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1. INTRODUCTION

The sequence of bifurcations governing the transition to chaotic dynamics and the topological
structure of chaotic invariants sets can be observed today in one-dimensional (1-d for short)
maps, that is, in endomorphisms with a nonunique inverse. Then by now classic (although not
well divulgated) results concerning the full-family of quadratic 1-d maps [1-9] has been
extended, in its essential features, to generic 1-d endomorphisms by relating the structure of the
invariant sets to the sequence of the critical points (or trajectory of a critical point) of the map
[10-15]. In recent years such a kind of analysis has been generalized to two-dimensional (2-d,
for brevity) endomorphisms, by exploiting the role of the 2-d analogue of the critical points,
which are the critical curves of the map [10, 16-22].

We remark that 2-d maps with a nonunique inverse are frequently used in the mathematical
modelling of many systems in engineering, physics, biology and economics [23-32]. In
particular, a class of two-dimensional maps described (among others) in [33] is at the origin of
the present study. That is, the class of maps described by

(x, 2) = (z, h(x)), o))

where A(x) is a continuous function, piecewise continuously differentiable. We shall call a
P-map one of the form given in (1), that is, such that P(x, z) = (z, h(x)), whose square is a map
with separated variables, P?(x, z) = (h(x), h(z)). Besides the work cited above, P-maps have
been observed in other applicative models [34, 35].

It is clear that the dynamics occurring in P-maps are strictly related to those of the 1-d map
x' = h(x), and this relation, as will be described in the following sections, deserves perhaps
some surprise. We shall see how rich the network creating cycles of P is, and that the
coexistence of attracting cycles is the generic occurrence. In Section 2 we deduce the properties
of P-maps, describing the characteristics of the local bifurcations which may occur, and
proving the existence of infinitely many trapping sets belonging to ‘‘absorbing rectangles’’.
We recall that a set ® is trapping (or no-escaping, or mapped into itself) if for any initial
condition (x, z) € @, the forward trajectory belongs to ®, that is, ®"(x,z) € ® vn > 0 or,
in concise form, ®(®) € ®, B is said to be absorbing if a neighbourhood U of & exists such
that any initial condition in U has the w-limit set in &. We note also that we shall use the
term invariant for mapping into itself exactly, that is, a set @ is said to be invariant for ®
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(or under @) iff ®(®) = @. Clearly, nontrivial dynamics of P-maps occur when A(x) is a
noninvertible function, and in such cases the global bifurcations can also be described and
related to the global bifurcations of the 1-d map A(x). In the 2-d plane (x, z) we have critical
curves, which are lines ‘‘issuing’’ from the critical points of A(x), involved in the global
bifurcations (homoclinic bifurcations of repelling cycles of P).

The properties of a P-map are then illustrated by an example. The model, chosen among
those described in [33], is the Poincaré return map of a periodically impulsed oscillator, and is
based on a 1-d dimensional function A(x) which has two local extrema. As the dynamics of the
1-d maps are the fundamental substrate of the dynamics of P, those of the chosen example are
presented in Section 3. This gives us the opportunity to apply some recent techniques, using
critical points, to show that the dynamics are always bounded and that infinitely many full-
boxes of bifurcations occur.

The correspondent dynamics of P (as a result of the properties presented in Section 2) are
shown in Section 4. Some conclusions are drawn in Section 5.

2. PROPERTIES OF 2-d ENDOMORPHISMS P
In this section we shall point out some properties of the 2-d map P given by (1), that is

P(x, z) = (z, h(x)), @

where h(x) is assumed to be a generic continuous, piecewise continuously differentiable
function. Moreover, we shall assume that A(x) depends continuously on a real parameter u,
although we write A(x) for short, instead of A(x; 1), or of h,(x).

The square of P is a map with separated variables

PX(x, 2) = (h(x), h(z)) 3
and each variable has the same 1-d dynamics, governed by the 1-d map
x' = h(x), xeR. )

In the propositions which follow, when considering the eigenvalue of a cycle of A(x), it is
implicitly assumed, even if not explicitly stated, that A(x) is differentiable at all points of
the cycle. We recall also that the term ‘‘k-cycle’” of a map is synonymous with ‘‘cycle of
least period £’’, and in the statement ‘‘cycle of period k£’ it is understood that k is the least
period. Fixed points correspond to k = 1. A k-cycle of A(x) of periodic point @, is the set
{a;, a5, ..., a;}, where a; ., = h(a;), for i = 1,...,(k — 1) and a, = h(a,). The a; are called
periodic points of the k-cycle. The set of periodic points is sometimes equivalently written,
apart from the order of the points, as {A'(a,), i = 1,2, ..., k}. In this last expression, any one
of the periodic points can be used instead of a,. Each periodic point is a fixed point of the map
K (W) = a;, i = 1,2, ..., k). The eigenvalue of a k-cycle of & is given by A = [1¥_, h'(a;),
where A’ denotes the derivative of A.

Similar definitions hold for a k-cycle of the 2-d map P. A k-cycle of P with periodic point
(a,, b;) is made up of the periodic points {P'(a,, b,), i = 1, 2, ..., k}. Denoting by J(x, z) the
Jacobian matrix of P at (x, z), the eigenvalues of the k-cycles of P are the two eigenvalues of
the matrix product of k£ Jacobian matrices: J, = J(ay, by) --- J(a;, b,). The particular structure
of P implies a particular structure of J, . Indeed, J; is diagonal if k is even, while its diagonal
is made up of zeros if k is odd.
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The fixed points of P belong to the intersection of the graphs of the two curves z = x and
Z = h(x), that is x = h(x) and z = A(); it follows that fixed points of P are related to fixed
points of A.

The following properties, are simple consequences of the particular structure of P and of
the matrix J, .

Property 1. Let a be a fixed point of # (¢ = h(a)) with eigenvalue A, = h'(a), then (a,a) is a
fixed point of P with eigenvalues A, = —v, and A, = VA,. If A, > 0 then the fixed point
(a, a) is a star-node; if 1, < 0 then (a, @) is a focus. If b is another fixed point of h with
eigenvalues A, = h'(b), then P possesses also the 2-cycle {(a, b), (b, @)} with real eigenvalues
Ay = A, and 4, = 4,. A 2-cycle of P exists iff h possesses two fixed points.

Clearly, if 4 has k fixed points, then P has k fixed points on the line x = z and k!/2!(k — 2)!
distinct 2-cycles. The periodic points of each 2-cycle are symmetric with respect to the line x = z.

Property 2. Let a be a fixed point of A(x), then a point of the line {x = a} is mapped by P into
a point of the line {z = &}, and vice-versa. Therefore, the set {(x,s): x = @} U {(x,2):z2 = al is
trapping for P (each set {(x, z) : x = a} and {(x, z) : 7 = a} is trapping for P%). A point belonging
to the bisectrix {(x, 2) : 2 = x} is mapped by P into a point belonging to the set {(x, 2) : 2 = A(x)},
and vice versa. Therefore, the set {(x, 7) : z = x} U {(x, 2) : 2 = A(x)} is trapping for P (each set
{(x,2):z = x} and {(x, 2) : 7 = h(x)} is trapping for P?).
Property 3. From P*(x, z) = (h*(x), h*(z)) we have

P*(x,z) = (x,z)  iff x = K*(x) and z = H*(2). 5)

Therefore, cycles of P of even period 2k are associated with cycles of & of period k (odd or even).
From P*™*!(x, 7) = (W™(z), K™ '(x)) we have

Pl (x,2) = (x,z)  iff x = h™(z) and z = K"+ !(x) ®)
that is, x = #*"*!(x) and z = #*™*'(z). Therefore, cycles of P of odd period k = 2m + 1 are

associated with cycles of # of the same odd period k.

Property 4. The eigenvalues of a k-cycle of P of even period k are real with eigendirections
parallel to the coordinate axes. Thus, a k-cycle of P of even period is either a node or a saddle,
while a k-cycle of P of odd period is either a node or a focus.

Property 5. Let {a;, i = 1, ..., k} be a k-cycle of h of even period k = 2m, with eigenvalue
A, = I1%_, h'(a;). Then P has m = k/2 distinct cycles of period 2k, given by
(Pa,,ay), i=1,...,2k)

Pia,,a),i=1,...,2k
{P(ay, a)) t. ] D

(Pia,,ap),i=1,.., 2k},

each of the 2k-cycles having the eigenvalues A, = 4, = A,.
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For the index / in (7) we may also write / = 0, ..., 2k — 1, as, from (5), PZ"(aj, ap) = (a;, ay),
but we have chosen to adopt the notation in (7) so as to make appear at a glance the period
of the cycle.

We note that the cycles in (7) can also be written, respectively, as follows

{(Play,, a),i=1,...,2k
{Pi(aZm—li al)’ l = l) -~-a2k}

(P@piy,a), i=1,...,2k

as PX(ayy,, @) = P(ay, @), P*@ym-1, @) = P(ay, ay), ..., P™@p,,, @) = P(@y,, a).

Property 6. Let {a;,i =1, ..., k} be a k-cycle of & of odd period £k = 2m + 1, m = 1, with
eigenvalue A, = [1%_, #'(a;). Then P has m = (k — 1)/2 distinct cycles of even period 2k, given
by (7), each of which has the eigenvalues 4, = A, = 1,, and one cycle of odd period k given by

{Pi(am+19al)si= 19"-1k] (8)
with eigenvalues A, = —vA4, and 4, = V4,.

A note analogous to the previous one (referring to property 5) holds also for property 6. That
is, the last m points of the k-cycle {a;, i = 1, ..., k} of h, kK = 2m + 1, are associated with the
same cycles of period 2k obtained above, in (7), while, by equation (6), the cycle of odd period
k given in (8) can also be written as {(#"(;), 2;), i = 1, ..., k}; however, in this last formulation
the periodic points do not appear in the order in which they occur under iterated application
of P.

We call cycles of homogeneous type the cycles of P related to the periodic points of a single
cycle of h, as described in the properties 5 and 6.

The following property 7 characterizes cycles of P related to the periodic points of two
distinct cycles of 4, which we shall call of mixed type. That also two distinct cycles of 4,
of periods k£ and ¢ say, are associated with cycles of P derives from the following observation.
If a point a satisfies @ = #*(a) and a point b satisfies b = h%(b), then a = #™(a) and b = h"™(b),
m being the least common multiple between k and ¢; thus, equation (5) applies, with &k = m,
and (a, b) turns out to be a periodic point of P of period 2m.

Property7. Let{a;,i = 1, ..., k} be a cycle of & of period k£, kK = 1 odd or even, with eigenvalue
Aesand {b;, i =1, ..., g} be acycle of h of period ¢, ¢ = 1 odd or even, with eigenvalue 4, . Let
m be the least common multiple between & and q, and »n, and 7, the two natural numbers such
that m = k- n, = g - n,. Then the 2-d map P has n., n. = (k - g)/m, distinct cycles of period
2m, of mixed type, given by

(Piay,, b)), i =1,...,2m}

(Pi(ay, by), i:= 1,...,2m} o

(Pa,, b)), i=1,...,2m}

each of which has the eigenvalues 4, = 47!, 1, = A2
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As remarks to Property 7, let us discuss in detail some particular cases of this proposition.

Remark 1. Besides the hypotheses of proposition 7, assume g = 1, that is b is a fixed point of
h. Then m = k and n. = 1, i.e. a single cycle of P of mixed type exists, of period 2k, given by
{P'(a,, b),i =1, ..., 2k}, with eigenvalues A, = A,and A, = AX. If also k = 1 (ais a fixed point
of h) we obtain the single cycle of period 2 (of mixed type) associated with two fixed points
of h, as already stated in property 1.

Remark 2. 1f the least common multiple is m = k- g, then n, = 1, i.e. a single cycle of P
of _mixed type is related to the given cycle of A. This cycle, of period 2kg, is given by
{P'(a,, b)), i = 1,...,2kq}, with eigenvalues 1, = A2 and 4, = A¥.

Remark 3. If g = k (i.e. the two cycles have the same period), then m = k and n, = k, that is,
k cycles of P of mixed type exist, of period 2k, given by {P(a;, b)), i =1,...,2k}, ...,
{P'(ay, by), i = 1, ..., 2k} with eigenvalues A, = A, and A, = 4,.

Remark 4. 1f we consider that # has also a cycle of period 2k, say {d;, i = 1, ..., 2k}, then it will
be interesting to see how many cycles of P of mixed type are related to this 2k-periodic cycle and
the g-periodic cycle {b;, i = 1, ..., g}, that is, the cycles given by

(Pid;, by, i=1,...2m"}, j=1,...,n.

If the natural number 7, given in property 7 is odd, then m’ = 2m and n. = n_, that is, the
number of cycles is the same, and the period is doubled. If #, is even, then m’ = m and
n! = 2n., that is, the number of cycles is doubled, and the period is the same.

From property 3 it follows that all the cycles of the 2-d map P are created in correspondence
to some bifurcation occurring in the cycles of the 1-d map 4, and from properties 5-7 it follows
that local bifurcations of the cycles of P occur when local bifurcations in the cycles of 4 occur
(due to the particular structure of the eigenvalues of the cycles of P). This correspondence is
what we shall describe in the propositions of the following subsection. As we shall see, the
bifurcations of cycles of P are often of particular type, due to the presence of two eigenvalues
equal to 1 in absolute value. When this occurs we say that the cycle undergoes a degenerate
bifurcation. We can have three kinds of degenerate bifurcations, depending on the sign of 4.,
A,. We say that a degenerate bifurcation is of fold-type if A, = A, = 1; of flip-type if
A = Ay, = —1; of saddle-type if A, =1 and 1, = —1. It is also clear that we use the term
standard bifurcation for a cycle of P when only one of the two eigenvalues becomes equal to
1 in absolute value. We distinguish between standard bifurcation of fold-type (if 4, = 1), and
of flip-type (if A, = —1). Moreover, as regards to the Neimark-Hopf bifurcation of a cycle of
P, we shall see that only a resonant case can occur.

2.1. Cycles of P due to fold and flip bifurcations of h

From properties 5 and 6 we can deduce that multistability is a characteristic property of the
2-d map P. In fact, whenever 4 possesses an attracting k-cycle of period k > 2, then P possesses
more than one attracting cycle. From the same properties 5-6 it can be seen that to fold and flip
bifurcations in the map 4 there correspond degenerate bifurcations in the map P, whose effects
are described below.
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Let us assume that at the value y, a fold bifurcation occurs in the map h, with generation of
a couple of k-cycles, k = 1; that is, for 4 = u, + € two k-cycles of k exist (which do not exist
for u = y; — ¢€), one attracting, say {¢;, i = 1, ..., k}, with eigenvalue 0 < 1, < 1, and the
other repelling, say {b;, i = 1, ..., k}, with eigenvalue 4, > 1. At the fold bifurcation value y,
the two k-cycles coincide, with common eigenvalue A, = 1. The case ¥ = 1 reduces to a fold
bifurcation of 4 generating a couple of fixed points, and is substantially described by property
1. Therefore, let us assume & > 1 and discuss separately the two cases k even and k odd.

Cycles of P generated by fold bifurcation of a k-cycle of h(x), k even, k = 2m, m = 1.

u = pg . From property 5 we deduce that at 4 = y, there is the appearance in P of the m cycles
(of homogeneous type and of period 2k) given by (7), which did not exist before. All the new
homogeneous cycles of P undergo (i.e. are created by) a degenerate bifurcation of fold-type, as
both the eigenvalues of the homogeneous cycles are equal to 1.

From property 7 it follows that at u = u, there is also the appearance of the cycles of mixed
type associated with the new k-cycle {a;, i = 1, ..., k} of & and all the pre-existing cycles of A.
Let us say that n cycles of 4 (say y;, j = 1, ..., n, of period n; and eigenvalue ;) already exist
at 4 = yy, distinct from the k-cycle born by fold bifurcation. Then all the new cycles of P of
mixed type have one eigenvalue equal to 1, so that they all undergo a standard bifurcation,
assuming that A; is different from 1 in absolute value. In what follows, we shall comment on
the effects due to cycles y; with eigenvalues |A;] > 1 (which is the generic case), and the
comments of different situations are obvious.

u =y, + €. For u =y + ¢ (€ suitably small) the following 2k cycles of P of period 2k exist,
according to property 5 (for cycles of homogeneous type) and to property 7 (for cycles of mixed
type):

(i1) m cycles of homogeneous type, of period 2k, attracting nodes

(Piay,a),i=1,...,2k} (P(ay,a), i =1,...,2k}, ..., (Pam, ay), i = 1, ..., 2Kk},

each of which has the eigenvalues 4, = 4, = 4, (4, < 1);
(i2) m cycles of homogeneous type, of period 2k, repelling nodes

(Pi(by, b)), i =1,...,2k), (Pi(by, b)), i = 1,...,2k}, ..., (P(by, by, i = 1,...,2k],

each of which has the eigenvalues A, = 1, = 1, (4, > 1);
(i3) & cycles of mixed type, of period 2k, saddles

{Play, b)), i=1,...,2k}, (Pay, b)), i = 1,...,2k}, ..., (Pa, b)), i = 1, ..., 2k},

each of which has the eigenvalues 4; = 1, (<1) and 4, = 1, (>1).

Moreover, if # possesses other cycles, to the above ones we have to add the following:

(i4) all the cycles of mixed type associated with the k-cycle {a;, i =1, ..., k} and the n
pre-existing cycles y; of 4. They have one eigenvalue belonging to (0, 1) (A, = A, n, suitable,
depending on j). Thus, these are all saddles if the cycles y; of 4 are repelling;

(i5) all the cycles of mixed type associated with the k-cycle {b;, i = 1,..., k} and the n
pre-existing cycles y; of . They have one eigenvalue greater than 1 (4, = 43!, n, suitable,
depending on ;). Thus these are all repelling nodes if the cycles y; of 4 are repelling.
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Remark 5. Let us reassume the effect on P of a fold bifurcation in 4 occurring at 4 = u, . Each
of the m homogeneous cycles of P of period 2k appearing at the bifurcation value (4 = )
gives rise, after bifurcation (u = u; + €), to four cycles of P: one cycle of homogeneous type,
of period 2k, attracting node, one cycle of homogeneous type, of period 2k, repelling node, and
two cycles of mixed type, of period 2k, saddles. These cycles, described in (i1), (i2) and (i3), are
the ““‘effect’’ of the degenerate bifurcation of fold-type. The other cycles of mixed type in (i4)
and (i5) are generally the “‘effect’’ of standard bifurcations of fold-type. That is, each cycle of
mixed type born at u = u, gives rise, after the bifurcation, to two cycles of the same period,
generally one saddle and one repelling mode.

Cycles of P due to a fold bifurcation of a k-cycle of h(x), k odd, k = 2m + 1, m = 1.

u = u,. For the homogeneous cycles of P we now apply property 6 to deduce that at 4 = p;
there is the appearance of the m cycles, of homogeneous type, of period 2k, given by (7), with
eigenvalues A, = 4, = 1 (i.e. which undergo a degenerate bifurcation of fold-type), plus the
cycle of odd period k, of homogeneous type, given by (8), with eigenvalues 4, = -1 and A, = 1
(which undergoes a degenerate bifurcation of saddle-type). From property 7 it follows that
there is also the appearance of the cycles of mixed type associated with the new k-cycle
{a;,i=1, ..., k} of h and with all the pre-existing cycles ofh(y;,j=1,....n, of period n; and
eigenvalue 4;); these cycles of P have one eigenvalue A, =1

U4 = u, + &. By property 6 (for cycles of homogeneous type) and property 7 (for cycles of mixed
type), for ¢ = u, + & (¢ small enough), P admits the following cycles:
(j1) m cycles of homogeneous type, of period 2k, attracting nodes

(Piay, ap), i=1,..., 2k} (Pi(ay @), i = 1, ..., 2K}, ooy (P'(@, @), i = 1, ..., 2K,

each of which has the eigenvalues A, = 1, = 4, (4, < 1);
(j1.1) one cycle of odd period k, of homogeneous type, attracting node

[Pi(amH, a),i=1,...,k}

with eigenvalues 4; = —VA4, and 1, = Vi, (A, < 1);
(j2) m cycles of homogeneous type, of period 2k, repelling nodes

(Pi(by, by, i=1,...,2k}, (P'(by, b)), i=1,...,2k}, ..., (P'(b, b)), i =1, ..., 2Kk},

each of which has the eigenvalues A4, = 1, = 4, (4, > 1);
(j2.1) one cycle of odd period k, of homogeneous type, repelling node

{Pi(bm+1’ bl)v i= 1, ceey k}

with eigenvalues 1, = — VA4, and 1, = V4, (A, > 1);
(i3), (i4) and (i5) hold with k = 2m + 1.

Remark 6. Each of the m cycles of even period 2k undergoes a degenerate bifurcation of fold-
type whose effect is the same as the one described in the previous case; that is, after bifurcation,
for u = u, + ¢, it gives rise to four cycles of P, an attracting node, a repelling node and two
saddles, all of period 2k. A different effect has the degenerate bifurcation of the cycle of odd
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period k, which appears at u = u, with eigenvalues 4, = —1 and 4, = 1. After bifurcation,
this cycle gives rise to one k-cycle attracting node (j1.1), one k-cycle repelling node (j2.1)
(which are due to the eigenvalue 4, = 1), and one cycle saddle of double period 2k (one of those
listed in (i3)) (which is due to the eigenvalue A, = —1).

Now let us assume that increasing u, the eigenvalue of the attracting k-cycle of A
{@;, i = 1, ..., k} becomes negative and that a flip bifurcation of this cycle occurs at z;.,. That
is, at 4 = py., we have A, = —1, while for 4 = u,., + ¢ the k-cycle {a;, i = 1, ..., k} is repel-
ling with eigenvalue A, < —1 and an attracting 2 - k-cycle of & exists, say {d;, i = 1, ..., 2k},
with eigenvalue 1,4, 0 < A, < 1. Let us comment separately on the corresponding bifurcations
occurring in the 2-d map P, for & even and & odd.

Cycles of P due to a flip bifurcation of a k-cycle of h(x), k even, k = 2m, m = 1.

U = Hg.,. At u = u., the number and type of cycles of P is that given in (i1)-(i5), with
2, = —1. Thus, any cycle listed in (i1) undergoes a degenerate bifurcation of flip-type; any cycle
listed in (i3) undergoes a standard bifurcation of flip-type; and any cycle listed in (i4) undergoes
a bifurcation, generally standard, which may be of flip-type or of fold-type, depending on the
value of the integer n,(y,) (if n,(y;) is odd then one eigenvalue is A, = —1, while if n,(y;) is even
one eigenvalue is A; = 1).

U= ., + & For u = uy., + €, applying properties 5 and 7, we get the following cycles:
(f0) all those given in (i1)-(i5), where saddles and attracting nodes become repelling nodes;
plus the new ones:
(f1) k cycles of period 2.2k, homogeneous, attracting nodes

(Pid,,dy), i=1,..,22k {Pdy,d),i=1,...,2.2k}, ..., {P'(d,,dp), i = 1, ..., 2.2k},

each of which has the eigenvalues 4, = 1, = 15 (4; < 1);
(f2) k cycles of period 2.2k, of mixed type, saddles

(Piay,dy),i=1,..,22k {Play,dy), i =1,...,2.2k}, .., (Play, dy), i = 1,...,2.2k},

each of which has the eigenvalues A, = (1,)> > 1 and 4, = A4(A4 < 1);
(f3) k cycles of period 2.2k, of mixed type, saddles

—

(Piby,d), i=1,...,22k (P'(by,dy), i = 1,...,2.2k}, ..., (P'(by,dy), i =1, ..., 2.2k},
each of which has the eigenvalues A, = (4,)> > 1 and 4, = 44 (44 < 1);

(f4) the effect of the bifurcations occurring in the cycles described in (i4) is the generation of
all the new cycles of P, of mixed type, associated with the 2k-cycle {d;, i = 1, ..., 2k} and the
pre-existing cycles y; of 4, to which the remark 4 given above applies: if n,(y;) is odd then the
effect of one eigenvalue 1, = —1 is the creation of cycles of double period, while if n,(y;) is even
then the effect of one eigenvalue A, = 1 is the creation of couples of cycles of the same period.
If the cycles y; of & are repelling, then all these new cycles are saddles or repelling nodes.
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Remark 7. The effects of the degenerate bifurcation of flip-type (A, = 1, = —1), occurring at
U = Uy, to each of the m cycles of P of period 2k given in (il), gives rise, after bifurcation,
for u = ., + &, to four cycles of P of double period. That is, each attracting node becomes
a repelling node giving rise to two cycles of double period, attracting nodes, and to two cycles
of double period, saddles (listed in (f1) and (f2) above). Each of the & cycles saddles of period
2k given in (i3) undergoes a standard bifurcation of flip-type (A, = —1), and for 4 = yz., + ¢
the saddle becomes a repelling node giving rise to one cycle of double period, saddle (listed in
(f3) above), of mixed type.

It is clear that a cascade of flip bifurcations starting from a k-cycle of h, k even, will give rise
to a cascade of bifurcations of the kind described in (f1)-(f4), with exponential increase in the
number of cycles of P.

Cycles of P due to a flip bifurcation of a k-cycle of h(x), k odd, kK + 2m + 1, m = 1.

U= Up.o. At 4 = u;., the number and type of cycles of P is that given in (j1)-(j2.1), (i3)-(5),
with A4, = —1. Thus, any cycle listed in (j1) undergoes a degenerate bifurcation of flip-type;
any cycle listed in (i3) undergoes a standard bifurcation of flip-type; and any cycle listed in (i4)
undergoes a bifurcation, generally standard, which may be of flip-type or of fold-type,
depending on the value of the integer n,(y;). New comments deal only with the cycle of odd
period given in (j1.1). That cycle, born as attracting node, becomes an attracting focus when
the eigenvalue A, crosses the value 0 and becomes negative. Thus at 4 = p., this cycle under-
goes a Neimark-Hopf bifurcation of resonant type, because its eigenvalues are A, = —i and
A, = i (pure imaginary eigenvalues).

U= .o + & For u =y, + &, we get the following cycles of P:

o all those existing at 4 = u,.,, where saddles and attracting nodes become repelling nodes,
and the attracting focus in (j1.1) becomes a repelling focus, plus the new ones;

@ the cycles described in (f1)-(f4) with k = 2m + 1.

Remark 8. At u = py., each of the m cycles of P of even period 2k given in (j1) undergoes a
bifurcation of degenerate or flip-type (1; = A, = —1), and after bifurcation, for u = y,., + &,
it becomes a repelling node giving rise to two cycles of double period, attracting nodes, and to
two cycles of double period, saddles, giving 2m of the (2m + 1) cycles listed in (f1) and 2m of
the 2m + 1) cycles listed in (f2). The remaining cycles (of period 2.2k), one in (f1) and one in
(f2), are related to the bifurcation of the cycle of P of odd period. The cycle of odd period
in (jl1.1), from attracting node becomes an attracting focus, and at 4 = ., undergoes a
Neimark-Hopf bifurcation of resonant type, with A, = —i and A, = i. After bifurcation, this
k-cycle becomes a repelling focus giving rise to two cycles of quadruple period 2.2k, one
homogeneous cycle attracting node, and one cycle of mixed type saddle.

We note that a cascade of flip bifurcations starting from a k-cycle of A, with £ odd,
corresponds to a particular case for P. In fact, the first flip bifurcation involves, for the cycle
of P of odd period &, a Neimark-Hopf bifurcation of resonant type (with eigenvalues A, = —i
and A, = i). This resonant Hopf bifurcation produces cycles of even period (quadruple), so
that the subsequent flip bifurcations of the cycles flip-generated, both for the map 4 and for the
map P, correspond to flip bifurcations of cycles of even period.
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In order to give an idea of the extremely high number of bifurcations occurring in the map
P we can focus our attention for example to the case in which the 1-d map A(x) is the standard
logistic map A(x) = ux(1 — x), and consider the value of y, say u,, at which a fold bifurcation
of the map A3(x) occurs, creating two cycles of period k = 3. At u = u; + ¢ the 2-d map P has
the following new cycles (which do not exist for 4 = u; — ¢):

e one homogeneous cycle of period 6 attracting node (j1);

e one homogeneous cycle of period 3 attracting node (j1.1);

e one homogeneous cycle of period 6 repelling node (j2);

e one homogeneous cycle of period 3 repelling node (j2.1);

e three cycles of mixed type of period 6 saddles (i3);

o from (i4): infinitely many cycles saddles of mixed type, obtained by applying property 7
to the attracting 3-cycles of 4 and to any of the cycles of # which already exist at u = u; — ¢
(we know that these are infinitely many, of any period, but clearly numerable, and all
repelling);

e from (i5): infinitely many cycles repelling nodes of mixed type, obtained by applying
property 7 to the repelling 3-cycles of 4 and to any of the cycles of # which already exist at
H =3 — &

We have considered above the case k odd with £ = 3, so that the case & = 1 is excluded. Let
us briefly comment here on this simple case. Consider a fixed point of &, say @ = h(a), which
flip bifurcates through the eigenvalue A = —1, giving rise to an attracting 2-cycle (d;, d,}. It is
easy to see the cycles of P related only to these cycles, @ and {d,, d,}, of h. The fixed point (a, @)
of P, attracting focus, undergoes a Neimark-Hopf bifurcation of resonant type, with A; = —i
and A, = i. After the bifurcation, this fixed point becomes a repelling focus, giving rise to two
cycles of period 4: one homogeneous cycle of period 4, attracting node, {P'(d,, d)),i = 1, ..., 4]
and one cycle of mixed type, of period 4, saddle {P¥(a, d,), i = 1, ..., 4. If, besides the fixed
point a, other cycles of & are present, then (from property 7) other cycles of P exist, of mixed
type, which also bifurcate and give rise to other new cycles of P.

2.2. Trapping sets of p and critical curves

We have already met in property 2 examples of trapping sets of P. Besides the coordinate
axes, the set {(x,2):z = h(x)} U{(x,2):x = z} is a trapping for P. This is just one of the
infinitely many trapping sets of P that can be obtained by use of the graph of powers of A(x).
In fact, let us consider a point r of the plane belonging to the set of equations of z = K (x), say
r = (x, H*(x)); then P(x, K*((x)) = (H*(%), h(x)), that is, r is mapped into a point belonging to the
set of equations x = A*1(z). The reverse also holds, because P(h*(x), h(x)) = (h(x), K**'(x))
belongs again to the set of equations z = #*(x). Thus, each set {(x,z):2 = K*(x)} and
{(x,2) : x = h*"!(2)}, for any k = 1, is a trapping for P?, and their union is trapping for P. We
have so proved the following property.

Property 8. Each set {(x, 2) : 7 = ()} U {(x, 2) : x = h*"!(2)}, for k = 1, is trapping for P.

From the structure of the periodic points of cycles of P of homogeneous type, described in
properties 5 and 6, it follows that homogeneous cycles of P belong to trapping sets of the kind
described above. Let us call basic trapping sets those involving powers A’ with i < k being k the
period of a cycle {a;, i = 1,...,k} of h (k = 2m or k = 2m + 1). The homogeneous cycles
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of P related to this cycle of 4 are given in (7) if kK = 2m and in (7)-(8) if Xk = 2m + 1. In any
case, a cycle of P of even period (2k) is one listed in (7). Let us consider a periodic point of P
of one of the cycles listed in (7). As Pz"(aj, a,) = (a;, a;) we can consider (g;, a)),j € {1, ..., mj.
Then, being a; = h/~'(a;) we have (g;, a;) = (h'~'(a)), @,), which implies that the homo-
geneous cycle of P with periodic point (g;, a,) belongs to the set {x = h’~Y(z)}, and thus to the
basic trapping set {(x,2):z = A/(x)} U {(x,2): x = h'~'(z)). Writing a, = B*/*!(a;) we have
(a;, a) = (a;, "*/*'(a;)), which implies that the homogeneous cycle of P with periodic point
(a;, a;) belongs to the set {z = #*~/*'(x)}, and thus to the trapping set [(x, 2) 1z = K/ '(x)} U
{(x,2) :x = B /(2)}.

While for a homogeneous cycle of P of odd period we have, using the same notation as
above, j=m + 1 and k = 2m + 1, so that (a,,, @) = (F"™@,), @) = @ps1, " @i 1)),
which implies that the homogeneous cycle of P of odd period with periodic point (a,,,,, @)
belongs to a single basic trapping set: {(x, 2): 2z = A" '(x)} U {(x, ) : x = #"(z)}. We have so
proved the following property.

Property 9. Each homogeneous cycle of even period listed in (7) belongs to two distinct basic
trapping sets. The periodic point (a;, @), j € {1, ..., m] belongs to {(x,2) : z = R(x) U f(x, 2)
x=h"'2)} and to {(x,2):z = A7)} Ul(x,2):x = K*(z)}. While a homogencous
cycle of P of odd period, given in (8), belongs to the single basic trapping set {(x,z):
z=H"Ux)) U lx, 2) 1 x = h"(2)).

The 2-d map P is clearly an endomorphism with a nonunique inverse iff the 1-d map # is an
endomorphism with a nonunique inverse. In such a case, the critical curves of P are related to
the critical points of # (we follow the index notation and the terminology used in [10, 11]).
Let s_, be a critical point of rank-0 of # (i.e. a point where A(x) attains a local minimum or a
local maximum). Let s, = A(s_,) be the related critical point of rank-1 and, in general, let
S; = h”‘(s_l) be the related critical points of rank-(i + 1), i = 1. Then, the straight line of
equation x = s_, is a critical line of rank-0 of P, say LC_,. The corresponding critical curves
LC; of P are straight lines parallel to the coordinate axes, ‘‘issuing”” from the critical points
of h: LC, is the line z = 55, LC, the line x = s,, LC, the line z = 5, LC; the line x = sy,
and so on.

In particular, if 7 is an absorbing interval of 4 (trapping or invariant) bounded by the critical
points s, and s, then the segments resulting from the intersection of the critical lines z = s,,
X =Sy, 2 = 8, and x = s, give the boundary of an absorbing square 7 x [ in the phase plane
(x, z), trapping or invariant for P. Moreover, as we shall recall in Section 3, inside a wide
absorbing interval, invariant for /4, generally there exists a set of cyclical absorbing intervals
(trapping or invariant for 4) of order k, £ > 1, of the form I = Uf-‘= I, where I, = h(I),
h(l,) € I,, that is, h"(!i) c I, fori =1, ..., k, and the boundary of each interval /; consists of
critical points of A. The existence of such cyclical absorbing intervals of order &, for the 1-d
map A, implies the existence of cyclical absorbing rectangles for the 2-d map, bounded by
segments of critical lines. The number of distinct sequences of these rectangles, and their order,
can be determined by reasoning as in the properties 5 and 6 above. That is, all the Cartesian
products I; x I;, for i, j = 1, ..., k, give rectangles in the phase plane (x, z) belonging to cyclical
sets of the 2-d map P, obtained as follows.




72 R. LUPINI et al.

Property 10. Let I = \U¥_ | I, be a set of cyclical absorbing intervals of &, of order k. If k is even,
say k = 2m, then the 2-d map P admits m distinct sequences of cyclical absorbing rectangles of
order 2k, given by

P, xI), i=1,..,2%

P, x1I), i=1,...,2 (10)

Pd,xI), i=1,...,2%.

If kis odd, k = 2m + 1, then P admits m distinct sequences of cyclical absorbing rectangles of
order 2k, given in (10), plus one sequence of cyclical rectangles of odd period &, given by

P, xI), i=1,..., k. (11

Applications of the properties of P-maps will be discussed in Section 4, where an example is
shown, which refers to a 1-d map A(x) of bimodal shape. As we shall be advantaged from the
knowledge of the bifurcations occurring in the 1-d map 4, in the next section we introduce the
map h(x) of applicative interest and perform the analysis of its dynamics.

3. SOME PROPERTIES OF THE 1-d MAP h(x) OF BIMODAL SHAPE
In this section we consider the 1-d map defined in [33]

x' = h(x); h(x) = —Dx + Bg(Fx), (12)
where
4us(l1 — 5) fo<s<1;(u>0)
0 otherwise.

gls) = { (13)

The parameters D, B and F satisfy the following constraints 0 < D < 1, -1 < B < 0 and
F < 0. Once the values of D, B and F are fixed, we consider the dynamics of the one-parameter
family of maps A(x) defined in (12)-(13) as a function of the parameter u (strength of the
impulse function in the applicative model). In all the figures reported in this paper, the
numerical examples are obtained with the values D = 0.62386015, B = -0.790837347,
F = —0.85446789, while the value of x is reported in each figure caption. The qualitative shape
of A is shown in Fig.1.

We note first that both for the 1-d map 4 in (12) and the related 2-d map P, the dynamics are
always bounded. In fact, A(x) is linear for Fx = 1 (i.e. x < 1/F) and for Fx < 0 (i.e. x =2 0),
with slope equal to —D. Being —1 < —D < 0, no trajectory of the 1-d map A(x) can be
divergent, and being P%(x, z) = (h(x), A(z)), no trajectory of the 2-d map P can be divergent.

The origin is the unique fixed point of 4, globally attracting, for 0 < 4 < u, = (1 + D)/4BF
(in the case considered here y, = 0.6), and in this range 4 is an invertible map. For u > u,
one more fixed point of A4 exists, given by x* = (1/F)(1 — (1 + D)/4uBF), at first locally
attracting. Moreover, for u > u, the map s possesses two local extrema, and it becomes an
endomorphism of type Z, — Z; — Z/. A local maximum occurs at the fixed point O, which is
thus a critical point of rank-k, for any & = 0. A local minimum occurs at the critical point of
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Fig. 1. One-dimensional map A(x) given in (12). (a) 4 = 1.5; (b) u = 1.5917 = uf ,, SBR bifurcation of
x*, closure of the first box of the second kind; (¢) # = 1.711 = u, SBR bifurcation of the origin, closure
of the first box of the first kind.

rank-0 given by s_, = 4(1 — D/4uBF). Its images f'(s_,) = s;_,, i = 1, are the critical points
of rank-i. The interval Z;, locus of points for which three distinct rank-1 preimages exist,
is bounded by the critical points of rank-1: Z, = 1s,, O[ (see Fig. 1a). On increasing x beyond
U, the fixed point x* crosses the point s_, and its eigenvalue becomes negative. The flip
bifurcation of x* occurs at u = u, , = (3 + D)/4BF (u,, = 1.34). For 4 > p, , the critical
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points s, and s; give the boundary of an absorbing interval, I = [s,, 5], which becomes
invariant when the critical point s, crosses s_; (as in Fig. 1a). It is clear that as long as the
interval I = [s,, 5,] belongs to the interval Z; (where overbar denotes the closure), the map # is
homeomorphic to the quadratic Myberg’s map f(x) = x> — ¢, or, equivalently, to the logistic
map f(x) = vx(1 — x). Thus, the same dynamics occur in /, and 7 being globally absorbing,
except for the origin and its preimages, we can state that the dynamics of # are completely
known in this range. A complex sequence of bifurcations of type ‘‘box-within-a-box’’ occurs,
as described by Mira in 1975 [3] and we refer to [11] for its complete description. Let us recall
here only some elementary features, to be used later. The first box of the first kind starts at g,
when the attracting fixed point x* appears, bifurcating from the other fixed point O. The end
of this box occurs at x4}, when the critical point s; merges into O, and is characterized by the
first homoclinic bifurcation of the fixed point O (in our example uf = 1.71, see Fig. 1c).
The first box of the second kind starts at the flip bifurcation of x*, at u, ,, and ends at uf,,
when the critical point s, merges into x*, marking the first homoclinic bifurcation of the fixed
point x* (in our example uF, = 1.59, see Fig. 1b). Inside these boxes, a complex structure of
sequences of boxes of the first kind and of the second kind occur, all having a self-similar
structure. In general, a box of the first kind Q, = [u,, 45] opens at the fold bifurcation which
gives rise to a couple of k-cycles of A, say {¢;, i =1, ..., k}, attracting, with eigenvalue
0< A, <1,and {b;, i = 1, ..., k}, repelling, with eigenvalue A, > 1. Then the attracting cycle
undergoes a flip bifurcation (1, = —1) at y,.,, and this value opens the corresponding box of
the second kind Q., = [tx.2, t5.2] C Q4. The closure of a box occurs when a critical point s;
merges for the first time into the repelling cycle which started the box, marking a homoclinic
bifurcation of this cycle. That is at x4 = uj., the first homoclinic bifurcation of the cycle
{a;,i =1, ..., k} (made up of critical points) occurs, while a homoclinic bifurcation of the cycle
{b;, i =1, ..., k} (made up of critical points) occurs at u = yj. For a description of the relation
between the ‘‘box-within-a-box’’ bifurcation structure and the homoclinic bifurcations of
cycles we refer to [36]. Let us call (as in [36], following Marotto’s notation [37]) the first
homoclinic bifurcation of a cycle as its snap-back-repeller bifurcation, SBR bifurcation for
short. We recall that the SBR bifurcation of a cycle of the quadratic map, cycle different from
the origin, is followed by other homoclinic bifurcations, or homoclinic explosion (causing the
sudden appearance of infinitely many new homoclinic orbits of the same cycle). Such values are
always characterized by the merging of a critical point of 4 into the same repelling cycle.

It is difficult to observe numerically the complex sequence of bifurcations, because after the
first Myrberg’s cascade [1] (or Feigenbaum sequence [7]) of flip bifurcations, started from the
flip bifurcation of x*, and accumulating at 4 = u,,, we enter in the chaotic regime. We know
that at any value of u beyond u,,, u € 1y, 1¥[, the attracting set of 4 is either a cycle (with
periodic points in I) or a chaotic set (a critical chaotic set, or some cyclical chaotic intervals,
belonging to 7). When the second case occurs we say that the dynamics of # are chaotic in the
strict sense, or that strict chaos occurs. However, also in the first case (i.e. when an attracting
cycle of 4 exists), the computed trajectory seems often aperiodic (apart from values of x in rare
boxes, or windows). This is due to the fractal structure of the basin of attraction of the cycle,
whose boundary consists in an invariant fuzzy set on which 4 is chaotic. In such cases we say
that nonstrict chaos occurs (the computed trajectories appear as chaotic, although an attracting
cycle exists). Strict chaos occurs only at bifuraction values. Among such bifurcation values
(which include, for example, u,, and other similar values y,,, as well as values of nonclassical
bifurcations [11]), there are also the ends of boxes of the first kind and of the second kind.




A class of two-dimensional endomorphisms 75

= b

(b}

-Ls L

Fig. 2. (a) Bifurcation diagram of h(x) for 0 < u < 15; (b) enlargement of a portion of (a), for
l<p<2p =06 u,=134 45, =15917, uf =1.711, Uy = 4.033, e, = 10.

At u = uf., and u = ujf the dynamics of 4 are chaotic in cyclical intervals of order &, bounded
by critical points, invariant for #¥. A rough idea of the bifurcations comes from the bifurcation
diagram of A(x) as a function of u, reported in Fig. 2b, which shows an enlargement of Fig. 2a.
We note that in such bifurcation diagrams it is difficult to distinguish between values of u of
strict chaos or of nonstrict chaos.
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Fig. 3. Graph of h3(x) in (a) and of A*(x) in (b), at u = 1.73 > ur.

As stated above, in the range Uy < < uf wehavel =
u = ut. This SBR bifurcation of the origin determines al
cubic shape of 4 plays no role. As
point s; into a different critical p
change. For u > u}

[So, SI] C Z_3 = [S(), 0], and [ = Z3 at
so the end of the range in which the
O is also a critical point of 4, and the merging of a critical
oint (here the origin O), causes an important qualitative
the critical point O belongs to the absorbing interval I = [s,, 5], as well
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Fig. 4. u = u¥ = 1.793. (a) The critical points |s,,Ss, S¢, $;} give the repelling 4-cycle born at the

beginning of the box, at u = u, = 1.7837. (b) A trajectory of h(x) at u = u¥ = 1.793, when the dynamics

are chaotic on 4-cyclic intervals. (c) A trajectory of h(x) after the SBR bifurcation, at 4 = 1.794 > Uiy
exhibiting aperiodic behaviour in the whole absorbing interval I = [s,, 5,}.

as infintely many preimages of O, of any rank. This causes the appearance of new foldings
in the graph of #*(x) for k& = 3, that is, new maxima, where H*(x) assumes the value 0, and
new local minima. See the graph of #%(x) in Fig. 3a and that of 4*(x) in Fig. 3b for u beyond 7.
As u increases, these foldings in the graph of h* approach the bisectrix causing a fold bifurca-
tion of #*, high values of k occurring first. Each of these fold bifurcations opens a box of first
kind analogous to the box Q; = [, #f] of the previous regime. For example, at p, = 1.7837
a fold bifurcation of #* starts a box of the first kind which closes at uf = 1.793, when the
critical point s, falls into the repelling 4-cycle born at the beginning of the box, as shown in
Fig. 4a. Note that even if 4 has a cubic shape when u belongs to a box, we can determine cyclical
absorbing intervals bounded by critical points s; inside which A" is homeomorphic to the logistic
map. The cubic shape of # becomes relevant after the closure of a box, even if we are in a regime
of nonstrict chaos, the computed trajectories seem aperiodic in the wide absorbing interval
I = [s,,s;]. For example, the trajectory shown in Fig. 4c illustrates the “‘explosion”’
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Fig. 5. (a) u = 1.935. Fold bifurcation of #*(x); So is just below 1/F. (b} u = 3.53, SBR bifurcation of

the repelling 3-cycle born at 4 = 1.935, now made up of critical points, (s, 54, 55}. (¢) A trajectory of A(x)

at u = 3.53, the dynamics are chaotic on 3-cyclic intervals. (d) A trajectory of h(x) after the bifurcation,
at u = 3.54, with aperiodic behaviour in the whole absorbing interval J = [So5 511

which follows the closure of the box of the 4-cycle of Fig. 4b, where £ has 4-cyclic chaotic
intervals. The explosion is due to the fact that outside the cyclical absorbing intervals, infinitely
many repelling cycles exist, forming a repelling invariant set on which # is chaotic, which gives
the boundary, fuzzy (or chaotic), of the basin of attraction of the absorbing intervals. The
homoclinic bifurcation occurring at the closure of a box, corresponds to a contact between
the cyclical chaotic intervals and the boundary of their basin of attraction, also called ““crisis’’
by Grebogi et al. [38-40]. After the contact, a trajectory escapes the “‘old” cyclical absorbing
intervals and is confined to the wider absorbing interval 7 = [sg, 511

A fold bifurcation of #* in what we may call *‘second regime’’, opens a box of the first kind
at u = 1.935. This fold bifurcation is particular because it occurs soon after the crossing of the
critical point s, through the point 1/F (after which the critical point s, will enter the linear part
of the shape of /(x)). This crossing causes a flat minimum in #° (see Fig. 5a), which, in its turn,
causes a long interval of u-values with an attracting 3-cycle, as can be seen in Fig. 2a. The flip
bifurcation of the 3-cycle occurs at u = 3.067 (beginning of the corresponding box of the
second kind), giving an attracting 6-cycle, which flip bifurcate at # = 3.51, and so on. The end
of this box of a 3-cycle occurs at u = 3.53 (see Fig. 5b), when the critical point s, falls into the
repelling 3-cycle born at the beginning of the box. After this homoclinic bifurcation we see an
explosion of the chaotic trajectory in the wider absorbing interval /= [so, 51] (see Fig. 5¢,d).
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As we have said before, the cubic shape of A determines the structure of the bifurcations for
u > uf because the existence of two critical points of rank-1, s, and O characterizes the foldings
in the shape of powers of A(x). Let us summarize the essential features:

® at i = ug, (=uf = 1.71) we have s, = h*(s_,) = 0, after which new foldings appear in
#?, and in the graph of #*(x) for k = 3; s, = 1/F occurs before the fold bifurcation of 4,
generating a wide box of the 3-cycle;

® at 4 = ugsy (U = 4.033) we have s5; = h*(s_)) = 0, after which new foldings appear in
#°, and in the graph of A*(x) for k = 5; s, = 1/F occurs before the fold bifurcation of A°,
generating a wide box of the 5-cycle;

® at u = u, (U = 10) we have ss = #%s_,) = 0, after which new foldings appear in A’,
and in the graph of A*(x) for k = 7; s, = 1/F occurs before the fold bifurcation of A’,
generating a wide box of the 7-cycle; and so on.

The regimes [u), U@, [4a), Hes), ..., are infinitely many because as u increases all the
critical points of odd index merge eventully into the origin, that is, s; = A**!(s_,) = 0 occurs for
all the odd values of i. We note that while in the quadratic map the SBR bifurcation of the
origin is the last one (beyond which the attraction set is at infinity), in the map with two critical
points of rank-0 also the SBR bifurcation of the origin (which is its first homoclinic bifurcation)
is followed by other homoclinic bifurcations. In fact, the values which determine the above
regimes, u = u, for i odd, are values of homoclinic bifurcations of the origin, characterized
by the merging of the critical point s; into the origin itself.

The dynamics of 4 are always bounded in the globally absorbing interval I = [s,, s,]; in it we
can detect k-cyclical absorbing intervals (when u belongs to the box related to some k-cycle),
where #* is homeomorphic to a quadratic map.

4. SOME PROPERTIES OF THE 2-d MAP P RELATED TO (12)
Let us turn now to the dynamics of the 2-d map P
(x, 2) — (z, h(x)), where h(x) is defined in (12) with (13) (14)

so that we can refer to the properties of the 1-d map discussed in the previous section, and apply
the results of Section 2.

The origin is the unique fixed point of P, globally attracting, for 0 < u < u; = (1 + D)/4BF,
and in this range P is an invertible map. For 4 > u, one more fixed point of P exists, S*, given
by z* = x* = (1/F)(1 — (1 + D)/4uBF) (at first an attracting node), and a 2-cycle saddle given
by {(x*, 0), (0, x*)}. For u > u, the map P becomes an endomorphism of type Z, — Z, — Z|.
The region Z, is the rank-1 image of the strip bounded by the two critical lines of rank-0,
called LC_,, of equation x = s_; and x = 0. Thus, the region Z; is the strip bounded by the
two critical lines of rank-1, called LC,, of equation z = 5, and z = 0. To the absorbing
interval I = [s,, 5,] of A corresponds, for the 2-d map P, the absorbing square 7 X I, bounded
by the critical lines z = 54, X = 54,2 = 54, X = 5,. The fixed point S* (k-cycle for & = 1, odd)
becomes an attracting focus and then a repelling focus via a resonant Neimark-Hopf bifurca-
tion at 4 = u, ,, from which an attracting 4-cycle node {(x,, x;), (X, X3), (X2, X5), (X5, %)}
(where x; — x, is the 2-cycle of A) and a 4-cycle saddle {(x;, x*), (x*, x,), (x5, x*), (x*, x))}
originate. At the same time the 2-cycle saddle becomes a repelling node via flip bifurcation,
giving rise to a 4-cycle saddle {(x,,0), (0, x;), (x;,0), (0, x,)}. In this way, by use of the
properties 5, 6 and 7 and of the observations related to fold and flip bifurcations of 4, we can
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Fig. 6. Trajectories of P defined in (14) at x4 = 1.56 (h has the 2-cyclic absorbing intervals 7, — I,,
I, = [sy, 851, I, = [53, 5,]). (@) A trajectory of P on the trapping set {(x,2):z = A} U {(x,2): x = z].
(b) An aperiodic computed trajectory in the 4-cyclic rectangles /; X [;, i,j = 1, 2.

analyse the complex structure of the bifurcations of P. In particular, when the 2-cycle x; — x,
of A flip bifurcate into an attracting 4-cycle, then the regime of multistability starts for the 2-d
map P (this flip bifurcation gives rise to two distinct attracting 8-cycles of P). For any value
of u in the first regime, 4, < u < uf, we know that either an attracting k-cycle (kK > 2) of A
exists (and thus, either k/2, if k is even, or (k + 1)/2, if k is odd, attracting cycles of P exist),
or strict chaos occurs in some critical set or in some cyclical intervals (and thus P is chaotic in
critical sets or in cyclical rectangles). At u = uf, P is chaotic (strict chaos) in the whole square
I x I. The same comments hold for u > uf as we have seen that also in the subsequent regimes
a complex structure of boxes exists, related to cycles of any period, k = 3, k=5, k=17,....

Figure 6a shows an example of a trajectory on the trapping set [(x,z):z = A(x)} U
{(c,2) :x =z}, for uy, < pu < uf,. An initial condition outside this trapping set gives the
trajectory of Fig. 6b, that is, P shows chaotic dynamics (nonstrict chaos) in the 4-cyclic
absorbing rectangles I; x I;, i,j = 1,2 (which correspond to the 2-cyclic absorbing intervals
I, — Lofh I, = [sy, s3], I, = [s3,5,]). Trajectories of P for u; < u < u¥, uin the first regime,
in the box of a 3-cycle of A, just before the homoclinic bifurcation which closes the box
(when A(x) has 3-cyclic absorbing intervals I, — I, — I, I, = [Sy, 831, [, = [84, 511, I3 = IS5, 55])
are shown in Fig. 7.

Figure 7a shows a set of 6-cyclical absorbing rectangles P'(Z, x I,), i = 1, ..., 6; Fig. 7b
shows a set of 3-cyclical absorbing rectangles Pi(l2 x 1), i = 1, 2, 3 (property 10 of Section 2);
Fig. 7c shows the attractor in the trapping set {(x,z):z = A*(x)] U {(x, 2) : x = h*(2)}, while
Fig. 7d shows the attractor in the trapping set {(x, z):z = 2°(x)} U {(x, 2) : x = h*(2)}.

Figure 8 shows some trajectories of P for u just beyond uj; in Fig. 8a we observe the
explosion of the trajectory in the whole absorbing I x I, I = [sp, 54]; in Fig. 8b the trajectory
belongs to the trapping set {(x, z) : z = A*(x)] U {(x, ) : ¥ = h*(2)} and in Fig. 8c the trajectory
belongs to the trapping set {(x, z) : 2 = #* ()} U [(x, 2) : x = A*(2)}.

Figure 9 shows trajectories of P corresponding to the trajectories of h(x) in Fig. 4 (u at the
end of a box of a 4-cycle). The two distinct 8-cyclic absorbing rectangles of P are shown in
Fig. 9a and Fig. 9b, while Fig. 9¢c shows the explosion of a chaotic trajectory in the absorbing
square I x I, soon after the end of the box.

il
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Fig. 7. Trajectories of P defined in (14) at u = 1.657 (< u3), for which 4 has 3-cyclic absorbing intervals
I, — I, — I,. (a) A trajectory in the 6-cyclic absorbing rectangles P'(J, x 1)), i =1,...,6. (B) A trajectory
in the 3-cyclic absorbing rectangles P'(J; x I}), i = 1, 2,3. (c) A trajectory in the trapping set [{x, )
7 = K} U {(x, 2) : x = A*(2)). (d) A trajectory in the trapping set {(x, 2): 2= B} U {(x, 2 : x = K@)}

5. CONCLUSIONS

We have taken into consideration a family of 2-d maps P of the form (x, z) — (2, h(x)),
where h(x) is a 1-d endomorphism defined by a continuous map, piecewise continuously
differentiable. A variety of interesting dynamical behaviours in this family are pointed out,
including multistability, i.e. coexistence of distinct attracting sets (cycles or cyclical chaotic
rectangles); degenerate bifurcations of cycles, and the existence of infinitely many trapping sets
in the form of graphs of functions (on which invariant sets can be defined). Moreover, the
cycles of a P-map can be classified as a function of the cycles of the 1-d map x = h(x). An
applicative example in which the 1-d map A(x) is an endomorphism with three inverses, has been
discussed in detail, by exploiting the relation between the bifurcation structure of the invariant
sets and the structure of the critical points of A(x). Particular emphasis has been put on
homoclinic bifurcations because of their role in the transition from regular to chaotic dynamics,
both in the 1-d dynamics of A(x) and in the 2-d dynamics of P. The bifurcations occurring
in the 2-d map P, described by the properties of Section 2, have been shown by the chosen
applicative example.
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Fig. 8. Trajectories of P defined in (14) at # = 1.658 (>u3). (a) An aperiodic trajectory in the absorbing
square Ix I, I = [sy,5,]. (b) A trajectory in the trapping set {(x,z):z = #*()} U i(x, 2) : x = B @)}
(¢) A trajectory in the trapping set {(x,z):z = #’(x)} U {(x, 2) : x = K*(2)}.
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Fig. 9. Trajectories of P at u = 1.793, at which / has 4-cyclic absorbing intervals 1, — 7, -1, -1,
(a) 8-Cyclic absorbing rectangles P(I, x 1), i=1,...,8. (b) 8-Cyclic absorbing rectangles P(I, x I,),
i=1,...,8 (c) u = 1.794, aperiodic trajectory in the absorbing square I x I, I = [so, 511
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