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Abstract—In this work we consider the homoclinic bifurcations of expanding periodic points.
After Marotto, when homoclinic orbits to expanding periodic points exist, the points are
called snap-back-repellers. Several proofs of the existence of chaotic sets associated with such
homoclinic orbits have been given in the last three decades. Here we propose a more general
formulation of Marotto’s theorem, relaxing the assumption of smoothness, considering a generic
piecewise smooth function, continuous or discontinuous. An example with a two-dimensional
smooth map is given and one with a two-dimensional piecewise linear discontinuous map.
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1. INTRODUCTION

In the last decades, the dynamics associated with homoclinic orbits have been studied and
developed by many researchers. We recall that the first results date back to Poincaré, who can be
considered the founder of the qualitative theory of dynamical systems and the first who discovered
the existence of chaotic dynamics. Numerous other studies have been done in the second half of
the last century, mainly on the homoclinic orbits associated with saddle cycles in the study of
flows. We recall, in addition to Birkhoff [1], Andronov and Pontryagin [2], Moser [3], the works of
Abraham and Marsden [4], Smale [5], Afraimovich [6], Gavrilov and Shilnikov [7, 8], Guckenheimer
and Holmes [9], Palis and Takens [10], Wiggins [11, 12], Kuznetsov [13], de Melo and van Strien
[14], Gonchenko et al. [15–19]. Besides the transverse homoclinic and heteroclinic points of saddle
cycles, also homoclinic orbits and chaotic dynamics associated with saddle-foci cycles have been
studied, in particular, by Shilnikov and his collaborators. We also recall [20, 21] and the surveys
books [22, 23]. New kinds of homoclinic orbits in maps with knot points are also shown in [24].

The homoclinic bifurcations occurring in flows are generally studied by use of discrete maps
associated with a so-called Poincaré section, and thus are related to invertible maps. It follows that
no homoclinic orbit can be associated with unstable foci or unstable nodes in a two-dimensional
invertible map, or in general with repelling cycles in n−dimensional invertible maps, n � 2.
However, in noninvertible maps we may have homoclinic orbits also associated with repelling or
expanding cycles. A repelling cycle p is here one for which the Jacobian matrix, assuming the
map smooth in p, has all the eigenvalues higher than 1 in modulus. Let p be a repelling cycle
of a noninvertible map, in which the map is locally invertible and thus for the local inverse p is
attracting. Marotto was the first to prove in [25] that homoclinic orbits may occur also for such
repelling points, and that chaos is associated to the existence of homoclinic orbits. Indeed, his first
work included a minor technical mistake, and he himself gave a corrected version in [26], after
the appearance of several papers which, trying to correct the mistake, were providing less general

*E-mail: Laura.Gardini@uniurb.it
**E-mail: f.tramontana@univpm.it

237



238 GARDINI, TRAMONTANA

proofs (as in Li and Chen [27]). The problem in the proof was related to the fact that a repelling
fixed point is not necessarily expanding, where p is expanding only if

||f(x) − f(y)|| > s||x − y|| (1.1)

for some s > 1 and for all the points x �= y in a suitable neighborhood of p, B(p). However, as
proved by Hirsh and Smale in [28], a repelling fixed point is also locally expanding in a suitable norm
(although not necessarily in the usual Euclidean norm). Thus, for a differentiable noninvertible map
f : Rn → Rn, Marotto gave the following

Definition. A fixed point p of f is a snap-back repeller if all the eigenvalues of Jf (p) exceed 1 in
magnitude, and there exists a point x0 in a repelling neighborhood of p, and an integer m such that
xm = p and det(Jf (xj)) �= 0 for 1 � j � m, where xj = f j(x0).

Clearly, a “repelling neighborhood” in the definition is one in which the map is locally invertible
and the local inverse, say f−1

1 , is attracting in p, and the point x0 in the definition is a homoclinic
point. An example of full homoclinic orbit O(p) consists in taking the preimages of x0 with the
local inverse in p, and its forward iterates:

O(p) : p ←− f−n
1 (x0) . . . f−1

1 (x0), x0, x1, . . . xm = p. (1.2)

It is also worth noting that by definition, this homoclinic orbit is nondegenerate, as it comes
immediately from the following

Definition. An homoclinic orbit O(p) of a map f is called nondegenerate if in all the points xj of
the orbit Jf (xj) is defined and det(Jf (xj)) �= 0.

Then for a smooth map Marotto proves, in the sense of Li and Yorke [29], the following

Theorem 1 (Marotto [26]). If f has a snap-back repeller then f is chaotic.

It is plain that the same definitions apply for a k−cycle with k > 1 considering it as a fixed
point of the map fk.

It may be noticed that nothing is stated about the bifurcation which leads a repelling fixed
point from no homoclinic orbit for it to a snap-back repeller, SBR for short. In [30], together with
a different proof of the chaotic dynamics associated with a SBR in the smooth case, it was noticed
that when the fixed point p is a repelling focus of a two-dimensional noninvertible map with an
annular chaotic area A around p, the so-called SBR-bifurcation (leading to the first appearance of
a homoclinic orbit of p) is associated with a critical homoclinic orbit. This bifurcation occurs when
another rank-one preimage of p, different from p, merges with the external boundary of the chaotic
area A. That this first homoclinic orbit is critical is due to the fact that the boundary of the chaotic
area is given by the images of a proper segment of the critical curves of the map, following the
notation used in Mira et al. [31]. Moreover, as it was noticed in [30], the first SBR-bifurcation due
to a critical homoclinic orbit is followed by an explosion of different homoclinic orbits of the same
point p, and generally a cascade of degenerate homoclinic orbits occurs, followed by explosions
of nondegenerate ones. The existence of SBR is often associated with the existence of a strange
repeller (see for example in [32]), while its relation with repelling foci is mainly associated with
attracting chaotic areas. And it is clear that also repelling nodes may be involved in some SBR
bifurcations inside attracting chaotic areas.

In this work we shall generalize Theorem 1 by Marotto for a nondegenerate homoclinic orbit
O(p) of a repelling fixed point p of a piecewise smooth noninvertible map f of Rn, continuous or
piecewise continuous, proving the following

Theorem 2. Let f be a piecewise smooth noninvertible map. Let p be a repelling cycle of f ,
in which the map is locally invertible, and all the eigenvalues of Jf (p) exceed 1 in modulus. Let
O(p) be a nondegenerate homoclinic orbit of p. Then in any neighborhood of O(p) there exists an
invariant Cantor set Λ on which f is chaotic.

Moreover, we further generalize the result to some degenerate homoclinic orbits O(p) such that
in all the points xj the map is locally invertible. This degeneracy may occur because there are points
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xj in the homoclinic orbit in which the Jacobian Jf (xj) is not defined or because it is defined but
we have det(Jf (xj)) = 0. Anyhow the following result holds

Theorem 3. Let f be a piecewise smooth noninvertible map. Let p be a repelling cycle of f , in
which the map is locally invertible, and all the eigenvalues of Jf (p) exceed 1 in modulus. Let O(p)
be an homoclinic orbit of p and f locally invertible in each point of O(p). Then in any neighborhood
of O(p) there exists an invariant Cantor like set Λ on which f is chaotic.

The plan of the work is as follows. In Section 2 we shall prove Theorem 2, giving in Section 3
two examples of snap-back repellers via a smooth 2-dimensional map proposed by Gonchenko et
al. [15, 16] and frequently used in the examples in [31]. Section 3 also includes an example with a
2-dimensional piecewise linear discontinuous map. The proof of Theorem 3 is given in Section 4.

2. PROOF OF THE HOMOCLINC THEOREM

Let us first recall some lemmas whose proof is nowadays well known (see [28, 33, 34]).

Lemma 1. Let σ be the shift map acting on the space Σ2 of one sided infinite sequences of two
symbols {0, 1}, then σ is chaotic1). Any map which is topologically conjugated with the shift map
is also chaotic.
Lemma 2. Let (X, d) be a metric space and F : X → X a map. If there exist two compact subsets
V0 ⊂ X and V1 ⊂ X with V0 ∩ V1 = ∅ such that F (V0) ⊃ V0 ∪ V1 and F (V1) ⊃ V0 ∪ V1 then:

(i) the set V0 ∪ V1 includes a closed invariant Cantor like set Λ, that is a set of closed compact
sets Aα which are in one-to-one correspondence with the elements α of Σ2 and F (Aα) = Aσ(α).

(ii) A set Aα is a single point iff δ(Aα) = 0 where δ denotes the diameter of the set.
(iii) If X ⊇ U ⊃ V0 ∪ V1 exists such that F−1

0 (U) = V0, F−1
1 (U) = V1 and F (V0) = F (V1) = U,

where the inverses F−1
0,1 are contractions in U, then δ(Aα) = 0 for any symbol sequence α of Σ2.

(iv) If all the sets Aα are single points then Λ is a Cantor set on which F is topologically
conjugated with the shift map.

Lemma 3. Let (X, d) be a metric space and f : X → X a map. Let F = fn for some positive
integer n. If F is chaotic on some invariant set Λ ⊂ X then also f is chaotic on ∪n

k=1f
k(Λ).

For convenience let us recall the standard proof of point (i) in Lemma 2 when a set U ⊃ V0 ∪ V1

exists such that F−1
0 (U) = V0 and F−1

1 (U) = V1. Then defining F−1 = F−1
0 ∪ F−1

1 we have

F−1(U) = V0 ∪ V1

F−2(U) = F−1(V0) ∪ F−1(V1) = V00 ∪ V01 ∪ V10 ∪ V11 ⊂ F−1(U)
. . .

It is clear that F−k(U) includes 2k disjoint sets and

Λ = lim
k→∞

F−k(U) =
⋂

k�0

F−k(U). (2.1)

(where F−0 = F 0 = I is the identity function). Notice that up to now we have not used any
assumption on the functions F−1

0 and F−1
1 , and the result stated in (i), which is purely geometrical,

holds. Assuming that F−1
0 and F−1

1 are contraction mappings it follows that the elements of Λ are
single points. However, as already commented in [34], a Cantor set of points Λ in the above process
can be obtained also with less strong assumptions in these functions, for example it is enough to
ask for the following stability property S:

Stability property S. We say that a function F has the stability property in a set U if all the
eigenvalues of JF (x) are less than 1 in modulus for any x ∈ U.

1) that is, σ has a positive topological entropy, is topologically transitive, and is chaotic in the sense of
Li-Yorke [29] as well as in the sense of Devaney [33].
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For our purpose it is enough to prove that the property of a Cantor set of points Λ is obtained
assuming that the function F−1

0 satisfies the stability property S and F−1
1 is a contraction in U , so

that point (iii) in the above Lemma 3 can be substituted by the following:

Lemma 4. (iii′) If F is defined in a set U ⊃ V0 ∪ V1 such that F−1
0 (U) = V0, F−1

1 (U) = V1 and
F (V0) = F (V1) = U, where F−1

1 is a contraction in U and F−1
0 satisfies the stability property S,

then δ(Aα) = 0 for any symbol sequence α of Σ2.

The proof of Lemma 4 comes reasoning by contradiction. Let us assume that for some set
Aα we have the diameter δ(Aα) > 0, and let x and y be two points whose distance is δ(Aα).
Then considering the image F (Aα) we obtain a set whose diameter is wider, that is δ(F (Aα)) =
δ(Aσ(α)) > δ(Aα), because the function F is expanding in U and thus the inequality in (1.1) holds. It
follows that in a finite number k of applications by F we obtain δ(F k(Aα)) > δ(U) which contradicts
the invariance of Λ in U .

Now, to prove Theorem 2 it is enough to show that when a nondegenerate homoclinic orbit O(p)
exists, we can construct two compact subsets V0 and V1, p ∈ V1, and that we can apply Lemma 2
with (iii) replaced by (iii′). Thus let us consider a repelling fixed point p of a noninvertible map f ,
denote by f−1

1 the local inverse in p and let ||.|| be the suitable norm for which f−1
1 is a contraction

in the local unstable set W u(p) (Hirsh and Smale [28] pp. 278–281).
Consider a suitable compact neighborhood Um(p) ⊂ W u(p), and construct backward compact

sets following the points of the homoclinic orbit such that Um−1(xm−1) satisfies Um−1 ∩ Um = ∅

and f(Um−1) = Um, Um−2(xm−2) satisfies Um−2 ∩ Um−1 = ∅ and f(Um−2) = Um−1, . . . in each of
which the function is locally smooth and we consider a unique local inverse. Let j � 0 be an integer
(which necessarily exists) such that Uj(xj) ⊂ Um(p). Let us define H0 = Uj(xj) and let N1 be the
integer such that fN1(H0) = Um(p). Now let us define H1 = f−N2

1 (Um(p)) where the integer N2

is chosen such that H0 ∩ H1 = ∅. Let N = N1N2 and define V0 = f−N2
1 (H0), V1 = f−N1

1 (H1), and
F = fN .

Then by construction we have F (V0) = Um(p) ⊃ V0 ∪V1 and F (V1) = Um(p) ⊃ V0 ∪V1. The local
inverse F−1

1 = f−N
1 is a contraction such that F−1

1 (Um(p)) = V1, and by properly choosing Um(p)
and the integer j small enough, we can have a local inverse F−1

0 satisfying F−1
0 (Um(p)) = V0 by

construction, that also satisfies the stability property S.
Thus via the above Lemmas the proof of Theorem 2 is complete.

3. EXAMPLES
In this section we illustrate two examples, the first with a smooth two-dimensional map and the

second with a discontinuous two-dimensional map.

3.1. A Smooth 2-Dimensional Example of SBR

Let us consider the following noninvertible map f : R2 → R2

f :

⎧⎨
⎩ x′ = y

y′ = −x2 + cy + M
(3.1)

which was deduced in Gonchenko et al. [15, 16] as a truncated normal form for the first return maps
defined near quadratic homoclinic tangencies in the cases of diffeomorphisms with saddle-foci fixed
points whose unstable manifold is at least two-dimensional. Also it was used in many examples in
[31] (in this or other forms, topologically conjugated to the present one).

The Jacobian of f is given by

Jf (x, y) =

⎡
⎣ 0 1

−2x c

⎤
⎦ (3.2)
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and its determinant vanishes on a line which we call critical line LC−1 (following the notation used
in [31]) of equation x = 0, and its image is the critical line LC = f(LC−1) of equation y = cx + M ,
which separates the phase plane in two open regions denoted Z0 and Z2. A point (x, y) ∈ Z0 has
no rank-1 preimages while any point (x, y) ∈ Z2 has two distinct rank-1 preimages given by:

f−1
1,2 (x′, y′) = (±

√
cx′ − y′ + M , x′). (3.3)

While a point (x, y) ∈ LC has a unique rank-one preimage belonging to LC−1. The further images
of the curve LC, LCk = fk(LC) for k � 1, are also called critical curves, of higher rank.

This map has two fixed points which appear by saddle-node bifurcation, say R the stable node
and Q the saddle, given by

R =

(
(c − 1) +

√
(1 − c)2 + 4M
2

,
(c − 1) +

√
(1 − c)2 + 4M
2

)

Q =

(
(c − 1) −

√
(1 − c)2 + 4M
2

,
(c − 1) −

√
(1 − c)2 + 4M
2

)
.

For the parameters (c,M) in a suitable range the fixed point R is a repelling focus and an annular
chaotic area A exists around it. An example is shown in Fig. 1a, for c = 0.1 and M = 1.37. The
boundaries of the chaotic area are given by the images of an arc of the critical curve LC−1, and thus
are critical points of higher rank. In Fig. 1 we also illustrate the boundary of the basin of attraction
which separates the points having bounded trajectories from those having divergent trajectories.
The light gray points denote divergent trajectories, while the light blue points belong to the closure
of the basin of attraction of the chaotic area A. The unstable fixed point Q belongs to the basin
boundary, as well as its stable set.

As shown in [30], the “hole” around R exists as long as the preimage of R distinct from itself,
denoted R−1 = f−1

2 (R), is external to the annular chaotic area (see Fig.1a), that is, as long as the
repelling point R is not a SBR (and has no homoclinic orbits).

The first bifurcation leading to homoclinic orbits occurs at the parameters (c,M) for which we
have the preimage R−1 on the boundary of the chaotic area A, exactly on an arc of LC3. Notice
that this also means that an arc of the critical curve LC4 crosses the fixed point R, but then (as
it is fixed), also all the other critical arcs (the images) belonging to the critical curves LCk for any
k > 4 cross the fixed point R. This is a characteristic property of a SBR homoclinic bifurcation.
Also, the chaotic area from annular becomes simply connected, and critical homoclinic orbits can
be found (see Fig. 1b at M = 1.432). After this collision (or homoclinic bifurcation which leads R
to be a SBR) the preimage R−1 is inside the chaotic area A, and by taking further preimages of
R−1 we can find infinitely many different nondegenerate homoclinic orbits of the type in (1.2).

We notice that increasing M the saddle fixed point Q becomes an unstable node, giving rise
to a saddle 2-cycle {C1, C2} on the frontier, bifurcated from Q. We show now that while the
SBR bifurcation of the fixed point R is associated with an attracting chaotic area, the analogous
bifurcation, i.e. the SBR bifurcation, of the second fixed point Q occurs inside a chaotic repeller.

The so-called final bifurcation of the chaotic attractor (see [30], also called external crisis of the
chaotic attractor in [36]) occurs when the chaotic area A has a contact with its basin boundary
(see Fig. 1c), after which the invariant set becomes a chaotic repeller.

This contact bifurcation is exactly the first tangent homoclinic bifurcation of the saddle 2-cycle
{C1, C2} belonging to the frontier of the basin. Notice how this also is associated with critical
homoclinic orbits, due to the critical arcs which bound the chaotic area. After the contact we do
not observe any attracting set, however we know that an invariant set exists and it is a chaotic
repeller, to which the unstable node Q belongs. When the contact bifurcation occurs, as well as
for some higher values of the parameter M , the repelling node Q is not a SBR, because it has
no homoclinic orbit: points starting close to Q are repelled and will never come back. In order to
detect when homoclinic orbits to Q also appear we can follow the images of the critical curves,
taking the critical segment of LC−1 which was previously used for the boundary of the absorbing
area. So we can see that approximately at M = 1.9725 an arc of the critical curve LC3 crosses the
fixed point Q, and thus also the critical arcs belonging to the images cross through Q. See Fig. 1d,
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Fig. 1.

where besides the critical arc of LC3 which is the first crossing though Q, some arcs of the critical
curves LCk for k = 4, 5, 6 are also shown through Q. Clearly this denotes the appearance of the first
homoclinic orbits to Q. In fact, from Q ∈ LC3 we can deduce that a point q ∈ LC−1 exists such
that f4(q) = Q and suitable preimages of q can be taken reaching some point x0 in a neighborhood
of Q (where Q is a stable node for f−1

2 ). For higher values of M (M > 1.9725) the repelling node
Q is a SBR, and nondegenerate homoclinic orbits of Q (as well as of R, of the 2-cycle {C1, C2} and
infinitely many other cycles) exist.

3.2. A Discontinuous 2-Dimensional Example of SBR
In this subsection we consider a piecewise linear two-dimensional map in canonic form proposed,

in the continuous version, in several papers (see [37] and references therein), which is however here
considered in a discontinuous form. The map f is given by two linear maps fL and fR which are
defined in two half planes L and R:

f : (x, y) �→

⎧⎨
⎩ fL(x, y), (x, y) ∈ L;

fR(x, y), (x, y) ∈ R;
(3.4)

where

fL :

⎛
⎝x

y

⎞
⎠ �→

⎛
⎝τLx + y + μL

−δLx

⎞
⎠ , L = {(x, y) : x � 0} ; (3.5)

fR :

⎛
⎝x

y

⎞
⎠ �→

⎛
⎝τRx + y + μR

−δRx

⎞
⎠ , R = {(x, y) : x > 0} . (3.6)
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Here τL, τR are the traces and δL, δR are the determinants of the Jacobian matrix of the map f
in the left and right half-planes, i.e., in L and R, respectively, R

2 = L ∪ R. The map is continuous
when μL = μR, discontinuous otherwise. Here we consider an example with μL �= μR. Following
[31], the border line x = 0 is denoted LC−1, and its backward and forward images by fL and fR

are called critical lines.

Fig. 2.

Let L∗ and R∗ denote the fixed points of fL and fR determined, respectively, by(
μi

1 − τi + δi
,

−δiμi

1 − τi + δi

)
, i = L,R.

L∗ is the fixed point of the map f if μL/(1 − τL + δL) � 0, otherwise it is a so-called virtual
fixed point which we denote by L

∗
. Similarly, R∗ is the fixed point of f if μR/(1 − τR + δR) � 0,

otherwise it is a virtual fixed point denoted by R
∗
. The stability of the fixed point R∗ is defined by

the eigenvalues λ1,2(R) of the Jacobian matrix of the map fR, which are

λ1,2(R) =
(

τR ±
√

τ2
R − 4δR

)
/2. (3.7)

Let us consider here the following parameters constellation: τL = −1.4, δL = −0.9, μL = 0.9,
τR = −1.53, δR = 1.3, μR = 1, at which we have that L∗ is virtual while R∗ is an unstable focus,
around which an annular chaotic area exists (see Fig. 2a). The rank-1 preimage of R∗ distinct from
itself, that is, R∗

−1 = f−1
L (R∗), given by:

f−1
L (R∗) =

⎛
⎝ δRμR

δL(1−τR+δR)

δLμR−τLδRμR

δL(1−τR+δR) − μL

⎞
⎠

is external to the chaotic area (see Fig. 2a, where gray points are associated with divergent
trajectories). Increasing the parameter δR the hole around R∗ decreases and the transition to SBR
occurs when the preimage R∗

−1 has a contact with the boundary of the chaotic area (see Fig.2b),
approximately at δR = 1.6. After which the chaotic area becomes simply connected, and there exist
infinitely many nondegenerate homoclinic orbits of R∗.

4. ON DEGENERATE HOMOCLINIC ORBITS OF EXPANDING POINTS

The results shown in Section 2 apply to homoclinic orbits which are nondegenerate. What occurs
when a homoclinic orbit is degenerate has not been investigated up to now, and it is plain that there
are several different occurrence to have a degenerate homoclinic orbit, here we take into account
also degenerate homoclinic but keeping the local invertibility of the map.
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There are two main points in the proof of Theorem 2: The first is that the map is locally invertible
in a neighborhood of each point of the homoclinic orbit, the second is that the constructed local
inverse F−1

0 satisfies the stability property S. Now we shall keep only the first point.

Fig. 3.

We can relax the assumption of nondegenericity assuming that in some point xk of the homoclinic
orbit the map is locally invertible, but we can have points in which det(Jf (xk)) = 0 or points in
which the Jacobian is not defined. As one-dimensional examples consider the cases shown in Fig. 3.
In Fig. 3a a homoclinic orbit is clearly shown, and it is degenerate as in the point x2 we have
f ′(x2) = 0. The good property is that the local inverse is well defined, but the bad property is that
the local inverse has not a bounded derivative in a neighborhood of x2 or is not defined in x2 (as in
the example shown in Fig. 3b). However the local inverse exists and this is enough to prove, with
the lemmas given in Section 2, that we can construct a Cantor like set on which f is invariant and
chaotic, although the bad property prevents us to prove that the sets in the Cantor like construction
are single points. So we prove now Theorem 3.

The proof clearly follows the same steps of the proof of Theorem 2, however the two functions
there constructed have different properties. The local inverse F−1

1 = f−N
1 is still a contraction

such that F−1
1 (Um(p)) = V1, and we can have a local inverse F−1

0 satisfying F−1
0 (Um(p)) = V0 by

construction, but F−1
0 may not satisfy the stability property S. Thus we can apply only point (i)

of Lemma 2, whose proof was recalled above, leading to the Cantor like set given in (2.1), which
ends the proof.

Clearly the theorem works also for the case shown in Fig. 3b, where the homoclinic orbit is
degenerate because in the point x2 the function is not differentiable. However we remark that in
this case the result of Theorem 2 applies, that is, the Cantor like set constructed in the proof is really
a Cantor set of points. In fact, in this case we have that the local inverses have a bounded Jacobian
in all the points of the considered neighborhood, except for the points of the homoclinic orbit, but
this is enough to state that the a local inverse F−1

0 satisfying F−1
0 (Um(p)) = V0 by construction,

also satisfies the stability property S in Um(p)\p, and we can conclude that Λ is a Cantor set of
points.
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