6(b) we show a few BCB
curves (for k = 1, . . . , 20). The limit set of these
BCB curves, as k → ∞, is the equation

µL = µR(1 − aL) (20)

which corresponds to the contact bifurcation given
in (9) after which (for µL < µR(1 − aL)) we have a
region associated with divergent dynamics for f .

5. Generic Case

In this section, we consider the generic case which
is the main object of this work. In order to describe
the BCB curves, let us first show a figure that sum-
marizes the properties or our map. In Fig. 7, we
show the regions associated with attracting periodic
orbits in the parameter plane (aR, aL). As the figure
refers to the case where µR = −1 and µL = 1 are the
bifurcation curves and the colored regions (denoting
attracting cycles of different periods) are completely
symmetric with respect to the main diagonal. When

an asymmetry appears it refers to the coexistence of
stable cycles, i.e. overlapping of periodicity regions
(as the initial condition is kept as the same point
x0 = −0.001). The similar figures at different val-
ues of µR and µL clearly do not have this symmetric
shape, and the regions are slightly deformed, keep-
ing in any case the same main qualitative proper-
ties, in particular, those of the points denoted by Pn,
although the overlapping regions may change their
shape. In each portion of the parameter plane of
Fig. 7(a) we simply illustrate the qualitative shape
of the map in the related quadrant.

5.1. Positive quadrant

We recall that in the positive quadrant as long
as 0 < aR < 1 and 0 < aL < 1, we have sta-
ble cycles of any period, associated with the well-
known period adding rule (examples of some partic-
ular maps can be found in [Avrutin & Schanz, 2006,
2008]), and the related BCB curves, characterizing
the appearance/disappearance of cycles, are given
in analytic form for several levels of complexity in
[Gardini et al., 2010; Avrutin et al., 2010b], and the
formulas there given can also be applied for higher
complexity levels, which explains the BCB curves
in that portion of phase plane. For each fixed con-
stellation of the parameters only one stable cycle
can exist, or none (when quasiperiodic trajectories
occur). As long as the parameters satisfy the condi-
tion µL(1−aR)−µR(1−aL) > 0, none of the period-
icity regions ever overlap. In Fig. 7, this inequality

(a) (b)

Fig. 7. (a) Two-dimensional bifurcation diagram numerically obtained, with stable periodicity regions in different colors.
(b) A few BCB curves are drawn, the equations for which are given in the text.
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corresponds to the region of the positive quadrant
below the set (S) of equation

(S): µL(1 − aR) − µR(1 − aL) = 0 (21)

Crossing this set, the map turns from invertible
in the invariant absorbing interval [µR, µL] into
nonuniquely invertible. The region below the set
(S) is called the stability region in [Gardini et al.,
2010], where it is also proved that each pair of the
infinitely many BCB curves associated with each
periodicity region intersect in points of the set (S)
where a stability change occurs. For parameters
above (S), infinitely many unstable cycles exist, and
the dynamics are chaotic, with robust chaos in cycli-
cal intervals. In that region the BCB are responsible
for the changes in the cyclical chaotic intervals, also
called chaotic band and band merging bifurcations,
as described in [Avrutin et al., 2007, 2008a, 2008b,
2009; Avrutin et al., 2010c].

A bounded chaotic attractor exists up to the
final bifurcation leading to divergence of the generic
trajectory. This occurs when the parameters cross
the bifurcation curves associated with the contact
of the invariant interval with an unstable fixed point
of f .

The boundaries of the BCB curves of the peri-
odicity regions of first level of complexity associ-
ated with the so-called maximal cycles, or principal
cycles, will be recalled below, as they also intersect
the region of interest here, the one with aR < 0.

As we can see from Fig. 7, on the sets aR = 0
and aL = 0 of the parameter space we have only
contiguous regions of stable cycles of increasing
period, one after the other. This reflects the prop-
erty proved in the previous section.

5.2. Stability region of the 2-cycle

We describe here, the wide periodicity region associ-
ated with the 2-cycle, whose periodic points x∗

0 > 0
and x∗

1 < 0 are given by

x∗
0 =

aLµR + µL

1 − aRaL
> 0, x∗

1 =
aRµL + µR

1 − aRaL
< 0

(22)

The two BCB curves, due to the merging of the
periodic points with the discontinuity point in x =
0, are given by:

ξr
RL: aLµR + µL = 0, ξl

RL: aRµL + µR = 0
(23)

(the straight lines of equation aL = −(µL/µR) and
aR = −(µR/µL) in Fig. 7). The 2-cycle is stable

as long as |aRaL| < 1 and becomes unstable via
a degenerate flip-bifurcation when the parameters
satisfy the equation

θRL: aRaL = −1 (24)

which gives the two portions of hyperbola in red
in Fig. 7, and a portion of the existence region is
associated with an unstable 2-cycle. Moreover, the
boundary of the stability region of the 2-cycle in the
lower left portion of the parameter plane (aR < 0
and aL < 0) is the curve of equation

χRL: aRaL = 1 (25)

which corresponds to the merging of the 2-cycle
with a point on the Poincaré Equator, at infinity.
In fact, as we can see from (22), the coordinates of
the periodic points of the 2-cycle tend to infinity
as aRaL tends to 1, after which (for aRaL > 1) no
cycle exists in the real line, and the dynamics are
all divergent (similar bifurcations are described in
[Avrutin et al., 2010a]).

We recall that all the flip bifurcations occurring
in piecewise linear maps to a k-cycle are degenerate
(see also [Sushko & Gardini, 2010]) which means
that at the bifurcation value a segment of the real
line exists in which all the points are 2k-cycles, with
the bifurcating k-cycle inside. After the flip bifurca-
tion, all such 2k-cycles disappear, leaving only one
unstable k-cycle. The cycle which bounds the inter-
val at the bifurcation value also undergoes a border
collision. The dynamics occurring after the degen-
erate flip bifurcation depend on the shape of the
map in the other part of the segment of cycles.

5.3. Region with aLaR < 0

In Sec. 2 we have already remarked that contact
bifurcations leading to almost all divergent trajec-
tories occur when the invariant interval I = [aRµL+
µR, µL] has a contact with the unstable fixed point
P ∗. The curve given in (9) associated with the “final
bifurcation” is also drawn in Fig. 7(b) (green arc of
curve), bounding the regions of mainly divergent
dynamics in the upper left portion of the phase
plane. This bifurcation is the border collision bifur-
cation of the critical point (lower boundary of I)
with the unstable fixed point P ∗ (also homoclinic
bifurcation of P ∗).

From the same picture it is clear that the
infinitely many periodicity regions existing for 0 <
aR < 2 and 0 < aL < 2 issue from particular
points on the axes aR = 0 and aL = 0, which are
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also points of intersection of two periodicity regions
of maximal cycles. Crossing such axes and enter-
ing the region aLaR < 0, the periodicity regions of
the maximal cycles intersect in pair, that is, for any
k ≥ 2 the periodicity region of the k-cycle intersects
the region of the (k + 1)-cycle, and for each cycle
there exists a region in which it is the only stable
one, without overlapping other stable periodicity
regions. This was already determined for particu-
lar families of maps in [Avrutin et al., 2006]. Here,
we consider the generic map in standard form, in
order to give an analytical proof of this and other
properties by using the first return map FR, which
will be considered in the following subsections.

5.3.1. BCB curves

The reason why we limit our interest here only to
the regions of cycles of first complexity level is that
they are the only cycles which may be stable when
aRaL < 0. Let us recall that in the particular cases
aRaL = 0, as we have seen in Sec. 4, only these
cycles exist, and their boundaries represent inter-
section points of two different BCB curves, denot-
ing the intersection of periodicity regions crossing
from aRaL > 0 to aRaL < 0. The periodicity
regions associated with these stable periodic orbits
of increasing periods are bounded by BCB curves
whose analytic expression is easy to obtain. Such
cycles have the simplest structure, obtained when
we apply in order the maps with symbol RL · · ·L.
This is a simple case because in this way we can sim-
ply order the periodic points, and easily perform the
related computations. For a cycle of period (n + 1)
let us call the related periodic points as 0 < x∗

0 < µL

and x∗
1 < · · · < x∗

n < 0. Then the periodic points
of the cycle are fixed points of the iterated map
fn+1(x) and x∗

0 is the fixed point of the linear func-
tion fn

L ◦ fR(x), which is a periodic point for f(x)
as long as

0 ≤ x∗
0 ≤ µL

and the conditions x∗
0 = 0 and x∗

0 = µL (this one
corresponds to x∗

n = 0) determine the BCB curves.
Then from:

fn
L ◦ fR(x) = (an

LaR)x

+
(

µRan
L + µL

1 − an
L

1 − aL

)
if aL �= 1

fn
L ◦ fR(x) = aRx + µR + nµL if aL = 1

by using the equality x∗
0 = fn

L ◦ fR(x∗
0) we obtain

the periodic point:

0 ≤ x∗
0 =

an
L(µR + µLφL

n)
1 − an

LaR
≤ µL (26)

where

φL
n =

1 − an
L

(1 − aL)an
L

if aL �= 1,

φL
n = n if aL = 1.

(27)

Notice that in the region we are interested in (aR <
0 and aL > 0), the denominator in (26) is always
positive. We denote by ξr

RLn (resp. ξl
RLn) the BCB

curve obtained due to the merging of a periodic
point of the orbit with the discontinuity point x = 0
from the right (resp. left) side. That is, the BCB
curve ξr

RLn is the BCB curve obtained due to the
merging x∗

0 = 0, while ξr
RLn is the BCB curve

obtained due to the merging x∗
n = 0 which also cor-

responds with x∗
0 = µL. Thus the two BCB curves

are obtained due to the merging of the periodic
point x∗

0 with the boundaries of its existence inter-
val. From 0 ≤ x∗

0 ≤ µL we get:

an
L(µR + µLφL

n) − µL(1 − an
LaR) ≤ 0

an
L(µR + µLφL

n) ≥ 0

so that the BCB curves are:

ξl
RLn : an

L(µR + µLφL
n) − µL(1 − an

LaR) = 0 (28)

ξr
RLn : µR + µLφL

n = 0 (29)

It is plain that the eigenvalue of a cycle is given
by the product of the slopes of the linear maps
which are applied in the cycle. So this (n + 1)-cycle
becomes unstable via degenerate flip when

θRLn : an
LaR = −1 (30)

denoting the flip-bifurcation curves.
In Fig. 7(b) we have drawn a few BCB curves

ξr
RLn (horizontal lines in that projection) and ξl

RLn

in black, together with a few flip-curves θRLn in red.
In the upper left part, it can be seen that all three
involve (intersect), a particular blue curve there
reported, and also shown in Fig. 7(a). This curve
represents the transition of the map f from invert-
ible in the absorbing interval I = [aRµL + µR, µL]
to noninvertible in that interval. The map f(x) is
invertible as long as fL(aRµL+µR) > µR so that the
set (CN) — crossing which the map becomes non-
uniquely invertible — is given by fL(aRµL + µR) =
µR that is:

CN : µL(1 + aLaR) + µR(aL − 1) = 0. (31)
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The similar transition when the slopes are positive
is given by the set (S) defined in (21). As already
remarked, in that region the crossing of the set (S)
represents a drastic transition from only stability
to only robust chaos. This is not the case when the
slopes satisfy aRaL < 0. In fact, it is easy to see
that in Fig. 7(a) above the set CN there is a white
region (associated with chaotic dynamics) followed
by a small portion of stability of the 4-cycle.

It is worth noticing also that the set CN inter-
sects all the BCB curves ξr

RLn exactly at the points
belonging to the flip bifurcation curves of cycles
with the symbolic sequence RLn+1 existing above
that curve. The BCB curve ξl

RLn+2 also crosses at
this point. This is not numerical evidence, and the
following Property will be used later:

Property 3. Let Pn ∈ ξr
RLn ∩ θRLn+1 for n ≥ 1,

then Pn ∈ CN and Pn ∈ ξl
RLn+2 .

In fact, from (30) we have an
L = −1/(aLaR),

and from (29) and (27), substituting:

µR + µL
aLaR + 1
aL − 1

= 0

from which the expression in (31) is recovered. After
some algebra it can be seen that also the equation
of ξl

RLn+2 is satisfied. The computations with the
formulas given in (28) are not easy, but in the next
subsection we shall give a different expression of the
same bifurcation curve, with which the proofs follow
soon.

Another peculiarity of the flip-bifurcation
curves is that those associated with the cycles of
period 3 and 4 intersect each other and exchange
at a very particular point, when aL = 1 and
aR = −1. This is immediate from their equations
in (30). Indeed the same property holds for any
flip-curve, but for the other cycles it is not dynam-
ically relevant because the flip-curves cannot exit
from the existence region, and the parameter point
(aR, aL) = (−1, 1) belongs to the existence regions
of the cycles of periods 2, 3, 4 only. The property
which holds iteratively for all the cycles existing for
aL > 1 is the one noted in Property 3, that is, a flip
bifurcation curve θRLn+1 that starts from the BCB
curve ξr

RLn+1 crosses through ξr
RLn at the point Pn

and ends in the BCB curve ξl
RLn+1 .

5.3.2. Use of the first return map

We describe here a different (and useful) approach
to study the bifurcations in the case of slopes with

opposite sign, for which a first return map FR is
well defined. As we have seen, when an invariant
absorbing interval I = [aRµL + µR, µL] exists, it
is not possible to apply the function on the right
side for two consecutive iterations. In fact, whenever
we consider a positive point x > 0, then we have
fR(x) < 0. This allows us to a correct definition of
the first return map. Let JR = [0, µL] = I∩{x ≥ 0}
then we can simply construct the first return map
in JR, as

FR: x ∈ JR → fm(x) ∈ JR

where m is the first integer for which fm(x) ∈ JR,
and this map describes all the bifurcations (includ-
ing the BCB) of the map f in I. As f is discon-
tinuous with a discontinuity point in x = 0, which
means that points in a neighborhood of x = 0 are
subject to different functions, a similar fate will
occur also to points on opposite sides of the preim-
ages of the discontinuity point x = 0, depending
on the side to which they belong. The preimages of
the discontinuity point x = 0 must necessarily be
taken first with the left side, i.e. with f−1

L as long
as we obtain a point in the range of fR to which
we can apply f−1

R reaching the side x > 0. Thus, as
seen in Sec. 3, an important integer is the first k,
necessarily k ≥ 1, such that

dk = f−1
R ◦ f−k

L (0) > 0 (32)

and clearly, once a first preimage dk exists, then also

dk+j = f−1
R ◦ f

−(k+j)
L (0) > 0, ∀ j ≥ 1 (33)

exist as preimages of the origin on the R side, as
the preimages f

−(k+j)
L (0) tend to the unstable fixed

point P ∗ as j tends to ∞, when P ∗ exists (i.e. for
aL > 1), otherwise, the preimages tend to −∞. To
understand the dynamics of f(x), however, we are
only interested in the points dk+j belonging to (or
entering inside) the interval domain of FR: JR =
[0, µL].

It is plain that for the first return map FR, dk

must be a discontinuity point, and points in 0 < x <
dk will take (k+1) iterations in order to be positive
again, while points in a right neighborhood of dk,
between dk and dk+1, will take (k + 2) iterations.

Thus it is easy to see that an important bifur-
cation occurs whenever we have dk = µL as this
denotes that the discontinuity point of the first
return map FR is entering the interval JR [see
Figs. 8(a) and 8(b)], and a bifurcation also occurs
whenever we have dk = 0, as this denotes that the
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(a) (b) (c)

Fig. 8. Qualitative shapes of the first return map FR. The case shown in (c) corresponds to point (B) in Fig. 10.

discontinuity point of the first return map FR is
exiting from the interval JR [see Fig. 8(c)]. Clearly
both these bifurcations cause a change in the def-
inition of the first return map, as the number of
iterations to be applied to f−1

L in order to get the
first preimage of the origin on the positive side is
changed.

From the definition of dk in (32) we also have
fk

L ◦ fR(dk) = 0, thus considering the function
fk

L ◦ fR(x) = (ak
LaR)x + ak

L(µR + µLφL
k ), from

fk
L ◦ fR(dk) = 0 we obtain:

dk =
µR + µLφL

k

−aR
(34)

So that defining T0(x) = fk
L ◦ fR(x) then T0(x) rep-

resents the first return map for 0 < x < dk, and
we have to consider T1(x) = fk+1

L ◦ fR(x) as the
first return function for dk < x < dk+1. Thus, when
0 < dk < µL < dk+1 we have a well defined map
[see Fig. 8(b)]:

FR(x) =




T0(x) = fk
L ◦ fR(x)

= ak
L(aRx + µR + µLφL

k ),

if 0 ≤ x < dk

T1(x) = fk+1
L ◦ fR(x)

= ak+1
L (aRx + µR + µLφL

k+1),

if dk < x ≤ µL

(35)

The components are both decreasing functions, as
the slopes of T0 and T1 are negative, and the fixed
points of FR are periodic points of f(x). Say

x∗
0 =

ak
L(µR + µLφL

k )
1 − ak

LaR
,

(36)

x∗
1 =

ak
L(µR + µLφL

k+1)

1 − ak+1
L aR

the fixed points of T0(x) and T1(x), respectively.
Then x∗

0 is a periodic point belonging to the cycle
of period (k+1) of f(x). The first and unique point
on the R side of the cycle with symbolic sequence
RLk, and eigenvalue λk+1 = ak

LaR < 0. The fixed
point x∗

1 is a periodic point of f(x) belonging to
the cycle of period (k + 2), while the first and
unique point on the R side of the cycle with sym-
bolic sequence RLk+1 having eigenvalue λk+2 =
ak+1

L aR = aLλk+1 < 0. The following iterative prop-
erties derive immediately from the definitions:

Property 4

φL
k+1 = φL

k +
1

ak+1
L

(37)

dk+1 = dk +
µL

−aRak+1
L

= dk +
µL

|λk+2| (38)

Notice that the ranges of the two functions defined
in (35) are given by:

T0([0, dk]) = [ak
L(µR + µLφL

k ), 0] = [−ak
LaRdk, 0]

(39)

(as T0(0) = ak
L(µR + µLφL

k ) and T0(dk) = 0)
and from T1(dk) = ak+1

L (aRdk + µR + µLφL
k+1) =

ak+1
L (−µR−µLφL

k +µR+µLφL
k+1) = ak+1

L µL(φL
k+1−

φL
k ) = µL, we have:

T1([dk, µL]) = [µL, T1(µL)]

= [µL, a k+1
L (aRµL + µR + µLφL

k+1)]

(40)

As already noted, the two functions T0 and T1 given
above in general define a first return map, i.e. when
0 < dk < µL < dk+1, but bifurcations occur when-
ever the intervals defined in (39) and (40) reduce
to a point, that is:

(i) when dk = 0, as the cycle of period (k + 1)
with symbol sequence RLk disappears/appears
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from JR, which gives the BCB curves ξr
RLk of

equation µR + µLφL
k = 0 given in (29), and

(ii) when fk+1
L ◦ fR(µL) = µL, as the cycle of

period (k + 2) with symbol sequence RLk+1

appears/disappears from JR, which gives

ξr
RLk+1 : ak+1

L (aRµL + µR + µLφL
k+1) − µL = 0

corresponding to the BCB curves ξl
RLk+1 given

in (28). But note that fk+1
L ◦ fR(µL) = µL

means fL(fk
L ◦ fR(µL)) = µL and this occurs

iff fk
L ◦ fR(µL) = 0 (that is iff dk = µL). Thus

the BCB curves ξl
RLk+1 also have a simpler

equation (considering fk
L ◦ fR(µL) from (35)),

given by:

ξl
RLk+1 : aRµL + µR + µLφL

k = 0 (41)

To be also more explicit the proof is as follows:

ak+1
L (aRµL + µR + µLφL

k+1) − µL = 0

aR =
µL − ak+1

L (µR + µLφL
k+1)

ak+1
L µL

aR =
1

ak+1
L

− µR

µL
− φL

k+1

aR = −µR

µL
− φL

k

µR + µLφL
k + aRµL = 0

We have so proved the following.

Theorem 2. Let aR < 0, aL > 0, µR < 0 and µL >
0. Let dk = f−1

R ◦ f−k
L (0) = (µR + µLφL

k )/−aR be
the first preimage of the discontinuity point x = 0
on the positive side R. Then the BCB curves of the
cycles of first complexity level are given by

ξl
RLk+1: dk = µL (i.e. µR + µLφL

k + aRµL = 0)

ξr
RLk : dk = 0 (i.e. µR + µLφL

k = 0)
(42)

where φL
k is defined in (27):

φL
k =

1 − ak
L

(1 − aL)ak
L

if aL �= 1,

φL
k = k if aL = 1

We recall that by using the equations given in
(42) the algebraic steps to prove Property 3 are
quickly derived.

Let us also notice that the two different
dynamic behaviors observed in Fig. 7 crossing the
point (aR, aL) = (−1, 1) have a clear interpretation
in the first return map FR. In fact, from λk+2 =
a k+1

L aR = aLλk+1 we immediately have the follow-
ing property characterizing the flip bifurcations:

Property 5

(j) If aL < 1 then λk+1 < λk+2 = aLλk+1 and
thus for a transition in which aR is decreasing,
the degenerate flip bifurcation of the cycle RLk

of lower period occurs first (i.e. before that of
cycle RLk+1) [Fig. 9 (a)];

(jj) if aL > 1 and −1 < aR < 0 then λk+2 =
aLλk+1 < λk+1 and thus for decreasing aR the
degenerate flip bifurcation of the cycle RLk+1

of higher period occurs before that of the cycle
RLk. (Fig. 9(b), corresponding to point A in
Fig. 10);

(jjj) the degenerate flip bifurcations of two coexist-
ing cycles occur simultaneously iff aL = 1 and
aR = −1.

(a) (b) (c)

Fig. 9. Qualitative shapes of the first return map FR. The case shown in (b) corresponds to point (A) in Fig. 10, while the
one in (c) corresponds to point (C) in Fig. 10.
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Fig. 10. Qualitative behavior of the first return map in the different regions bounded by the bifurcations curves. The light
blue region qualitatively represents the corresponding light blue region for k = 2 in the parameter plane in Fig. 7(b).

The case in (jjj), due to λk+2 = λk+1 = −1,
corresponds to the particular case fully considered
in Sec. 3.

The following properties characterize the
crossing of a parameter point through a BCB
curve ξr

RLk .

Property 6. Let the parameters (aR, aL, µR, µL)
satisfy dk = 0 then

dk+1 =
µL

−ak+1
L aR

=
µL

|λk+2| (43)

T1(µL) = µL(1 − |λk+2|) (44)

In fact, at a bifurcation value due to dk = 0 from
(38) we have immediately the expression of dk+1,
which proves (43). While from (35) by using (37)
we have:

T1(µL) = a k+1
L (aRµL + µR + µLφL

k+1)

= a k+1
L aRµL + a k+1

L (µR + µLφL
k ) + µL

= a k+1
L aRµL − a k+1

L aRdk + µL

= µL(1 − |λk+2|) (45)

which proves (44).

The particular expressions so determined are
used to prove the following.

Property 7. Let the parameters (aR, aL, µR, µL)
satisfy dk = 0 (and thus belonging to the BCB curve
ξr
RLk associated with the cycle RLk) then:

(l) If the cycle RLk+1 is stable then we have
T1(µL) > 0 and dk+1 = µL/(|λk+2|) > µL,
which means that there are no discontinuity
points inside the interval JR, thus the map FR

(and f) is invertible: the existing cycle RLk+1

is globally attracting, and the return map FR

is continuous (see Fig. 8(c), corresponding to
point B in Fig. 10);

(ll) if the cycle RLk+1 is degenerate, λk+2 =
ak+1

L aR = −1, so that dk+1 = µL, then
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T1(0) = µL, T1(µL) = 0 and by Property 3 the
parameter point is Pk ∈ ξr

RLk ∩ θRLk+1 ∩ CN ∩
ξl
RLk+2. FR is continuous and invertible being

the diagonal with slope −1 in the whole inter-
val JR, thus also f is invertible, all the points
in JR are cycles of period 2(k + 2) except for
the fixed point (the graph of FR in the point Pk

is shown in Fig. 10);
(lll) if the cycle RLk+1 is unstable then T1(µL) < 0,

which also means that the discontinuity point
dk+1 = µL/(|λk+2|) < µL is inside the interval
JR and the first return map is defined by T1(x)
for 0 < x < dk+1 with range T1([0, dk+1]) =
[µL, 0] and by T2(x) for dk+1 < x < µL, which
means that in the definition in (35) the integer
k is increased by 1, but also that the return map
FR (and thus f) is noninvertible (Fig. 9(c),
corresponding to point C in Fig. 10).

For aL > 1 and decreasing aR, −1 < aR < 0, we
know that the flip bifurcation of the cycle RLk+1

of higher period occurs first, and at the bifurca-
tion value, when λk+2 = ak+1

L aR = −1, we have
T1(µL) = ak+1

L aRµL−ak+1
L aRdk+µL = dk (as in fact

the first return map T1(x) has slope −1), and the
cycle RLk is still stable, in fact 0 > λk+1 = ak

LaR >
−1 and T0(0) = ak

L(µR + µLφL
k ) = (dk/aL) < dk,

then the map FR (and thus f) is invertible. To sum-
marize, we have proved the following.

Theorem 3. Consider aL > 1,−1 < aR < 0 and
the region of invertibility of f (below the set CN ).
Then the return map FR is either continuous in JR

(region (b) in Fig. 10), in which case there exists

a unique globally attracting cycle, or there exist at
most one discontinuity point (regions (a) and (c) in
Fig. 10), and thus with two cycles, one of which is
necessarily stable.

(i) In the overlapping region below the flip bifurca-
tion curves (region (a) in Fig. 10), two stable
cycles with symbol sequence RLk and RLk+1

coexist, and no unstable cycle can exist. The
points of the interval (0, dk) converge to the
cycle with symbol sequence RLk while the points
of the interval (dk, µL) converge to RLk+1.

(ii) In the region between two flip bifurcation curves
there exists a unique stable cycle (region (c) in
Fig. 10), attracting all the points except those
of the coexistent unstable cycle.

Figure 10 illustrates the qualitative shape of the
first return map FR and related properties of the
map f close to each of the infinitely many points
Pk with k > 1 as shown in Fig. 7.

Notice that crossing through the particular
points Pk, we can have a direct transition from reg-
ular regime to chaos, and thus infinitely many BCB
curves must necessarily issue from such points.

While for aL < 1 and decreasing aR, s we know
that the flip bifurcation of the cycle RLk of lower
period occurs first, however, as already remarked,
only cycles of low periods (2, 3, 4) can be attract-
ing. We shall see two examples in the following
subsection.

5.4. Examples

As illustrative examples we show two bifurcation
diagrams of increasing aL, fixing −1 < aR < 0

(a) (b)

Fig. 11. Graph of the function f and first return map FR at µR = −1, µL = 1 and aR = −0.8. (a) aL = 0.7. (b) aL = 1.09.
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(a) (b)

Fig. 12. One-dimensional bifurcation diagrams at µR = −1 and µL = 1, as a function of aL. (a) aR = −0.8. (b) aR = −1.8.

and aR < −1. Let us consider first the example
in which aR = −0.8 and we increase the parameter
aL from zero [Figs. 11 and 12(a)]. From the two-
dimensional bifurcation diagram in Fig. 7 we know
that we start with a stable 2-cycle, which is the only
existing attractor as long as we cross the bifurcation
curve ξl

RL2 and an attracting 3-cycles coexists: in
the first return map we have a discontinuity point
d1 [Fig. 11(a)].

The one-dimensional bifurcation diagram as aL

increases is shown in Fig. 12(a). The 2-cycle coex-
ists with the 3-cycle up to the disappearance of
the 2-cycle via BCB, crossing the BCB curve ξl

RL
(aLµR + µL = 0), leaving a unique 3-cycle up to
the appearance of the 4-cycle as aL crosses the
BCB curve ξl

RL3 (at aL = 1.0732). In Fig. 12(a),
we can see that the flip bifurcation of the 4-cycle

(at aL = 1.0772) occurs before that of the 3-cycle
(at aL = 1.118), after which we only have chaotic
dynamics. The first return map FR in JR when the
4-cycle is unstable and all the other points in I con-
verge to the stable 3-cycle is shown in Fig. 11(b),
where FR is given by T0 = f2

L ◦ fR in (0, d1) and by
T1 = f3

L ◦ fR in (d1, µL). The map becomes nonin-
vertible when the 3-cycle is still stable, and at the
flip-bifurcation of the 3-cycle, the dynamics become
chaotic. When T1(µL) = 0 a new BCB curve ξr

RL4

is crossed and a new discontinuity point d2 appears
in the first return map which is so defined:

T0 = f2
L ◦ fR in (0, d1),

T1 = f3
L ◦ fR in (d1, d2),

T2 = f4
L ◦ fR in (d2, µL)

(a) (b)

Fig. 13. Graph of the function f and first return map FR at µR = −1, µL = 1 and aR = −0.8. (a) aL = 1.4. (b) aL = 1.55.
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as shown in Fig. 13(a). When T2(µL) = 0, a new
BCB curve ξl

RL4 is crossed and a new discontinuity
point d3 appears and the first return map increases
by one piece, by T3 = f4

L ◦fR in (d3, µL), and so on.
The number of discontinuity points dj and pieces
in the return map tends to infinity as the final con-
tact bifurcation with the unstable fixed point P ∗
is approached [see Fig. 13(b)]. The integer associ-
ated with the first discontinuity point increases by
1 whenever a periodicity region ceases to exist (as
we increase the parameter aL). In Fig. 12(b), we
also show a one-dimensional bifurcation diagram
at aR = −1.8 and we increase the parameter aL

from 0. We can see that now the flip bifurcation of
the 2-cycle occurs first, followed by the flip bifur-
cation of the 3-cycle and the last one is that of the
4-cycle.
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