
A credit cycle model with market sentiments

Ingrid Kubina∗, Thomas O. Zörnera,
Laura Gardinib, and Pasquale Commendatorec

aVienna University of Economics and Business Administration, Austria,
bUniversity of Urbino, Italy,

cUniversity of Naples Federico II, Italy

Abstract

This paper extends Matsuyama’s endogenous credit cycle model to account for recent findings on the
role of credit market sentiments. The benchmark model uses a parsimonious financial friction specification
in the form of a pledgeability parameter, which indicates how much of the revenue borrowers can pledge
for credit. We endogenize this parameter by introducing behavioral aspects of credit markets. Depending
on the current level of net worth the credit market sentiment may change. If a critical net worth threshold
is passed, a switch from an optimistic to a pessimistic regime occurs. Lenders’perception of risk and the
pledgeability parameter will vary accordingly. The resulting dynamic law of motion is two-dimensional
and discontinuous. We show that switching between beliefs fundamentally affects the stability of the
system confirming that changes in credit market sentiments drive volatility. However, we also find
instances in which behavioral regime switches have a stabilizing effect.

Keywords: Credit Cycles, Financial Frictions, Market Sentiments, Behavioural In-
ertia

JEL Codes: E32, E44, G41.

∗Corresponding author: ingrid.kubin@wu.ac.at.

1

Gardini
Callout
I.Kubin, T. O. Zörner, L. Gardini and P. Commendatore, A credit cycle model with market sentiments, Structural Change and Economic Dynamics 50 (2019) 159 -174. https://doi.org/10.1016/j.strueco.2019.06.006



1 Introduction

In a recent contribution, López-Salido et al. (2017) classify the theories of credit cycles, grouping them
into two broad categories. The first category introduces credit market imperfections into dynamic stochastic
general equilibrium models that are based on rational agents and perfect markets. For example, in their
pioneering work, Kiyotaki and Moore (1997) assume that borrowers’access to credit is limited by the value
of some collateralized asset, which varies endogenously. In Bernanke and Gertler (1989), imperfect financial
markets are a consequence of asymmetric information between borrowers and lenders such that external
finance is more costly than internal finance. This cost difference depends upon the balance sheet position
of the borrower (more specifically, upon the borrower’s net worth), that, through its own dynamics, might
interact with the business cycle. A vast branch of literature involving balance sheet measures emerged from
the above mentioned seminal contributions (Favara 2012, Schularick and Taylor 2012, Baron and Xiong 2017,
inter alia). In these models, the explanation of business cycles rests to a large extent on exogenous stochastic
shocks. Financial frictions and other mechanisms amplify, propagate or absorb these shocks, but they are
not an endogenous source of fluctuations.
The second classification collects approaches that assign a crucial role to investor sentiments. This in-

cludes behavioral theories that relate to Minsky’s financial fragility hypothesis (Minsky, 1982), animal spirits1

or psychological research, often introduce some elements of irrationality or assume bounded rationality. For
example, Bordalo et al. (2018) and more broadly Gennaioli and Shleifer (2018) provide ample empirical
evidence on the effects of variations in risk perceptions and default probabilities and thus corroborate the
behavioral view on credit cycles that does not rely on balance sheet measures. The main feature of their
model concerns the importance of agents’(subjective) belief formation. Following Kahneman and Tversky
(1972), they implemented a formalization of the so-called "representativeness" heuristic where beliefs are
formed in a way such that agents extrapolate a general trend from the most recent performances of a vari-
able. Subsequently, this leads to an overestimation of the probability of continuing the past performance
leading to excessive optimism or pessimism. Employed in a credit cycle model, Bordalo et al. (2018) are
able to show that "diagnostic expectations" based on above mentioned heuristic lead to excessive volatility
of credit spreads due to an overreaction to new information compared to belief formation under rational
expectations. Hence, they provide a model based on a psychological based belief formation which is able to
reproduce stylized facts of credit market behavior in an endogenous setting.
Another endogenous explanation of credit cycles was provided by Matsuyama (2013) and Matsuyama et

al. (2016). While the authors acknowledge that their process resembles Minsky’s mechanism, they clearly
view their explanation as an alternative since "[t]he model [...] does not rely on any form of irrationality"
(Matsuyama et al., 2016, p. 528). By using a straightforward and parsimonious specification, in the spirit
of Tirole’s (2005) pledgeability approach for modeling financial frictions, cycles emerge endogenously. In
a nutshell, the model framework and the structure of their analysis are the following.2 In an overlapping
generations framework, agents accumulate net worth (consisting of wage income) in one period and at the
beginning of the next period they have three investment options, in which they can allocate their net worth:
Good projects, Bad projects and Lending. Good projects, involving investments in the production of goods,
generate a pecuniary externality by driving up next generation agents’net worth through a rise in labor
demand; whereas Bad projects, involving a simple transformation of the final good without generating labor
demand, do not imply any intergenerational spillover effect, need finance and are subject to credit rationing.
These ingredients are suffi cient to generate cycles through the following mechanism. Starting with a low

net worth, only investments in Good projects are feasible due to a binding borrowing constraint. The stock
of productive capital therefore increases which in turn rises the wage rate and thus also the net worth (which
eases the borrowing constraint), while the marginal product of capital declines (which makes Good projects
less attractive). With an easing borrowing constraint, agents can now start investing in Bad projects. As
resources are moved away from Good projects, the physical capital stock declines. The marginal product of

1According to Keynes, animal spirits are defined as "a spontaneous urge to action rather than inaction, and not as the
outcome of a weighted average of quantitative benefits multiplied by quantitative probabilities" (Keynes 1936, p.161). For an
overview about modeling "animal spirits" in macroeconomic contexts, see Franke and Westerhof (2017).

2Matsuyama (2013) puts forward the original specification. Matsuyama et al. (2016) present a streamlined version of this
model to focus on the key mechanism behind economic fluctuations and derive analytical details on the properties of these
fluctuations under the assumption of a Cobb-Douglas production technology.
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labor and the wage rate declines - credit constraints start binding again - and the marginal product of capital
increases - Good projects become more attractive again and the cycle starts over. Thus, along this process,
where "the Good [projects] breed the Bad [projects] and the Bad [projects] destroy the Good [projects]", the
interplay between these different investment options and the specific features of the financial market give
rise to endogenous cycles.
Central to this framework are credit market imperfections: lenders will only accept a fraction, labelled

µ, of the expected return of the Bad project as collateral for the credit, required to finance Bad projects.
According to Matsuyama (2008) the parameter is "meant to capture all sorts of agency problems that restrict
the agents’ability to finance the profitable investment externally". Thus, the fraction µ is called pledgeability
parameter and controls for the strength of agency problems in a very parsimonious way.3

López-Salido et al. (2017) thus highlight a dichotomy: the financial friction approach is anchored in the
economics’rationality paradigm, but is often insuffi cient to explain credit cycles endogenously. The behav-
ioral approach departs from this narrow rationality perspective, but it can explain cycles as an endogenous
phenomenon. Matsuyama (2013) and Matsuyama et al. (2016) challenge this dichotomy: their approach
clearly belongs to the first strand of literature, but it is nevertheless able to explain cycles endogenously.
However, this does not discount the relevance of the behavioral approach. López-Salido et al. (2017) and,
more generally, the literature on behavioral finance (see López-Salido et al., 2017, and the main literature
on behavioral finance, for example, Shleifer, 2000; Thaler, 2003; Shiller, 2003; Nofsinger, 2005; Baker and
Wurgler, 2007; Shu, 2010; Gao and Suess, 2015; Hotz-Behofsits et al., 2018; and Bordalo et al., 2018) pro-
vide ample empirical evidence on the relevance of credit market sentiments for the explanation of cycles.
According to this approach, the business mood may affect credit market sentiments, which in turn impact
on financial and economic decisions. Changes in the business mood and switches in credit market sentiments
may exacerbate economic fluctuations and magnify volatility.4

In this paper, we combine both strands of literature and introduce selected behavioral elements to the
Matsuyama (2013) and Matsuyama et al. (2016) model. Within this original framework, agents have a
persistent and unique view about the severity of agency problems, summarized by the exogenous pledgeability
parameter µ. In our extension, we assume that the pledgeability ratio is endogenous and thus may vary
through time determined by a simple heuristic rule: agents assess, if the actual net worth wt —proxying
the current state of the economy —lies above or below some threshold value, w and reflect this assessment
in an optimistic or pessimistic market sentiment, respectively.5 In our interpretation, this threshold value
reflects the psychological state of lenders —which could facilitate (or hamper) changes in the credit market
sentiment —representing a subset of the overall business mood. When the lenders mood is good, the value
of the threshold is smaller, thus a switch to an optimistic regime is more likely; when their mood is bad, the
switch to an optimistic regime is more diffi cult to achieve.
When optimism is the dominant view, lenders —perceiving agency problems as less severe - are willing

to accept a higher share of the future returns as collateral. In contrast, when the pessimistic view prevails,
lenders are less confident that the borrowers will repay the credit —perceiving agency problems as quite severe
—and thus are willing to accept a relatively small share of future returns as collateral. Thus, depending on
the prevailing credit market sentiment, agents may fix a (relatively) low or a (relatively) high pledgeability
ratio. We assume that the market is characterized by two "fundamental" opinions about the strength of the
agency problems, resulting in two extreme values of the pledgeability ratio, µP and µO. Furthermore, we
assume that agents do not jump abruptly from one fundamental perception of the agency problems to the
other, rather, agents gradually adjust towards the optimistic or pessimistic fundamental perception. The
pace depends on how strong the past behavior is taken into account. The adjustment process, thus, involves
the memory of past perceptions and reflects behavioral inertia.6 We introduce a further parameter, ζ, that
indicates how fast agents move in the direction of the fundamental value of the respective regime.
To summarize: we focus on the role of the perceived agency problems (reflected in the parameters µP
3For a deeper discussion of agency problems through limited pledgeability of collaterals, see Tirole (2005).
4For more empirical oriented studies in a macroeconomic context, we refer to Franke (2008) and Lux (2009) who utilize

industrial survey indices, the Ifo Business Climate index and the ZEW index for Economic Sentiment respectively, to capture
sentiment changes between pessimistic and optimistic beliefs.

5This simple rule resembles the "representativeness" heuristic proposed by Kahneman and Tversky (1972) and it is consistent
with the "diagnostic expectations" approach by Gennaioli and Shleifer (2018) and Bordalo et al. (2018).

6This approach follows the "conservatism" heuristic of Edwards (1968) where agents assign a low weight to new information
when making decisions.
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and µO), which are subject to change over different credit market sentiments (the likelihood of the change
reflected in the parameter w). Moreover, we analyze the role of the pace of behavioral adjustment (reflected
in the parameter ζ) by modeling a regressive process towards the fundamental perception of agency problems.
The baseline framework and our extension do not provide a microfoundation of the above discussed

agency problems. However, we explicitly model the behavioral aspects behind the pledgeability ratio and its
dynamics. In the original specification, the pledgeability parameter is exogenously fixed and time invariant
and therefore unable to capture behavioral phenomena. Our model collapses to the one presented in Mat-
suyama et al. (2016) when market sentiments do not affect creditors beliefs (w = 0 or w = 1) and agents do
not update their pledgeability ratio (ζ = 1) or when agents have a unique perception of the agency problems:
i.e. if µO = µP . To facilitate comparison, we assume that for the baseline model w = 1 and µ = µP holds
—corresponding to a situation where the pessimistic scenario always prevails and the agency problems are
seen as quite severe. Moreover, to highlight the role of the behavioral parameters, we choose a parameter
set for which the baseline model exhibits chaotic fluctuations of agents’net worth. We explore two possible
departures from this benchmark. The first scenario considers a large difference between the optimistic and
pessimistic pledgeability ratio. The second scenario clarifies the implications of a smaller difference.
If a switch to an optimistic regime corresponds to a substantial change in the fundamental value of the

pledgeability ratio, we find the following:

• By reducing w (allowing for changes in credit market sentiments) a transition occurs from a persistent
pessimistic regime with chaotic fluctuations to a switching between pessimistic and optimistic regime
with cycles of finite length. This suggests that the consideration of credit market sentiments may
stabilize the economy by reducing the more erratic and turbulent fluctuations. However, in situations
where periodic cycles occur, fluctuations are amplified. In this sense, credit market sentiments have a
destabilizing effect, imposing more significant changes on the economy. This type of destabilizing effect,
occurring for intermediate values of w, is quite robust with respect to different parameter settings. If
we reduce w further, the fixed point of the agents’net worth becomes stable. Therefore, allowing for
an easy switch in favour of the optimistic regime has a stabilizing effect.

• By reducing ζ (adding sluggishness to the adjustment of the pledgeability ratio) and starting from a
value of w corresponding to regular cycles, we observe a continuous swing between expansions and
reductions in the fluctuations’ period. Therefore, behavioral inertia adds an additional source of
complexity, which has substantial effects regarding the system’s predictability. This situation occurs
for high and intermediate values of ζ. For small values of ζ, chaotic behavior can be observed (analogous
to an increase in w). In this sense, behavioral inertia has a destabilizing effect, even though it also
implies cycles with smaller length.

If a switch to an optimistic regime leads to a small change in the fundamental value of the pledgeability
ratio instead, we find the following effects:

• Reducing w has similar effects compared to the previous case. It stabilizes the economy’s net worth
evolution by reducing the more erratic behavior, but it causes wider fluctuations. Given that the
pledgeability ratio does not change substantially from the baseline case in both regimes, a small w
does not eliminate the fluctuations.

• Reducing ζ has predominantly a small influence on the overall dynamics. However, for a non-negligible
set of behavioral parameter values (corresponding to intermediate values of w and ζ) chaotic fluctua-
tions emerge. Thus, also in this scenario, behavioral inertia has a significant destabilizing effect.

Our findings are in line with Matsuyama (2013) and Matsuyama et al. (2016), where a low pledgeabil-
ity ratio reflects a high degree of credit market imperfections. Thus, allowing a switch to an optimistic
regime, which involves a higher pledgeability ratio, actually reduces credit market imperfections and exerts
a stabilizing effect by reducing erratic and turbulent behavior. At the same time, credit market sentiments
and behavioral inertia have destabilizing properties that amplify fluctuations and increase volatility. We are
therefore able to confirm the findings of the behavioral finance literature.
Moreover, we observe regions where different attractors coexist, which introduce an element of hysteresis

to our model and thus has important economic implications. The phenomenon of multistability was also
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observed in other economic model (see, for example, Commendatore et al., 2017; Sushko et al., 2018; Campisi
et al., 2018; Lamantia and Radi, 2018; Radi and Gardini, 2015). In our context it is of particular interest,
since we find coexisting attractors with quite different dynamic properties: an attrator with a rather low
frequency and a limited amplitude coexists with a four-piece chaotic attractor with a much higher amplitude.
A small transitory shock (for instance, to the pledgeability ratio or to the initial conditions) may thus have a
substantial effect on the long-run characteristics of the time series; and a shock of equal size in the opposite
direction will not necessarily restore the initial situation. Thus, single exogenous shocks may actually produce
time series with volatility clustering, a phenomenon also prevalent in financial markets’time series.
The remainder of the paper is structured as follows. After introducing the model framework in Section 2,

we present the map that summarizes the economic model and underlines the dynamic evolution of the system
in Section 3. Section 4 is dedicated to the study of the effects of the behavioral parameters on the structure of
the model and on the dynamics, by providing both analytical results and economic interpretations. Section
5 concludes the paper.

2 The benchmark model with dynamic friction perceptions

In this section, we provide a concise exposition of the original model as presented in Matsuyama et al. (2016)
and extend it by introducing behavioral features as discussed above.
The model adopts an overlapping generations framework (Diamond, 1965) with two period lives and a

unit measure of agents. Time is discrete and runs from zero to infinity, t = 0, 1, 2, .... In each period one final
good, the numeraire, is produced which can be used for investments or for consumption. The final goods
sector uses the following Cobb-Douglas technology

Yt = AKα
t L

1−α
t ,

where Y denotes the final commodity (which is also used as numeraire); A is some exogenous total factor
productivity; Kt is physical capital (consisting of the final commodity); Lt is labor at time t, and α < 1
is the production elasticity. Expressing the variables in "units of labor" and setting (1 − α)A = 1, which
ensures, after suitable boundary conditions are introduced, that the output is normalized between zero and
unity, the output is defined as

Yt
Lt

= yt = f(kt) =
1

1− αk
α
t .

Factor markets are competitive and factor rewards, respectively for capital and labor, correspond to

ρt = f ′(kt) =
α

1− αk
α−1
t and wt = f(kt)− ktf ′(kt) = kαt , (1)

where ρt is decreasing and wt is increasing in kt.
Agents are born at the beginning of each period and stay active for two periods. Young agents are

endowed with one unit of labor and work in their first period. At the end of their first period, i.e. at the
point of time t + 1, they earn the factor reward of labor, save everything and thus accumulate wealth. At
the same point of time, the young generation becomes the old generation and they have to decide how to
use their wealth (accumulated in the form of the numeraire and denoted by wt) in order to maximize their
consumption at the end of their second period.
Agents have three possibilities to allocate wealth: (1) they can invest in a Good project, (2) they can

start a Bad investment project or (3) they can lend funds to other agents of the same generation. Investing in
Good projects involves using the final good as capital input for the next period production, kt+1. Assuming
perfect foresight, the expected return of this investment project type is equal to the marginal product of
capital, ρet+1 = ρt+1. Thus, Good projects fuel production processes that generate labor income for the
next generation. In contrast, Bad projects do not involve production processes. They can be seen as simple
trading or storing activities, which fail to create any positive externalities for the next generations. Bad
projects require an indivisible amount of m units of the final good and convert it into mB units of the final
good in t + 1, where B > 0 indicates the respective profitability. At this point, Matsuyama et al. (2016)
introduce financial markets: By assumption, Bad projects require credit financing, thus m > wt holds.
As a consequence, lending for Bad projects is a third option for wealth allocation. Given the possibility
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of investing in Good projects, in equilibrium, the interest rate on credit has to be equal to the expected
marginal product of capital rt+1 = ρet+1.

Credit markets are modeled as imperfect markets. Following the pledgeability approach proposed by
Tirole (2005), it is assumed that agents can borrow only against collateral and that only a fraction of the
expected project revenue, 0 < µt+1 < 1 (in our framework, this fraction can vary through time; for this
reason, differently from Matsuyama (2013) and Matsuyama et al. (2016), we call it henceforth pledgeability
ratio), can be pledged for the repayment. Thus, the borrowing constraint (BC) requires that:

µt+1mB ≥ rt+1(m− wt) or
µt+1mB

m− wt
≥ rt+1. (2)

The lender will only lend up to µt+1mB
rt+1

which implicitly sets a minimum net worth requirement for agents
interested in starting a Bad project. Thus, the net worth of the agents, wt, is crucial for their position
in the credit market. Matsuyama (2013) and Matsuyama et al. (2016) capture this financial friction with
an exogenous pledgeability parameter summarizing all agency problems without any explicit reference to
microeconomic or behavioral arguments.
Following a more behavioral approach, we endogenize the pledgeability ratio. In particular, we hypoth-

esize that with a higher level of net worth the credit market sentiments may turn more optimistic. The
risk perception is lower, which translates —in the context of our model —into a higher pledgeability ratio.
With a lower level of net worth, the opposite holds. We thus assume that the pledgeability ratio positively
depends on the level of net worth. Given the significant empirical evidence that credit market processes are
highly non linear and discontinuous,7 we do not specify a continuous relationship, but we allow for a dynamic
regime switching between an optimistic and a pessimistic regime. Since we consider credit market sentiments
to be determined by agents’net worth, we specify a related threshold, w, expressing the overall business
mood of lenders that may impact on their attitude towards risk. For wt > w agents take an optimistic view
concerning the ability of borrowers to return their debt; vice versa for wt < w they take a pessimistic view.
A high w indicates that agents are reluctant to switch to the optimistic regime (i.e. they only switch at a
high overall net worth), which may correspond to a more risk-averse attitude. A low w suggests that agents
may switch easily to the optimistic regime (i.e. they switch at a low overall net worth), corresponding to a
less risk-averse attitude.
Incorporating these ideas, we specify the following law of motion for the pledgeability ratio:

µt+1 =

{
(1− ζ)µt + ζµP if wt ≤ w̄
(1− ζ)µt + ζµO if wt ≥ w̄

(3)

The pledgeability ratio itself, µt+1, follows a mean-reverting process: it is given as a weighted average,
ζ ∈ [0, 1] between its current value µt and a long-run value µi with i ∈ O,P . We assume µO > µP , since
in an optimistic regime the risk perception is lower and agents are ready to accept a higher fraction of the
return on a Bad project as collateral. With a high ζ, a regime switch leads to an abrupt change in the
pledgeability ratio; whereas a low ζ indicates a more sluggish adjustment after a regime switch.8

Moreover, the agents’ choice of investment does not only depend on the access to credit (borrowing
constraint), but also on their considerations about profitability. Agents only intend to start Bad projects, if
the respective return is greater or equal to the return of simple lending or investing in Good projects. Thus,
a profitability constraint (PC) requires

B ≥ rt+1 = ρet+1(= f ′(kt+1)) = ρt+1, (4)

and sets a tighter limit than the borrowing constraint (equation (2)), if

µt+1mB

m− wt
> B or wt > m(1− µt+1). (5)

7Brunnermeier and Sannikov (2014), for example, report high nonlinearity in amplification effects on credit markets. In
empirical macroeconomic models, such non-linearities are quite often modeled as dynamic processes that involve two or more
regimes, which are separated by thresholds (Mendoza and Terrones 2008, De Luigi and Huber 2018, Huber and Zörner 2019).

8One may consider the weighting parameter also to depend on the prevailing credit market sentiment. For the sake of
parsimony, we omit this consideration in the paper and leave it for further research.
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Analogously to Matsuyama et al. (2016), we define the maximal pledgeable rate of return, R(wt, µt+1),
that an agent with the net worth wt can pledge to the lender without violating a constraint:

R(wt, µt+1) ≡ B min
{ µt+1

1− wt/m
, 1
}

=


µt+1B

1− wt
m

if wt ≤ m(1− µt+1) i.e. if BC is tighter

B if wt ≥ m(1− µt+1) i.e. if PC is tighter.
(6)

Note, that compared to the benchmark model, the perception of the financial friction is now endogenously
determined by equation (3). After crossing the critical net worth threshold wt ≥ m(1 − µt+1) agents can
pledge their full expected return B to the lender and thus no longer have borrowing constraints. This
completes the model description.
We would like to point out that our modeling of the agents’behavior is based upon homogeneous agents

—the whole continuum of agents switches simultaneously between the regimes and entertain the same risk
perception and thus the same pledgeability ratio. In contrast, many models analyzing behavior on financial
markets involve heterogeneous agents that have group specific behavioral patterns and may exhibit the
phenomenon of herding.9 With homogeneous agents the full unit measure of agents is either optimistic or
pessimistic —the whole collective switches beliefs such that herding is not an issue. The study of López-Salido
et al. (2017) on behavioral aspects supports our choice. In addition, as mentioned in Matsuyama (2008),
homogeneous agents can be seen as a limiting case for heterogeneous agents switching slowly between the
regimes.10

3 The dynamic equations

We are now ready to derive the law of motion for the net worth. In equilibrium, the following relation must
hold with equality:

ρet+1 = ρt+1 = rt+1 = f ′(kt+1) ≥ R(wt, µt).

If ρt+1 = rt+1 < R(wt, µt), agents would always prefer Bad projects (because of the potential higher
returns), but nobody would provide the required credit as the rate of return of lending is too low, which
is a contradiction and therefore not possible. In the case of ρt+1 > R(wt, µt) agents would never run Bad
projects due to a violation of the profitability or the borrowing constraint.
In their fully-fledged analysis, Matsuyama et al. (2016) differentiate a distortionary and a non-distortionary

case.11 We focus on the distortionary case where the borrowing constraint impinges upon the dynamics and
financial frictions play an essential role.
Before specifying the dynamic system, we would like to provide some intuition of the dynamic processes

involved. Starting from the observation of (wt, µt), agents update their pledgeability ratio according to
equation (3) resulting in a new value for µt+1. They also decide upon their investment strategy, depending
on (wt, µt+1). For a low net worth, wt, agents do not start Bad projects because of the higher profitability of
Good projects. With a higher wt the profitability of Good projects becomes lower; eventually the profitability
of both investment types will be equal and the agents start strictly preferring Bad projects. However, since
the wage rate and thus the net worth are still low, the maximum pledgeable rate of return for credit is lower
than the return on Good investments. Agents cannot obtain the required credit. The borrowing constraint
is still binding and agents continue to invest only in the Good projects, which results in the following law of
motion:

wt+1 = wαt . (7)

9For example, Day and Huang (1990) introduce fundamentalists, chartists and herding into financial market modelling.
Agents switch between groups depending upon the success of the respective behavioral rule according to an evolutionary selection
dynamic. In addition, many macroeconomic models use different rules for expectation formation with a possibility of switching
(Hommes, 2006; Chiarella et al., 2015; De Grauwe and Macciarelli, 2015). Typically, these models do not involve discontinuities.
However, in some models, the behavioral rules involve a change in behavior once a threshold is crossed (Tramontana et al.,
2013; Schmitt et al., 2017).
10However, one can easily model different group sizes of optimistic and pessimistic agents but needs to take into account that

the dynamics involved will be much more complicated.
11 In the non-distortionary case agents are never borrowing constrained. Therefore, the borrowing constraint is never binding

in the equilibrium and the financial friction does not affect the dynamics of the credit allocation. As we are interested in the
role of different perceptions of the agency problems altering financial frictions, we do not discuss this case.
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Higher values of wt increase the maximum pledgeable rate of return on credit and ease the borrowing
constraint. At a threshold wc the borrowing constraint is satisfied with equality (while the entire net worth is
still invested in Good projects, i.e. kt+1 = wt) and the maximum pledgeable rate of return on credit is equal
to the profitability of Good projects. This threshold is implicitly defined by f ′(kt+1)|kt+1=wt = R(wt, µt+1),
or by

wc =

(
1

µt+1B

α

1− α

(
1− wc

m

)) 1
1−α

, (8)

where µt+1 is given in eq.(3).
Beyond this threshold, for wt > wc credit starts to flow into Bad projects. Investment in the Good

projects is determined by f ′(kt+1) = R(wt, µt+1). Solving for kt+1 and using wt = kαt , the law of motion is
now given by

wt+1 =

(
1

µt+1B

α

1− α

(
1− wt

m

)) α
1−α

, (9)

where µt+1 is given in eq.(3).
After crossing another threshold, which depends on µt+1 given in eq.(3),

wµ = m (1− µt+1) , (10)

the borrowing constraint is not binding anymore and investment in Good projects, kt+1, is determined by
the profitability constraint, i.e. by f ′(kt+1) = B. All additional credit flows into Bad projects and the
dynamics follow

wt+1 =

(
α

B(1− α)

) α
1−α

. (11)

Thus, the dynamics of the distortionary case, extended with variable credit market sentiments affecting
financial frictions, can be summarized by a two-dimensional piecewise smooth map that is discontinuous for
w and ζ < 1:

(wt+1, µt+1) = T (wt, µt) =

{
TL(wt, µt) if wt < w
TR(wt, µt) if wt > w

(12)

TL(wt, µt) :

 wLt+1 =


wαt if wt ≤ wLc

ΨL
M (wt, µt) if wLc ≤ wt ≤ wLµ

β̂ if wt ≥ wLµ
µLt+1 = (1− ζ)µt + ζµP

(13)

TR(wt, µt) :

 wRt+1 =


wαt if wt ≤ wRc

ΨR
M (wt, µt) if wRc ≤ wt ≤ wRµ

β̂ if wt ≥ wRµ
µRt+1 = (1− ζ)µt + ζµO

(14)

ΨL
M (wt, µt) =

(
m− wt

mβ((1− ζ)µt + ζµP )

) α
1−α

, ΨR
M (wt, µt) =

(
m− wt

mβ((1− ζ)µt + ζµO)

) α
1−α

(15)

where β = B 1−α
α and β̂ =

(
1
β

) α
1−α

, wLc and w
R
c are defined in equation (8), and µt+1 is given as in TL(wt, µt)

an TR(wt, µt), resp. Finally,

wLµ = m(1− ((1− ζ)µt + ζµP )) and wRµ = m(1− ((1− ζ)µt + ζµO)), (16)

see also equation (10), where the respective values for µt+1 are used.
On the discontinuity line wt = w we have TL(w, µt) = (wLt+1, (1−ζ)µt+ζµP ) and TR(w, µt) = (wRt+1, (1−

ζ)µt + ζµO) so that the pledgeability ratio, µt+1, has a jump corresponding to µRt+1 − µLt+1 = ζ(µO − µP ).
The system thus has seven parameters, α,m,B, µP , µO, w and ζ, where the following restrictions apply:

0 < α, µP , µO, w, ζ < 1, µO > µP , m > 1 and B > 0. Note that for w = 1 and ζ = 1 the model reduces
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Figure 1: Phase plane (w, µ) for w = 0.955, µO = 0.4 and ζ = 0.4. These parameters are used in some
examples in the next section and in Appendix.

to the benchmark model. Due to the normalization, (1 − α)A = 1 the system is restricted on (0, 1]. Some
parameters are fixed throughout the whole paper as follows:

α = 0.33, m = 1.05, B = 2, µP = 0.05, (17)

and thus are not reported in the figure captions. Fig.1 represents the phase space at parameter values which
will be used in some numerical simulations and commented in the next section. The discontinuity line w = w
separates the plane in two partitions, denoted by L (w < w), where the function TL applies (evidenced in
blue), and R (w > w), where the function TR applies (evidenced in red). The critical line LC−1 is the locus
of points wLc implicitly defined by

(
wLc
)α

= ΨL
M (wLc , µ) for any µ ∈ (0, 1] and separates the two regions in

which the function TL has different smooth definitions. One more region is evidenced in dark blue in the L
partition, bounded by the line wLµ (see eq.(16)), where the function TL is defined by the constant value β̂.
On the right side of w, in the example considered in Fig.1, the function TR is defined by the constant value
β̂, since the region belongs to the right side of the line wRµ (see eq.(16)).
The fixed points of map T are given by

(w∗L, µP ) if w∗L < w , (w∗R, µO) if w∗R > w (18)

Assuming w ∈ (0, 1) the monotone increasing branch wα has no fixed point; if β̂ ≥ m(1−µP ) then w∗L = β̂;

if β̂ < m(1 − µP ), w∗L is the solution of w∗L =
(
m−w∗L
mβµP

) α
1−α

which may lead to an actual fixed point

(if w∗L < w) or a virtual one,12 otherwise. Similarly in the R side: if β̂ ≥ m(1 − µO) then w∗R = β̂; if

β̂ < m(1 − µO), w∗R is the solution of w∗R =
(
m−w∗R
mβµO

) α
1−α

which may lead to an actual fixed point or a

virtual one.
Notice that for a fixed value for w the functions TL and TR are of triangular structure, that is, one

component (µt+1) is independent of the other (wt+1). Thus, the Jacobian matrix is also triangular, with
eigenvalues on the diagonal, and eigenvectors parallel to the coordinate axes. For TL we have

JTL(wt, µt) =

[
∂
∂wt

ΨL
M

∂
∂µt

ΨL
M

0 (1− ζ)

]
(19)

with
∂

∂wt
ΨL
M (wt, µt) =

−α
1− α

(
m− wt

mβ((1− ζ)µt + ζµP )

) α
1−α 1

m− wt
. (20)

12A fixed point is called real if it belongs to the related region of definition of the function (TL or TR), otherwise it is called
virtual (for example if the fixed point of the function TL belongs to the right partition, then it is virtual, and thus it is not a
fixed point of map T ).
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Evaluating at the fixed point (w∗L, µP ) and using
(
m−w∗L
mβµP

) α
1−α

= w∗L it follows that the eigenvalues are

given by:

λ1 = − α

1− α
w∗L

m− w∗L , λ2 = 1− ζ ∈ (0, 1). (21)

The (local) eigenvector related to λ2 is on the line µ = µP and the (local) eigenvector related to λ1 is
on the line w = w∗L. Since λ2 ∈ (0, 1), the fixed point may have a flip bifurcation when the eigenvalue λ1
crosses the value −1. Thus, w∗L is stable for

λ1 = − α

1− α
w∗L

m− w∗L > −1 iff w∗L < m(1− α). (22)

Similarly for TR, when evaluated at the fixed point (w∗R, µO), the eigenvalues are given by:

λ1 = − α

1− α
w∗R

m− w∗R , λ2 = 1− ζ ∈ (0, 1). (23)

The (local) eigenvector related to λ2 is on the line µ = µO and the (local) eigenvector related to λ1 is on the
line w = w∗R, and w∗R is stable for

λ1 = − α

1− α
w∗R

m− w∗R > −1 iff w∗R < m(1− α). (24)

Note that the value of these fixed points (and related stability conditions) are independent of the parame-
ters ζ and w. However, as seen above, w can determine their existence (i.e. if one, two or none of them exists).
That is, a fixed point may not only lose stability via a flip bifurcation but it may "appear/disappear" by
border collision,13 colliding with w. This border collision bifurcation (BCB for short) occurs when w∗L = w
or w∗R = w. It follows that for w∗L < w < w∗R both fixed points exist; or only one of them exists: (w∗L, µP )
if w∗L < w, (w∗R, µO) if w∗R > w; or no fixed point exists for w∗R < w < w∗L (both are virtual).

4 Behavioral parameters and their dynamic implications

Our model comprises the following behavioral dimensions:

• Agents are considered to switch between an optimistic and a pessimistic credit market sentiment,
depending upon w Q w, the higher w, the less likely the optimistic regime w > w will occur.

• Credit market sentiments impact upon the fundamental perception of agency problems, reflected in
µO and µP .

• Finally, agents are assumed to behave sluggishly when revising their perception of the agency problems,
reflected in the adjustment parameter ζ.

We are in particular interested how in these behavioral dimensions interact with the dynamic mechanism
presented in Matsuyama (2016) and how they impact upon macroeconomic stability. Therefore, in all our
simulations we consider fixed the parameters as given in (17) at which the Matsuyama’s model exhibits
chaotic fluctuations, and investigate whether the behavioral dimensions have a stabilizing influence on the
dynamics.
In order to structure our analysis, we choose the following strategy: As case 1, we analyze a situation in

which the fundamental perceptions of the agency problems differ substantially between an optimistic and a
pessimistic credit market sentiment. In case 2, the difference between µO and µP is much smaller. In both
cases, we investigate the effects of varying w and ζ.

13 In piecewise smooth maps, a "border collision" occurs whenever an invariant set (typically a periodic point of a cycle, but
not only) collides with the set at which the definition of the map changes.
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Figure 2: In (a) two-dimensional bifurcation diagram in the parameter plane (w, ζ) for µO = 0.4. The colors
are related to the period of the cycles. The white region denotes either cycles of period larger than 45 or
chaotic dynamics. In (b) only some bifurcation curves are shown, and wBif = 0.95059. In (c) an enlargement
of (a). The arrows denote parameter paths for the one-dimensional bifurcation diagrams shown in Fig.3 and
Fig.4, the red line is drawn at ζ = 0.4, the blue vertical line at w = 0.935.

4.1 Case 1: Strong effect upon the pledgeability ratio

In the case considered in this subsection, the change to an optimistic credit market sentiment has a strong
impact upon the fundamental value of the pledgeability ratio. Thus, we assume a comparatively high value
of µO, µO = 0.4. In Fig.2 we represent a two dimensional bifurcation diagram, in which w and ζ are varied
between 0 and 1. The bifurcation curves shown in Fig.2(b) are explained below.

The benchmark of Matsuyama (2016) is represented by the top right corner (w, ζ) = (1, 1) and, as already
noticed, it exhibits chaotic dynamics for the chosen parameters (given in (17)). At first glance, introducing
behavioral components appears to stabilize the dynamics, leading to cycles with low periodicity and even to
fixed points. This is particularly evident when lowering w; i.e. allowing for an easier switch to an optimistic
credit market sentiment. Surprisingly, this is less evident when lowering ζ; i.e. when introducing a more
persistent behavior. In the following, we provide a detailed analysis of the dynamics.
The fixed points of the map are given by

(
w∗R, µO

)
= (0.5475, 0.4) and

(
w∗L, µP

)
= (0.8825, 0.05). For

w < w∗R (the value w∗R is marked by an azure arrow in Fig.2(a,b)), the fixed point in the R partition exists
and is attracting (yellow area). For w > w∗L (the value w∗L is marked by a green arrow in Fig.2a) the
fixed point in the L partition exists, but it is a saddle; apparently, its disappearance at w = w∗L = 0.8825
(decreasing w) does not affect the existing attracting cycles (that is, no change is observed in the attracting
set of the map).
The pink area in Fig.2(a) indicates the existence of an attracting 2-cycle. Due to the triangular structure

of the map, an (almost) complete analytic description of the corresponding bifurcations is possible (see
Appendix 7.1 for details). The points of the 2-cycle whose existence region is evidenced in Fig.2a, denoted
by (wR, µR) and (wL, µL), belong to the right and left partition, respectively, satisfy TL(wL, µL) = (wR, µR)
and TR(wR, µR) = (wL, µL), so that µR and µL can easily be obtained explicitly:

µR = µO −
µO − µP

2− ζ and µL = µP +
µO − µP

2− ζ . (25)

In the case shown in Fig.2a, for high values of ζ, the first component of the two periodic points is given
by wL = β̂ and wR = (β̂)α. The related BCBs occur when a periodic point merges with w, that is, for w = β̂

and w = (β̂)α, respectively, where β̂ < (β̂)α, see the vertical black lines in Fig.2(a,b). For lower values of ζ, a
different kind of 2-cycle exists, involving the periodic points wR = ΨL

M (wL, µL) and wL = ΨR
M (wR, µR). We

do not have an explicit solution for the BCBs of these two periodic points, that occur at the collision with
w, thus the bifurcation curves in Fig.2(a,b) denoted as wBCB1 (when wL = w) and wBCB2 (when wR = w)
are detected only numerically.
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Figure 3: One-dimensional bifurcation diagrams as a function of w for µO = 0.08 and ζ = 0.4. Panel (a)
shows the dynamics of w, and panel (b) the dynamics of µ. In both panels, wBif = 0.95059.

From Fig.2(a) we have evidence that the existence regions of a stable fixed point and a stable 2-cycle
are overlapping, so we have regions of coexistence. This phenomenon of coexisting attractors has important
economic implications. A sudden change in the initial conditions, e.g. in the agent’s net worth wt, but also to
the pledgeability ratio µt, may change the system’s long-run outcome from a stable fixed point to a 2-cycle.
The coexistence of attractors may prevent the restoration of the original dynamic pattern. Thus, there is
no correction back to the initial situation and exogenous and transitory shocks have the potential to change
the cyclical properties in the long run and thus to have persistent effects. This is of particular interest in our
model framework, which is designed to incorporate systematic components in behavioral financial decisions
(involving w, µO and µP , and ζ). Nevertheless, given the volatility of financial markets, other influences
on µt cannot be excluded; in our model, these can be treated as exogenous shocks. Given the coexistence
of attractors, the shocks —even if only transitory —have the potential to persistently change the long-run
cyclical behavior (by moving the dynamics from one attractor to the other). As already remarked above, the
coexistence of attractors introduces also an element of hysteresis; a shock of equal size, but in the opposite
direction, will not necessarily restore the original situation.
We now study in more detail the role of variations of the business mood, operationalized by changes of

the behavioral threshold w. For w = 1, the market is always in the pessimistic state, i.e. µt = µP . Lowering
w opens the possibility that the credit market sentiment changes to an optimistic state, the lower w, the
easier this switch occurs. Thus, lowering w introduces regime switching as an additional dynamic process.
Fig.3 represents a one dimensional bifurcation diagram on w, drawn for ζ = 0.4; it corresponds to the red
arrow in Fig.2(a,c).
Fig.3(a) shows the dynamics of the net worth wt. It reveals a stabilizing effect of a reduction in w,

because the transition is from chaotic motion of wt, to cycles with a high periodicity, to cycles with a low
periodicity and finally to a fixed point. Fig.3(b) shows the corresponding dynamics in the pledgeability ratio
µt. It exhibits further remarkable properties: the chaotic dynamics for wt, which appears for high values
of w, actually involves a constant µ = µP = 0.05; thus, the corresponding attractor is one-dimensional and
corresponds to a chaotic interval.
The reason is the following. As mentioned above, the fixed point

(
w∗L, µP

)
= (0.8825, 0.05) exists for

w > w∗L, but it is a saddle. Thus, for w = 1 the two-dimensional map has a vertical eigenvector, related to
the eigenvalue smaller than 1, which attracts trajectories to the line µ = µP . The asymptotic dynamics - for
w = 1 and 0 < ζ ≤ 1 - occur at a constant value of µ, µ = µP , and the system reduces to a one-dimensional
map, whose shape is similar to that of the Matsuyama (2016) map. For the chosen parameters (given in
(17)), the benchmark map is in a chaotic regime, for which the attracting set is a chaotic interval I = [C1, C].
It is bounded by two critical points, C and C1, which are the iterates of the critical point C−1 (which is the
point of local mximum, and it corresponds to the intersection of the critical line LC−1 shown in Fig.1 with
the line µ = µP ). Decreasing w, the one-dimensional attracting set continues to exist. Its structure changes,
becoming a two-dimensional attracting set, at the BCB bifurcation occurring when C = w. As shown in
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Appendix 7.2, this bifurcation occurs at wBif = (w̃)
α, where w̃ is implicitly given by(

m− w̃
mβµP

) 1
1−α

= w̃. (26)

This bifurcation involves the transition from an attracting set only on the L partition of the map and
on the line µ = µP (a chaotic interval) to an attracting set of the plane, involving the right partition of the
map, where the function TR applies and it is defined by the constant value β̂. This leads to an attracting

set which is in general a superstable cycle14 which includes the periodic point
(
β̂, µ̂

)
, where

µ̂ = (1− ζ)µP + ζµO, (27)

and involving switches between an optimistic and a pessimistic credit market sentiment (and thus involving
cyclical values for the pledgeability ratio µt). As we can see from the implicit equation in (26), the bifurcation
value wBif is independent of ζ and of µO (see the corresponding vertical line in Fig.2).

This analysis helps us to clarify the interplay between the behavioral regime switching and Matsuyama’s
mechanism generating endogenous cycles: At a high value of w, agents are very reluctant to switch to another
behavioral regime, actually on the attractor no such switch occurs. The dynamics (that is chaotic, for the
chosen parameters) is driven entirely by Matsuyama’s mechanism based on financial frictions. With a lower w,
regime switches occur and in optimistic phases agents increase their pledgeability ratio µt. Note that a higher
pledgeability ratio µt actually reflects lower financial market imperfections —and the softening of financial
frictions potentially stabilizes the dynamics (from chaotic to cyclical with lower and lower periodicity).
However, Fig.3(a) reveals also an additional pattern in the dynamics where behavioral regime switching
plays a relevant role: After the transition from chaotic to cyclical attractors, the cycles in net worth wt
involve wider fluctuations, which hit the lower boundary w = β̂. This is because, after the transition, the
behavioral regime switch takes effect allowing for stronger reactions in net worth wt (in comparison to those
on the chaotic attractor) widening Matsuyama’s endogenous credit cycles. In this sense introducing credit
market sentiments has also a destabilizing effect on the economy and the first impression of a stabilizing
effect of a reduction in w needs qualification. Note in addition that a reduction in w tends to reduce the
average net worth over the cycle (see Fig.3(a)).
Finally, we discuss the role of sluggish adjustment of the pledgeability ratio, i.e. in the role of ζ, where a

low value of ζ represents a more persistent behavior (less sharp swings in the pledgeability ratio). The one-
dimensional bifurcation diagrams in Fig.4(a,b) show the effect of varying ζ. It is computed for w = 0.935 <
wBif (wBif = 0.95059 for the chosen parameters) and corresponds to the vertical blue arrow in Fig.2(c). For
high values of ζ the superstable cycles with a long periodicity involving w = β̂ are well visible. At a lower
value of ζ, these cycles bifurcate into a chaotic attractor. In Appendix 7.3, we show that this bifurcation
occurs at

ζBif =
m (1− µP )− w̃α
m (µO − µP )

. (28)

At this threshold, evidenced in Fig.4(a), decreasing ζ a transition occurs from a two-dimensional attract-

ing set, which is a superstable cycle including the point
(
β̂, µ̂

)
, to a two-dimensional attracting set, which

is chaotic (and such that wt > β̂ for all t). Note that a lower value of µO increases this threshold value
ζBif . Note in addition that this transition —while involving an increase in complexity (cyclical vs chaotic
attractor) — reduces the range of fluctuations of wt (since, as commented above, the value β̂ is no longer
reached).
This pattern is in line with economic intuition: A reduction in ζ reflects a more sluggish behavior, which

implies that the effects of the regime switches are less pronounced. A lower value of µO (closer to µP ) has
a similar effect. Indeed, as noted in the previous section, at the discontinuity line the jump in the (current)
pledgeability ratio µt corresponds to ζ(µO − µP ), which also weakens the behavioral dynamic process. In
both cases (lower ζ and lower value of µO) Matsuyama’s endogenous cycles mechanism driven by financial
frictions (which are chaotic for the chosen parameters) dominates the dynamics.

14 In one-dimensional maps a cycle is called superstable, when its eigenvalue is equal to zero. In our two-dimensional map
we call a cycle superstable, when one of its periodic points belongs to a partition in which the map is defined by wRt+1 = β̂,
constant. The cycle has one eigenvalue equal to zero and the other smaller than 1, so that it is always attracting.
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Figure 4: Panel (a) is a one-dimensional bifurcation diagram showing the dynamics of w as a function of ζ
for w = 0.935 and µO = 0.4; in panel (a) and (b) ζBif = 0.1276. Panel (b) ia an enlargement of (a). Panel
(c) shows the average of w over the cycles as a function of ζ. A few peaks in (a) and (c) are evidenced by
red arrows.

We are now able to complete the description of Fig. 2(c) and to summarize the bifurcation structure:
For the chosen parameters wBif = 0.95059 and ζBif = 0.1276 hold. For wBif < w < 1 we observe a chaotic
interval on the line µ = µP for all values of ζ. Reducing w below wBif , destroys the chaotic interval: For

w < wBif and 1 > ζ > ζBif = 0.1276 a superstable cycle appears involving the point
(
β̂, µ̂

)
; for w < wBif

and ζBif = 0.1276 > ζ > 0 a chaotic area appears (see Appendix 7.3).
In addition, Fig.4(a) and in particular the enlargement in Fig.4(b), reveals a particular structure of the

superstable cycles described in Appendix 7.4. A reduction of ζ from the value 1 does not affect the range
of the fluctuations in net worth wt; however, it markedly changes its periodicity. As described in Appendix
7.4, all the cycles have the periodic point (β̂, µ̂) and at first the periods of the cycles are reduced by 4 units.
Then the periods start to increase by 4 at each subsequent bifurcation and we observe a kind of "spider
structure"; at the center of the structure a Milnor attractor occurs,15 marked by an arrow in Fig.4(a,b).
Immeadiately after, the periods of the cycles start to decrease by 4 at each subsequent bifurcation. This
kind of mechanism is repeated several times, as shown in Fig.4(a,b). This, actually, is a remarkable effect of
lowering ζ , i.e. of increasing the behavioral inertia: For a wide range of ζ, it leads to a swing between phases
with period reduction and with period increase, without significant changes in the range of variability of wt.
Note however, that periodic points added (and lost) involve comparatively high values of wt (only one point
of each cycle is located on the lower boundary); therefore, cycles with a higher periodicity exhibit a higher
average net worth. Interestingly, reducing ζ thus leads to swings in the average net worth. Fig. 4(c) shows
the average net worth and reveals that it peaks whenever the periodicity is high (i.e. close to the centers of
each "spider structure"). Therefore, it seems that adding behavioral inertia adds complexity in a different
dimension.
15A Milnor attractor is here a repelling cycle which attracts a set of points of positive Lebesgue measure.
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Figure 5: Phase plane (w, µ) for w = 0.8695, µO = 0.08 and ζ = 0.6. These parameters are used in some
examples below and in Appendix.

4.2 Case 2: Weak effect upon the pledgeability ratio

As case 2, we study a situation in which the change to an optimistic credit market sentiment has a weak
impact on the fundamental value for the pledgeability ratio. We continue to use the parameters given in
(17), for which the Matsuyama (2016) model exhibits chaotic fluctuations. However, we now assume a
comparatively low value of µO, µO = 0.08. The phase space is as depicted in Fig. 5. Note that this case
is special, since w < wLc (µ) , where µ = (1 − ζ)µO + ζµP , is possible. Below we analyze this possibility
in more detail; we stress here that it leads to a continuous one-dimensional map for ζ = 1 , which has an
attracting 2-cycle on the line µ = µO = 0.08 (the fixed point in the right partition is a saddle, since it is
w∗R > m(1− α) = 0.7035, see in eq.(24)). For w < wLc (µ) and ζ < 1, wt+1 = wαt (which is independent of
the pledgeability ratio) and the discontinuity only appears in the values of µt.
Fig.6 represents a two dimensional bifurcation diagram, in which ζ is varied between 0 and 1 and w

between 0.5 and 1. We concentrate on the second half of the parameter space, w > 0.5, because in the first
half, for w ≤ 0.5, there always exists an attracting 2-cycle.

The bifurcation structure shows similarities to case 1: for any fixed value of ζ, decreasing w from the
value 1, first a chaotic interval [C1, C] on the line µ = µP = 0.05 exists. Then, after the critical point
C crosses the w threshold, the branch TR of the map begins to play a role: if the border related to the
flat branch on the right side is crossed

(
wRµ
)
, then a superstable cycle occurs; otherwise, we have a chaotic

attractor.
Similar to case 1, for lower values of w cycles with lower periodicity appear; again, an explicit bifurcation

analysis is possible. Fig.6 evidences the existence of an attracting 3-cycle (red area in Fig.6(a)). It has
the symbolic sequence LLR and thus its periodic points are defined by (w1, µ1), (w2, µ2) = TL(w1, µ1),
(w3, µ3) = TL(w2, µ2), (w1, µ1) = TR(w3, µ3). In the case under consideration, TR(.) applies with ΨR

M while
TL(.) applies with wα. The values µi of the cycle can be determined explicitly (after some algebraic steps):

µ1 = µP +
µO − µP
ζ2 − 3ζ + 3

(29)

µ2 = (1− ζ)µ1 + ζµP

µ3 = (1− ζ)2µ1 + ζ(2− ζ)µP .

A BCB occurs when the condition T 2L◦TR(w, µ3) = (w, µ3) is satisfied, leading to the condition (w)
1−α
α3 =
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Figure 6: Panel (a) shows a two-dimensional bifurcation diagram in the parameter plane (w, ζ) for µO = 0.08.
Different colors denote different periods of the cycles. The pink area denotes an attracting 2-cycle. The white
region denotes either cycles of period larger than 45 or chaotic dynamics. Panel (b) shows the bifurcation
curves mentioned in the text. In panle (b), wB6 = 0.695.

m−w
mβ[µP+

µO−µP
ζ2−3ζ+3 ]

, which can be solved for ζ obtaining

ζB1 =
3

2
− 1

2

√√√√ (µP − 4µO)mβ (w)
1−α
α3 + 3 (m− w)

µPmβ (w)
1−α
α3 − (m− w)

, (30)

which is the first bifurcation curve from the right side, shown in Fig.6. Fig.6(a) reveals that the 3-cycle loses
stability for lower values of ζ (at the transition from the red region of the stable 3-cycle to the white region
below it, marked by an arrow). This transition corresponds to a border collision of the attracting 3-cycle
with a point of the critical line LC−1 of the map, after which the 3-cycle continues to exist but as a saddle
(Appendix 7.5 illustrates this argument).
As we can see from Fig.6(a), continuing to decrease w a 2-cycle also appears. It has symbolic sequence

LR so that its points satisfy TL(wL, µL) = (wR, µR) and TR(wR, µR) = (wL, µL), where µR and µL are
explicitly given in eq.(25). A bifurcation occurs when the condition TL ◦ TR(w, µR) = (w, µR) holds, where

TR(.) applies with ΨR
M while TL(.) applies with wα, i.e. when (w)

1−α
α2 = m−w

mβ[µP+
µO−µP
2−ζ ]

is satisfied. Solving

for ζ it leads to

ζB2 = 2− µO − µP
m−w

mβ(w)
1−α
α2
− µP

, (31)

which is the second bifurcation curve from the right side in Fig.6.
Decreasing w (at a fixed value for ζ), the attracting 3-cycle with symbolic sequence LLR disappears

when the condition TL ◦ TR ◦ TL(w, µ2) = (w, µ2) occurs (where TR(.) applies with ΨR
M while TL(.) applies

with wα), i.e. when (w)
1−α
α2 = m−(w)α

mβ[µP+
µO−µP
ζ2−3ζ+3 ]

is satisfied. Solving for ζ it leads to

ζB3 =
3

2
− 1

2

√√√√4(
µO − µP

m−(w)α

mβ(w)
1−α
α2
− µP

− µP )− 3, (32)

which is the third bifurcation curve from the right side in Fig.6. Thus in the grey strip evidenced in Fig.6(b)
we have coexistence of a 2-cycle and a 3-cycle.
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Further decreasing w, the structure of the map changes when the border point w crosses the critical point
wc, associated with the critial curve LC−1, this occurs when the curve LC−1, the line w = w and the line
µ = µ̂ (where µ̂ is explicitly given in eq.(27)) are intersecting in (w, µ̂), leading to the condition w = wc and
wα = ΨR

M (w, µ̂). This leads to

ζB4 = 2− µO − µP
m−w

mβ(w)1−α
− µP

, (33)

which is the fourth curve from the right side in Fig.6. It is marked with an "S" because it is related to a
change in the structure of the map: In the one-dimensional case (i.e. for ζ = 1), the map is continuous on the
left side of this line (i.e. it is no longer discontinuous, if we further decrease w); in the two-dimensional case
(i.e. for ζ < 1) the application of TL(.) and TR(.) to the line wt = w becomes continuous in the wt-values
(since both functions apply with leftmost branch which is wαt for both), and the discontinuity is only in the
values of µt (the jump corresponds to µRt+1 − µLt+1 = ζ(µO − µP )).
Decreasing w, the 2-cycle with the symbolic sequence LR still exists, with µL and µR explicitly given

in eq.(25). It undergoes a border collision when the condition TR ◦ TL(w, µL) = (w, µL) is satisfied, where
TR(.) applies with ΨR

M while TL(.) applies with wα. This leads to the condition w = ΨR
M (wα, µR), and we

get

ζB5 = 2− µO − µP
m−wα

mβ(w)
1−α
α

− µP
, (34)

which is the fifth bifurcation curve from the right side in Fig.6 colored in red.
For even lower values of w the 2-cycle changes structure. A cycle with the symbolic sequence RR, where

TR(.) applies with ΨR
M and with wα, related to the flip bifurcation of the fixed point in the R partition,

exists, with periodic points belonging to the line µ = µO. Denoting with (w1, µO) and (w2, µO) the two
points, the first coordinates of the 2-cycle are implicitly defined by

w1 =

(
m− w1
mβµO

) α2

1−α

, w2 =

(
m− w0
mβµO

) α2

1−α

. (35)

For w2 = w this 2-cycle undergoes a BCB. The bifurcation value is independent of ζ, however, no explicit
solution exists. This is the sixth curve from the right side in Fig.6, denoted wB6. With our parameters, this
BCB happens at wB6 = 0.695.
As for the previous case, changing the parameters w and ζ gives interesting insights into the role of

behavioral factors in the stability of the credit market. In this second case µO and µP are very similar, thus,
the transition from a pessimistic to an optimistic credit market sentiment (i.e. crossing w) has only a weak
effect upon the fundamental pledgeability ratio. As in Case 1, the bifurcation diagram in Fig.6 shows that
an easier switch to a more optimistic credit market sentiment (a lower w) stabilizes the net worth evolution
with respect to the cycle length. The bifurcation lines are relatively independent of ζ (almost vertical lines
in Fig.6), indicating a low influence of ζ. From an economic point of view, this is not so surprising, since in
the second case the change in overall credit market sentiment only weakly affects the fundamental value of
the pledgeability ratio. Thus, behavioral adjustments —the strength of which are measured by ζ —mostly
exert a weak influence.
Again, this assertion needs qualification: for ζ < 1 a parameter region with more complex behavior

appears (between two period-2 regions, marked in green in Fig.6(b)) that does not exist for ζ = 1. Thus,
also in this case, ζ has a surprising, destabilizing effect that deserves attention. Fig.7(a) shows a one-
dimensional bifurcation diagram on ζ in that region (obtained for w = 0.6953) and reveals the attracting
sets and their chaotic structure. It is interesting to note that attracting 2-cycles are never involved.
Note, however, that just outside the green strip in Fig.6(b) the 4-piece chaotic attractor appears to

coexist with a 2-cycle, see Fig.7(b) obtained for w = 0.72, this path is inside the green strip, close to the
value wB6. The two attractors have markedly different amplitudes; thus, a transitory shock (say to the
pledgeability ratio) has the potential for substantial long-run effects, it may change the dynamics from a low
periodicity with a limited amplitude to a 4-piece chaotic dynamics with a much higher amplitude. Small
transitory shocks to the pledgeability ratio may generate regime switches in the time series of net worth:
phases of stable dynamics, with small variation in net worth (cycles with low periodicity) alternate with
more turbulent phases (larger variation in net worth and chaotic dynamics). As already mentioned, the
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Figure 7: One-dimensional Bifurcation diagrams of w as a function of ζ for µO = 0.08. In (a) w = 0.6953.
In panel (b) w = 0.72. The two-cycle coexisting with the 4-piece chaotic attractor is evidenced in red.

coexistence of attractors introduces also an element of hysteresis; a shock of equal size, but in the opposite
direction will not necessarily restore the original situation — an aspect that complicates additionally the
resulting time series pattern. These findings are similar to the ones of Schmitt et al. (2017) in a model of
market entry and regime switches in the profit taxation function.

5 Conclusion

This paper studies how credit market sentiments affect the long-run stability of a credit cycle model based
on Matsuyama et al. (2016). According to our interpretation, the business mood may facilitate or hamper
changes in the prevailing credit market sentiment. This is assessed by the current state of the overall
economy, proxied by the agents’ overall net worth and thus resembling the representativeness heuristic
proposed by Kahneman and Tversky (1972). If agents’ net worth rises (falls) above (below) a specific
threshold (determined by the overall business mood) lenders’ perception of the financial friction switch
from a pessimistic to an optimistic regime (or vice versa). As a consequence, the pledgeability ratio, which
indicates how much of the expected revenue from Bad projects lenders are willing to accept from borrowers
as collateral for credit and reflects their attitude towards risk, differs between the regimes.
Before reviewing our results, it might be worthwhile to reflect upon the dynamic processes at work,

paying particular attention to the explanation of turning points in the cycles.
Matsuyama’s mechanism is the following: Starting with a low net worth, agents are not able to finance

Bad projects, as they are not fulfilling the collateral requirement. Investing in Good projects rises the net
worth. Eventually, it crosses the relevant threshold and financing Bad projects becomes feasible. Investment
into Bad projects is determined by the strength of the pledgeability ratio. Diverting credit from the Good
projects reduces the net worth; the cycle reaches a turning point and starts over again. For very high values
of the overall net worth the borrowing constraint is no longer binding and financial frictions play no longer
a role: It is worth noting that in this case, the (constant) profitability of the Bad projects sets a lower
boundary for the investments in Good projects and the returns of Good and Bad projects are equalized.
Our approach introduces a variable pledgeability ratio into this mechanism. An increasing overall net

worth eventually crosses the threshold, at which a sudden shift in the agents’assessment about the mar-
ket mood into the optimistic regime occurs. Agents’perception of the agency problems change and they
require less collateral for financing Bad projects - the pledgeability ratio suddenly drops. This leads to a
corresponding stronger reaction of the investments in Bad projects. Thus, our behavioral mechanism is
expected to amplify cyclical patterns. Good news (the crossing of threshold in upward direction) leads to a
more investment in Bad projects; bad news (the crossing of threshold in downward direction) leads to less
investments in Bad projects. Note however that it does not add to the explanation of turning points. Note
in addition that the amplified cycles make it more likely to hit the lower boundary for investments in Good.
Introducing an endogenous pledgeability ratio links the credit market friction approach to the behavioral

explanation of credit market volatility. Our results are in line with findings of recent behavioral explanations
of credit cycles. Particularly close is the model by Bordalo et al. (2018). Its core is the operationalization
of the representativeness heuristic through diagnostic expectations. This expectation mechanism is their
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driving force behind the instability of financial markets. Diagnostic expectations involve an overreaction
to news that results in overshooting expectations. Confronted with the actual realization of the states,
agents are disappointed; the mechanism reverses and an amplification of the downward movement of the
state can be observed. In general, this expectation mechanism creates a boom and bust cycle around
credit market fundamentals; this explanation (that includes the turning points) centers on the expectation
mechanism. Our model inherits Matsuyama’s explanation for the cycles; nevertheless, we obtain similar
results as Bordalo et al. (2018) concerning the volatility amplification once the agents assess the market
mood resulting in optimistic or pessimistic perception of the agency problems. Note however, compared to
Bordalo et al. (2018), the endogenous switching in our setting exerts also a stabilizing element due to the
fact that eventually the returns of Good and Bad projects are equalized.
The analytic structure of our model is two-dimensional and only piecewise continuous with a discontinuity

stemming from the switch between an optimistic and a pessimistic regime. We implement the regime specific
pledgeability ratio according to a mean-reverting dynamic process. This mechanism allows us to take both
behavioral inertia and different fundamental values of the pledgeability ratio into account. We presented
analytic and simulation results. To facilitate the comparison with Matsuyama et al. (2016) we choose a
parameter set that corresponds to chaotic fluctuations in the benchmark model. Our analysis is focused
on two cases departing from this framework: in the first case, the difference between the optimistic and
pessimistic fundamental perception of the agency problems (parameters µP and µO) is large; in the second
case, this difference is small. For the two cases, we consider the effects of changes in the business mood by
variation of the threshold w between the optimistic and the pessimistic regime and the degree of behavioral
inertia, ζ. While the former acts on the likelihood at which a regime switch may occur, the latter concerns
the sluggishness at which the pledgeability ratio is adjusted between the regimes.
In case 1, where the difference between µP and µO is large, a switch to an optimistic regime corresponds

to a substantial change in the fundamental value of the pledgeability ratio. The parameter w decreases
below unity, and thus allows for a switch towards an optimistic regime indicating an improvement in the
business mood. Overall, we find that this leads to a transition from chaotic fluctuations to cycles with finite
periodicity.
Therefore, at first glance, the introduction of credit market sentiments stabilizes the economy by damp-

ening the more erratic and turbulent behavior. However, we also observe that the amplitude of those periodic
cycles is higher, adding an additional element of volatility to agents’net worth fluctuations. Moreover, the
frequency of switching between the perception of the credit market frictions also increases.
By reducing w further, the stabilizing effect of more optimism becomes obvious through a declining

periodicity of the cycles, eventually converging to a fixed point solution. Hence, the economy converges
to a stationary equilibrium. The economic rationale behind this surprising result is the following: In the
benchmark framework, a low pledgeability ratio reflects a high degree of credit market imperfections. Thus,
allowing a switch to an optimistic regime, which involves a higher pledgeability ratio, actually reduces credit
market imperfections and exerts a stabilizing effect.
Moreover, we have seen that adding behavioral inertia (ζ) to the adjustment of the pledgeability ratio has

an impact on cycles periodicity. Starting from a value of w corresponding to periodic fluctuations, phases of
increasing and decreasing periodicity are alternating. This phenomenon also affects the average net worth,
which increases during the phases of period adding. In fact, the effect of behavioral inertia adds another
element of complexity to the system.
In case 2, the difference between µP and µO is small such that a switch to an optimistic regime leads

only to a minor change in the fundamental value of the pledgeability ratio. In this scenario the impact of
a reduction of w is similar to the previous case as we observe a stabilizing effect through a reduction of
periodicity while at the same time extending the amplitude. Adding behavioral inertia has a predominantly
small impact on the dynamics as µP and µO are very close. However, for intermediate values of w and ζ,
chaotic fluctuations emerge which confirms a destabilizing effect of behavioral inertia.
Finally, we observe regions where attractors coexist and may differ quite substantially. For example,

in the second scenario, an attractor with a rather low frequency and a limited amplitude coexists with a
four-piece chaotic attractor with a much higher amplitude. Thus, (transitory) exogenous shocks to the net
worth or to the pledgeability ratio may produce quite different trajectories that may involve periods with
high volatility. Thus, our model is able to reproduce the stylized fact of volatility clustering which is quite
common in economic and financial time series.
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In summary, our results confirm the view of the literature on behavioral finance, according to which the
business mood and switches in agents’beliefs explain the widening of credit cycle fluctuations. Compared
to the baseline model, the possibility to switch to an optimistic perception reduces financial frictions which
stabilizes the system. The erratic and turbulent behavior of the net worth evolution is eliminated. However,
at the same time a destabilization occurs since the amplitude of cycles is increased and thus volatility is
more evident.
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7 APPENDIX

7.1 Appendix: Bifurcation analysis of the 2-cycle in Fig.2

Although a 2-cycle with periodic points in the same region of the map is possible (see the cycle with
symbolic sequence RR in Sec.4.2), those observed in Fig.2(a) all involve one periodic point in each of the two
regions L/R of the map. Let us denote the points of such a 2-cycle with (wL, µL) and (wR, µR) satisfying
TL(wL, µL) = (wR, µR) and TR(wR, µR) = (wL, µL). These periodic points are fixed points of the second
iterate of the map, which still is in triangular form. Therefore, the Jacobian matrix at a 2-cycle of this kind
is given by JTL(wL, µL)JTR(wR, µR) :[

∂
∂wΨL

M (wL, µL) ∂
∂wΨR

M (wR, µR) ∂
∂µΨL

M
∂
∂µΨR

M + ∂
∂µΨL

M (1− ζ)

0 (1− ζ)2

]
(36)

and when existing the 2-cycle is either locally attracting or a saddle.
From the triangular structure the second component of the 2-cycle can easily be obtained explicitly. From

TL(wL, µL) = (wR, µR) and TR(wR, µR) = (wL, µL) we have

µR = (1− ζ)µL + ζµP , µL = (1− ζ)µR + ζµO (37)
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from which
µR = µO −

µO − µP
2− ζ , µL = µP +

µO − µP
2− ζ (38)

and

wR =


wαL if wL ≤ wLc

ΨL
M (wL, µL) =

(
m−wL
mβµR

) α
1−α

if wLc ≤ wL ≤ m(1− µR)

β̂ if wL ≥ m(1− µR)

(39)

wL =


wαR if wR ≤ wRc

ΨR
M (wR, µR) =

(
m−wR
mβµL

) α
1−α

if wRc ≤ wR ≤ m(1− µL)

β̂ if wR ≥ m(1− µL)

(40)

which exists iff wR > w and wL < w. At wR = w and wL = w the 2-cycle appears/disappears via a BCB,
and we provide explicit conditions for these bifurcations to occur.
A first possible 2-cycle is with periodic points wL = β̂ and wR = (β̂)α and the related BCBs occur for

w = β̂ and w = (β̂)α, respectively (vertical black lines in Fig.2(a,b), where β̂ < (β̂)α).
Another 2-cycle involves the periodic points wR = ΨL

M (wL, µL) and wL = ΨR
M (wR, µR). We have not an

explicit solution for the BCB that occus at the collision with w, thus the curves are detected numerically in
the following way: Fixing a value of ζ determines the corresponding values for µL and µR (see eq.(38)).
A first BCB occurs for wL = wBCB1, thus,

wBCB1 =

(
m− wR
mβµL

) α
1−α

, where wR =

(
m− wBCB1
mβµR

) α
1−α

, (41)

holds (µR and µL are as given in eq.(38)). Solving for wBCB1 (for each value of ζ) results in the related
bifurcation line.
A second BCB occurs for wR = wBCB2, thus,

wBCB2 =

(
m− wL
mβµR

) α
1−α

, where wL =

(
m− wBCB2
mβµL

) α
1−α

, (42)

holds (here also µR and µL are as given in eq.(38)) and a second bifurcation line can be determined. The
two curves are evidenced in Fig.2(a,b) for low values of ζ.

From the figures we have evidence that the existence regions of a stable fixed point and a stable 2-cycle
are overlapping, so that we have regions of coexistence.

7.2 Appendix: Determination of the bifucation value wBif and discussion

We consider here the transition between the chaotic interval and cycles with high periodicity. Fig.8 depicts
the phase space and illustrates this transition: The critical line LC−1 is the locus of points wLc ; it intersects
the line µ = µP in the critical point C−1 (point of the local maximum for the one-dimensional function
ΨL
M (w, µ)). The other two curves, LC and LC1, and the other two points, C and C1, are the images. In

Fig.8(a) at w = 0.955 it is C < w and the attracting (chaotic) set is still on the line µ = µP . Note that for
high values of w (close to w = 1) the map has a saddle fixed point (w∗L, µP ) with w∗L = 0.8825 which is
transversely attracting and whose local unstable set is on the line µ = µP = 0.05 (on which the restriction
of the map is one-dimensional). Therefore, the chaotic interval [C1, C] - which is bounded by two critical
points - is attracting for map T as long as it is on the left side of the line w = w. The bifurcation occurs
when this chaotic segment has a contact with the line w = w, that is, when the critical point touches that
line, at C = w.

This bifurcation can be determined in implicit form: First, we determine the point C−1, at which the
critical line LC−1 intersects the µP line. Its coordinates are denoted by (w̃, µP ) and w̃ is the solution to
(using the definition, the intersection point of the two branches of the function defining TL):(

m− w̃
mβ ((1− ζ)µP + ζµP )

) α
1−α

= (w̃)
α
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Figure 8: Attractors for µO = 0.4 and ζ = 0.4. In (a) w = 0.955 > wBif . In (b) w = 0.95 < wBif . The line
w = w separates the two partitions where the functions TL and TR apply.

that is: (
m− w̃
mβµP

) 1
1−α

= w̃

Note that this value w̃ depends only on µP (i.e. it is independent of ζ and of µO). Then, the critical
point C is obtained as image of the point w̃, leading to C = (w̃α, µP ). At wBif = w̃α the bifurcation occurs,
and the bifurcation value is independent of ζ and of µO.

This bifurcation involves the transition from an attracting set only on the L side and on the line µ = µP
(a chaotic interval in Fig.8(a)) to an attracting set of the plane. This attracting set in general is a superstable

cycle involving the point
(
β̂, µ̂

)
, where µ̂ = (1− ζ)µP + ζµO.

Fig.8(b) is drawn for w = 0.95 (i.e. C > w) and depicts a situation soon after the bifurcation. Since the
right part of the map (with the function TR(wt, µt)) comes to play a role in the limit set of the trajectories,
the attracting set has now points also outside the line µ = µP . For the chosen parameters (implying a rather
low wRµ ) the map on the right side is w

R
t+1 = β̂ and this explains the appearance of a superstable cycle. In

fact, the Jacobian matrix on the right side related to the flat branch has eigenvalues 0 and (1 − ζ). Thus
when a cycle appears of some period n > 1 it is always superstable, since the map Tn is in triangular form
with one eigenvalue equal to 0 and another one given by (1− ζ)

n.
This is well observable in the two-dimensional bifurcation diagram in Fig.2(a,c), where the vertical line at

wBif indicates this bifurcation and shows the sharp transition from a chaotic set on the line µ = µP = 0.05
to an attracting cycle of the plane.

7.3 Appendix: Determination of the bifurcation value ζBif and discussion

The effect of varying ζ at a fixed value of w is shown in Fig.4(a,b), representing the path along the blue

line in Fig.2(c). We can see that there are superstable cycles with the periodic point
(
β̂, µ̂

)
(where µ̂ =

(1 − ζ)µP + ζµO as given in (27)). Interestingly, at very low values of ζ the periodicity of the superstable
cycles increases. Decreasing ζ the transition from superstable cycles to a two-dimensional attracting set
that may be chaotic occurs, at a bifurcation value denoted ζBif . Notice that decreasing the value of ζ the
straight line wRµ moves more on the right side of the attractor, which is still a cycle with increasing period (an
example is shown in Fig.9(a)). The bifurcation occurs when the invariant area has a tangency contact point
with the border line wRµ . Before this bifurcation, the invariant area intersects the line w

R
µ in two distinct

points (as in Fig.9(a)). At the bifurcation, the two points merge; and after the bifurcation the invariant area
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Figure 9: Attractors for w = 0.935 and µO = 0.4. In (a) ζ = 0.135. In (b) ζ = 0.13.

has no contact with the border line. This means that the branch of TR involved is no longer flat, and the
attracting set becomes a chaotic area completely on the left side of the border line, as shown in Fig.9(b).

That is, before the bifurcation the flat branch of the function TR is involved and
(
β̂, µ̂

)
is a periodic point,

after the bifurcation the flat branch of the function TR is no longer involved.
The transition described above occurs when the critical point C = (w̃α, µP ) merges with the point of

intersection of wRµ = m(1− ((1− ζ)µ+ ζµO)) with the line µ = µP , leading to

w̃α = m(1− µP − ζ (µO − µP )).

Since w̃ is independent of ζ (and of µO), this equation can be solved for ζ giving:

ζBif =
m (1− µP )− w̃α
m (µO − µP )

.

Note that a decreasing µO increases this threshold value.

7.4 Appendix: Bifurcation structure decreasing ζ

Varying ζ changes the definition of the two-dimensional map in the middle branches in eq.(12). Let us here
describe some bifurcations occurring at fixed value of w and decreasing ζ as shown in Fig.2(c) and Fig.4(a,b).
For ζ = 1 as well as for lower values of ζ, in the L side of the map, i.e. for w < w, there exists a repelling

fixed point (w∗L, µP ) and a repelling 2-cycle (flip bifurcated from that fixed point) on the line µ = µP .
At ζ = 1 there exists an attracting 15-cycle with symbol sequence LL(MLML)3R that involves the point
(w1, µ1) = (β̂, µ̂) where µ̂ = (1− ζ)µP + ζµO, as given in equation (27), and notice that this decreases when
decreasing ζ. Here we denote with L/M the left and right side with respect to the critical point wLc of map
T , and R corresponds to the right side of w where the function TR applies with the flat branch (i.e. where
the points are mapped into β̂). Because of space limitations, we do not present a comprehensive discussion
of the bifurcation scenario on w at ζ = 1.
Decreasing ζ the existing cycle involves the periodic point (w1, µ1) = (β̂, µ̂) and relevant is the pre-image

of this periodc point, which is the periodic point of the cycle on the right side, i.e. w15 > w, and it is
the only periodic point of the cycle on the right side of the border (as it is for ζ = 1), so the point is
(w15, µ15) = (w15, µP ) = (w15, 0.05). The first periodic point, which is always (w1, µ1) = (β̂, µ̂) (in the upper
left side in in Fig.10), and the last periodic point (in the lower right side in Fig.10) are evidenced by arrows,
showing the points of the cycle.
Fig.10(a), for ζ = 0.9, shows that the periodic points of symbolic sequence LL(MLML)3R and decreasing

ζ the point (w11, µ11) approaches the border, the BCB occurs when w11 = w after which the periodic point
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Figure 10: Attractors for w = 0.935 and µO = 0.4. In (a) ζ = 0.9. In (b) ζ = 0.85.

Figure 11: Attractors for w = 0.935 and µO = 0.4. In (a) ζ = 0.72. In (b) ζ = 0.71.

enters the R region and now it will take 4 iterations less than before to reach again the R side, leading to a
11-cycle with symbolic sequence LL(MLML)2R (shown in Fig.10(b) for ζ = 0.85). Decreasing ζ the same
process repeats and the point (w7, µ7) approaches the border, the BCB occurs when w7 = w after which the
periodic point enters the R region and now it will take 4 iterations less than before to reach again the R
side, leading to a 7-cycle with symbolic sequence LL(MLML)R (shown in Fig.11(a), for ζ = 0.72).
From now on, decreasing ζ, the two-dimensional structure of the map plays a central role, the periodic

points of the cycle are in fact on the right and left sides of the segments belonging to the local stable set of
the unstable 2-cycle on µ = µP . At ζ = 0.712 close to the BCB the last periodic point of the 7-cycle (w7, µ7)

with w7 > w, is very close to the boundary, at the bifurcation w7 = w the periodic point (w1, µ1) = (β̂, µ̂)
has the first two images closer to the unstable set of the 2-cycle (evidenced by red arrows in Fig.11(b)), which
means that the trajectory take 4 iterations more to reach the R side, leading to an 11-cycle, always with a
unique, last, point in the R side (an example in Fig.11(b) for ζ = 0.71). This process is repeated ad infinitum,
for all cycles of odd periods LL(MLML)nR, n > 1, for each cycle the last periodic point undergoes a BCB
with w decreasing ζ and its images are closer and closer to the stable set of the 2-cycle. At each bifurcation
the period is increased by 4 units. A finite value of ζ exists at which the image of (w1, µ1) = (β̂, µ̂) belongs
to the stable set of the 2-cycle, leading to a Milnor attractor, this is the center of the "spider structure",
indicated by an arrow in Fig.4. After the Milnor attractor, the image of (w1, µ1) = (β̂, µ̂) is on the other side
of the stable set of the 2-cycle, leading (decreasing ζ) to cycles whose periods are now decreasing by 4 units
at each BCB (in a reverse process similar to the forward one, the images of (w1, µ1) = (β̂, µ̂) are mapped
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Figure 12: Attractors for α = 0.33, m = 1.05, B = 2, w = 0.87, µP = 0.05, µO = 0.08, ζ = 0.6.

farther from the stable set of the 2-cycle).
A similar process is repeated several times, as shown in Fig.4(a,b), leading to several "spider structures",

whose bifurcation mechanism, described above, has been also described in other papers, see for example
Tramontana et al. (2010,2011) and Sushko et al. (2014).

7.5 Appendix: Bifurcation analysis of the 3-cycle in Fig.6(a)

In Fig.12, which illustrates this argument, the attracting 3-cycle (red points) coexists with the attracting
2-cycle (black points), and one periodic point is close to LC−1. Decreasing ζ this periodic point crosses LC−1
so that even if the cycle is still with two periodic points on the left side and one point on the right side, now
one branch of the left side is applied with wα and the second one with ΨL

M which has a larger eigenvalue
leading to a saddle 3-cycle.16 This transition to an unstable 3-cycle also leads to the appearance of chaotic
dynamics.

16Also 3-cycles may exist that are determined by the condition TL ◦ T 2R(w) = w where TR(.) applies with ΨRM while TL(.)
applies with wα. In that case, the points cannot be obtained in explicit form; and probably this cycle is unstable since the
eigenvalue different from (1− ζ) of the point on the right side is larger than 1 in modulus.
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