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Part I of this paper has been devoted to properties of the different Julia set configurations,
generated by the complex map TZ : z′ = z2 − c, c being a real parameter, −1/4 < c < 2. These
properties were revisited from a detailed knowledge of the fractal organization (called “box-
within-a-box”), generated by the map x′ = x2 − c with x a real variable. Here, the second part
deals with an embedding of TZ into the two-dimensional noninvertible map T : x′ = x2 + y − c;
y′ = γy + 4x2y, γ ≥ 0. For γ = 0, T is semiconjugate to TZ in the invariant half plane (y ≤ 0).
With a given value of c, and with γ decreasing, the identification of the global bifurcations
sequence when γ → 0, permits to explain a route toward the Julia sets, from a study of the
basin boundary of the attractor located on y = 0.
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bifurcation.

1. Introduction

The paper [Mira & Gardini, 2009], henceforth
denoted as Part I of the present work, has been
devoted to different configurations of the Julia sets
J generated by the map TZ : z′ = z2 − c, when the
parameter c is restricted to the real axis: −1/4 <
c < 2, z = x+jy, j2 = −1. This first part permitted
the definition of parameter intervals inside which J
belongs to well-defined types. The two-dimensional

real form of the complex map is:

TZ :
{

x′ = x2 − y2 − c

y′ = 2xy
(1)

From the knowledge of the fractal bifurcation
organization called “box-within-a-box”, generated
by the one-dimensional real Myrberg’s noninvert-
ible map x′ = x2 − c [Myrberg, 1963], five differ-
ent principal types of Julia sets have been defined,
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corresponding to c-interval and their boundaries.
Now the purpose is to explain bifurcation routes
leading to these different types. This is achieved
by an “indirect” embedding of TZ into a two-
dimensional family of noninvertible maps T :

T :
{

x′ = x2 + y − c

y′ = γy + 4x2y
(2)

with −1/4 ≤ c ≤ 2, γ ≥ 0. The embedding
is not a “direct” one because its link with TZ is
not obtained by equating the parameter γ to zero.
Indeed the maps family is characterized by the fact
that T γ=0 is semiconjugate to TZ in the invariant
half plane (y ≤ 0) (cf. [Agliari et al., 2003, 2004]),
i.e. T γ=0 ◦ h1 = h1 ◦ TZ , where h1(x, y) = (x,−y2)
(this is easily proved noticing that T ◦ h(x, y) =
T (x,−y2) = (x2−y2−c,−4x2y2) and h◦TZ(x, y) =
h(x2 − y2 − c, 2xy) = (x2 − y2 − c,−4x2y2)). This
property leads to the following remarks:

Then the properties of the different Julia set con-
figurations, obtained for fixed values of parameter
c, are revealed from a bifurcation study when γ
decreases from 1 to 0, i.e. a route toward Julia sets.
For γ = 0 the basin boundary structure (in the
sense defined in Sec. 1 of Part I) generated by T in
(2) is particular in the invariant half plane (y ≤ 0),
T γ=0 being equivalent to the two-dimensional map
TZ in this half plane. This means that this basin
boundary in y < 0 is a fractal set nowhere smooth,
except for the particular value of c = 0.

The study framework is founded on the follow-
ing elements. The line y = 0 is invariant by T . The
restriction of T to y = 0 is the Myrberg’s nonin-
vertible map T , x′ = x2 − c, characterized inside
the interval −1/4 ≤ c ≤ 2 by the fractal bifurcation
organization “box-within-a-box” described in Sec. 2
of Part I, with bibliographic references. The fractal
bifurcation organization of T plays a basic role in
the study of the two-dimensional map T . Indeed
let D be the basin of the attractor (in the simplest
cases, a period k cycle or a period k chaotic attrac-
tor) located in the half plane (y ≤ 0) (either on
y = 0, or in y < 0), and a given c value of the
above interval with γ > 0 decreasing. Our inves-
tigations will show that the map restricted to the
boundary arc ∂D− of D− = D ∩ (y ≤ 0) gener-
ates the box-within-a-box structure, with respect
to parameter γ, c having a fixed value, either com-
pletely, or in a perturbed form. Moreover, in the
parameter plane (c, γ) a basic organization of a
well-defined set of bifurcation curves is reproduced

according to this fractal structure. Then, from these
considerations, the route to the different configura-
tions of the Julia set (as described in Part I and
quoting Julia [1918] and Fatou [1919, 1920]) can be
also explained, from the qualitative changes of ∂D−
when γ > 0 decreases and tends toward zero. In
this framework, the paper also constitutes a more
complete study of the two-dimensional noninvert-
ible map T with respect to previous publications
[Agliari et al., 2003, 2004], from the presentation of
several global bifurcations generated by T .

The plane (x, y) of the noninvertible map T
is divided into three unbounded open areas Zr,
r = 0, 2, 4, each one generating r real distinct rank-
one preimages. The boundaries of the regions Zr

are made up of branches of the rank-one critical
curve LC, locus of points having two determinations
of the inverse map T−1 merging on the set LC−1,
obtained by equating to zero the Jacobian determi-
nant of T , T (LC−1) = LC [Mira et al., 1994; Mira
et al., 1996a; Mira et al., 1996b; Agliari et al., 2003].
The map TZ does not have the same property. Its
critical set is only a critical point: C = (−c, 0) and
C−1 = (0, 0) (z = −c and z = 0, respectively, for
the complex map), while C (x = −c) is the rank-one
critical point of the one-dimensional map restriction
of T to y = 0, i.e. x′ = x2 − c.

Following the route toward different Julia sets
from the above indirect embedding (2) some non-
classical phase plane behaviors are met. It is the
case of:

(a) direct transition nonconnected multiply-
connected basin (Sec. 4.3),

(b) for γ = 0 bifurcation destroying a chaotic
attractor in the presence of a Julia set contain-
ing a dendrite (cf. Part I, Sec. 5.5).

It is worth noting that the map T given by
(2) is not generic in a classical sense. Indeed the
absence of generality is related to the structure of
the critical curve made up of two arcs one of them
being double, as noted in [Agliari et al., 2003]. This
appears considering the map T as resulting from
ε = 0, when it is embedded into the map

Tε :
{

x′ = x2 + y − c

y′ = γy + 4x2y + εx

which is of so-called type Z0 − Z2 < Z4 (following
the notation used in [Mira et al., 1996a; Mira et al.,
1996b]), the symbol “<” denoting the existence of a
cusp point on the critical curve corresponding to a
cape of Z4 “penetrating” into Z2. The nonclassical



November 12, 2009 10:59 02475

From the Box-within-a-Box Bifurcation Structure to the Julia Set 3237

nongenerality of the map Tε in the case ε = 0 corre-
sponds to a bifurcation value for the critical set LC,
which exhibits a “double” arc Lb, resulting from
the merging of two arcs of the critical set LCε �=0,
as shown in the qualitative situations of Fig. 2 of
[Agliari et al., 2003].

Such a situation gives rise to very singular
dynamic properties of the phase plane (x, y), when
c-values correspond in the half plane y ≤ 0 to a
basin D which is a domain of convergence toward a
semi-stable (or neutral) cycle located on its bound-
ary ∂D, or correspond to a dendrite (see details in
Part I). In the two cases, the behavior in the half
plane y > 0 is not affected by this singular behavior,
and remains classical.

After this introduction local and global bifurca-
tions of a two-dimensional noninvertible map, with
their related symbolism, are defined in Sec. 2, from
a general point of view. Section 3 considers more
specifically the case of map T with the definitions
of its critical set, and some basic bifurcations. The
investigation of the bifurcation structure as a func-
tion of the parameter γ is developed in Secs. 4 and
5, with an analysis of the bifurcation curves issued
from the period doubling cascade, and the definition
of c intervals having the same qualitative behavior
for decreasing γ values. From the results of the pre-
vious sections, Secs. 6–8 explain the features of the
different types of Julia sets defined in Part I, by
studying the qualitative changes of the boundary
∂D− when γ > 0 decreases and tends toward zero.
The case of a dendrite as Julia set is considered
in Sec. 9. Some conclusions are drown in the last
section.

2. Bifurcations of the Map T

2.1. Local bifurcations

Consider the map (2), X ′ = T (X,Λ), X = (x, y),
and the parameter plane Λ = (c, γ). The multipliers
S1 and S2 of a (k; j)-cycle are the eigenvalues of the
linearization of the map T k in one of the k points of
this cycle. A cycle with multipliers |Si| < 1, i = 1, 2,
will be called (understood “asymptotically”) sta-
ble, or attracting. A cycle with one of the multi-
pliers |Si| > 1, i = 1, 2, will be called unstable, or
repelling.

The bifurcations considered here are related to
the map T in the half plane y ≤ 0, which for this
map implies defined signs of the multipliers. In the
parameter plane (c, γ) a fold bifurcation curve F j

k is
such that only one of the multipliers associated with

a (k; j) cycle is S1 = +1. This curve corresponds to
the merging of a (k, j) saddle cycle (0 < S1 < 1,
S2 > 1) with a stable (or unstable) (k, j) node cycle
(0 < S1 < 1, 0 < S2 < 1). A flip curve f j

k is such
that one of the two multipliers is S1 = −1, which
gives rise to the classical period doubling from the
(k; j) cycle. In the simplest cases (as the map (2)),
this curve corresponds to a stable (k, j) node cycle
(−1 < S1 < 0, S2 < 1) which turns into a (k, j)
saddle k-cycle (S1 < −1, 0 < S2 < 1 in the half
plane y ≤ 0), giving rise to a stable (2k, j′)-node
cycle (0 < S1 < 1, 0 < S2 < 1, in the half plane
y ≤ 0). A transcritical bifurcation curve Tcj

k, cor-
responds to an exchange of stability between two
(k, j) cycles merging at the bifurcation, for which
one of their two multipliers is S1 = +1.

The case Si(X,Λb) = e±jϕ, i = 1, 2, j2 = −1,
corresponds to a Neimark bifurcation. In the sim-
plest cases (as the map (2)), when Λ crosses through
Λb a stable (resp. unstable) focus point of a (k; j)
cycle becomes unstable (resp. stable) and gives rise
to a stable (resp. unstable) invariant closed curve
(γ) for a supercritical (resp. subcritical) Neimark
bifurcation of map T k. The corresponding bifurca-
tion curve (N j

k) in the parameter plane is called a
Neimark curve.

Fold, flip and Neimark bifurcation curves are
given in a parametric form (the vector X being the
parameter of the parametric form, Si(X, Λ) being
one of the two multipliers of the cycle (k, j) here
considered) by the relations:

X = T k(X,Λ), X �= T r(X,Λ),
for r < k, dim X = 2

Si(X,Λ) = +1, i = 1, 2, for F j
k and Tcj

k;

Si(X,Λ) = −1, i = 1, 2, for f j
k

Si(X,Λ) = e±jϕ, i = 1, 2, j2 = −1,
for Neimark curves.

The Neimark bifurcation may give rise to many
situations, when ϕ is commensurable with 2π. The
simplest one corresponds to a closed curve (γ)
made up of the unstable (resp. stable) manifold of
a period k saddle associated with a stable (resp.
unstable) period k node (or a period k focus). More
complex cases, depending on the nonlinear terms,
occur when certain values of ϕ, commensurable with
2π, ϕ = 2pπ/q, are related to exceptional critical
cases requiring special normal forms for their study
[Mira, 1987, pp. 215–239].
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A set of bifurcation curves in a parameter plane
Λ = (c, γ) is not enough to account for the complete
bifurcation properties. Indeed it does not permit
to identify the merging cycles. For this reason, the
parameter plane must be considered as made up of
sheets, each one being associated with a given cycle
(k; j), in a three-dimensional auxiliary qualitative
space having a “foliated structure”, the third dimen-
sion being an adequate “qualitative” norm related
to the (k, j) cycle. The identification of the sheets
“geometry” allows to show how to pass continuously
from one sheet to another following a continuous
path of the parameter plane, i.e. to know the pos-
sible communications between sheets. In the sim-
plest case, a fold bifurcation curve is the junction of
two sheets, one related to a saddle (k; j) cycle, the
other to a (k; j) cycle having the modulus of each
of the two multipliers less than one (stable node,
or stable focus far from the bifurcation curve), or
having the modulus of its two multipliers greater
than one (unstable node, or unstable focus far from
the bifurcation curve). A flip bifurcation curve is
the junction of three sheets, one associated with a
(k; j) cycle having the modulus of its two multipli-
ers less (resp. greater) than one, the second sheet
corresponding to a saddle (k; j) cycle having one
of its two multipliers less than −1, the third being
related to a (2k; j′) cycle having the modulus of its
two multipliers less (resp. greater) than one.

The sheets of the auxiliary three-dimensional
space present folds along fold curves, and have
junctions with branching along flip, or transcriti-
cal, curves. The association of several bifurcation
curves with their corresponding sheets, and commu-
nications through codimension s ≥ 2 singularities,
constitutes a bifurcation structure. Codimension-2
points correspond to complex communications
between the sheets [Mira, 1987].

2.2. Global bifurcations

Let D be the basin of an attracting set, ∂D its
boundary, L the critical curve separating an open
region Z0 (each point of which has no real preim-
age) from an open region Z2 (each point of which
has two real rank one preimages), L−1 the curve
of rank-one merging preimages. Figure 1 shows the
bifurcation giving rise to a multiply-connected basin
[Fig. 1(c)] from a simply-connected basin [Fig. 1(a)].
The bifurcation occurs when the number of inter-
section points ∂D ∩ L changes [two points a and
b merge in Fig. 1(b)]. In the case of Fig. 1(c) H0

(a)

(b)

(c)

Fig. 1. Global bifurcation simply-multiply connected basin.
Out of the basin (D) and its boundary, the orbits are diverg-
ing. Z0 (no preimage) and Z2 (two rank-one preimages) are
separated by L (critical curve), locus of points having two
coincident rank-one preimages located on L−1. The increas-
ing rank preimages of H0 ⊂ Z2 create holes inside (D), here
limited to rank three.
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(a)

(b)

(c)

Fig. 2. Bifurcation giving rise to a nonconnected basin
[Fig. 2(c)] from a simply connected basin [Fig. 2(a)]. The
bifurcation occurs when the number of intersection points
∂D ∩ L changes [Fig. 2(b)]. In the case of Fig. 2(c), ∆0 is
called a headland, its increasing rank preimages create non-
connected parts of the basin (called islands). The “main”
island D1 = T−1(∆0) intersects L−1.

is called a bay, its increasing rank preimages create
holes (called lakes) inside the basin, H1 = T−1(H0),
H1

2

⋃
H2

2 = T−1(H1), etc.
Figure 2 shows the bifurcation giving rise to

a nonconnected basin [Fig. 2(c)] from a simply-
connected basin [Fig. 2(a)]. The bifurcation occurs
when the number of intersection points ∂D ∩ L
changes. In the case of Fig. 2(c), ∆0 is called
a headland, its increasing rank preimages create
nonconnected parts of the basin (called islands),
D1 = T−1(∆0), D1

2

⋃
D2

2 = T−1(D1), etc . . . From
a parameter variation a new set of islands is also
created when an isolated island initially belonging
to Z0 crosses through the critical curve L, one of its
part belonging to Z2. The bifurcation corresponds
to the contact of the island boundary with L. More
details about such bifurcations are given in [Mira
et al., 1994, Mira et al., 1996a].

3. Some Basic Properties of the
Map T

3.1. Critical set and properties of
the inverse map

The map T is noninvertible. Indeed the Jacobian
determinant of T , |J(x, y)| = 2xγ + 8x3 − 8xy, van-
ishes on LC−1, made up of two branches, LC−1 =
La−1

⋃
Lb−1:

La
−1: x = 0, Lb

−1: y =
γ

4
+ x2 (3)

The rank-one image of LC−1 gives the critical curve
LC = T (LC−1), also made up of two branches,
LC = La

⋃
Lb:

La : y = γ(x + c), Lb :


y =

(
x + c +

γ

4

)2

x ≥ γ

4
− c

(4)

In the phase plane the critical curve LC separates
regions Zi each point of which has i rank-one preim-
ages, i = 0, 2, 4. For γ ≥ 0 (the case studied in this
paper) these regions are bounded by the following
arcs of LC:

• a straight line La with positive slope if γ > 0
intersecting the x-axis at the point (−c, 0) (x =
−c is the rank one critical point of the Myrberg’s
map, restriction of T on the x-axis),

• a branch of parabola Lb, tangent to La at the
point C = (−c + γ/4, γ2/4).
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In the particular case γ = 0, La reduces to the
x-axis and is tangent to Lb at the point (−c, 0).

The region Z0 always exists, and Z4 becomes
wider and wider as the parameter γ decreases. The
region Z4 is a subset of the half plane y > 0 if γ ≥ 0.
The papers [Agliari et al., 2003, 2004] provide the
figures related to the regions Zi.

For γ > 0 the half plane (y < 0) includes the
areas Z0, Z2 and a portion of critical curve La. The
inverses of a point p = (u, v) ∈ (y < 0) are obtained
by solving with respect to (x, y) the system u =
x2 +y−c, v = γy+4x2y. Any point p = (u, v) ∈ Z2

has the following inverses:

T −1
1 (u, v) = (

√
ξ, u + c − ξ),

T −1
2 (u, v) = (−

√
ξ, u + c − ξ)

where ξ =
1
2

(
u + c − γ

4
−
√(

u + c +
γ

4

)2 − v

)
(5)

3.2. Some basic bifurcations

The restriction of the mapT to the x-axis is the one-
dimensional Myrberg’s map x′ = x2 − c. Thus, at
c = c(1)0 = −1/4 a saddle-node bifurcation occurs,
and for c > −1/4 T admits two fixed points on the
x-axis denoted P ∗ and Q∗. The points P ∗ and Q∗
are respectively the points q2 and q1 for the map
reduced to the x-axis (cf. Part I, Sec. 2):

P ∗ =
[
1 −√

1 + 4c
2

, 0
]

,

Q∗ =
[
1 +

√
1 + 4c
2

, 0
]

.

The eigenvalues of the fixed point Q∗ are S1(Q∗) =
1+

√
1 + 4c with eigendirection r1 = (1, 0) (i.e. it is

the eigenvalue of the restriction of T to the x-axis),
and S2(Q∗) = γ+(1+

√
1 + 4c)2 with eigendirection

r2 = (−1, 1 +
√

1 + 4c). As S1 > 1, it is always
unstable for the map T , as saddle or repelling node.
Its rank-one preimage Q∗−1 on y = 0, different from
Q∗, is such that x(Q∗−1) = −x(Q∗). The eigenvalues
of the fixed point P ∗ are S1(P ∗) = 1−√

1 + 4c with
eigendirection r1 = (1, 0) (i.e. on the x-axis), and
S2(P ∗) = γ + (1 − √

1 + 4c)2 with eigendirection
r2 = (1,

√
1 + 4c − 1).

From the relations (5) defining the inverses
T −1

1 (u, v) and T −1
2 (u, v), with γ = 0 and v = 0, it

appears that the inverse of the segment x(Q∗
−1) ≤

x ≤ −c on the x-axis, in the half plane y ≤ 0, is the
segment −(1+

√
1 + 4c)/2+c ≤ y ≤ 0 of the y-axis.

So the ordinate of the lowest point of the Julia set,
obtained for γ = 0, is y = −(1 +

√
1 + 4c)/2 + c.

The bifurcations organization generated by the
restriction of the map T to the x-axis is that of
the Myrberg’s map described in Sec. 2 of Part I,
with λ ≡ c. It is the box-within-a-box one with
c(1)0 = λ(1)0 = −1/4, c∗1 = λ∗

1 = 2.
Moreover, at γ = 1 another saddle-node bifur-

cation occurs, so that for γ < 1, the map T admits
two more fixed points:

R∗ =
(
−
√

1 − γ

2
, c − 1 − γ

4
−

√
1 − γ

2

)
,

S∗ =
(√

1 − γ

2
, c − 1 − γ

4
+

√
1 − γ

2

)
At the bifurcation value γ = 1 the two fixed points
R∗ = S∗ = (0, c) have the multipliers (eigenvalues)
S1 = 1 and S2 = 0, and belong to the curve LC−1

defined above. Let us define, for γ ≤ 1, H+(c, γ) =
c − (1 − γ/4) − (

√
1 − γ)/2 and H−(c, γ) = c −

(1 − γ/4)+(
√

1 − γ/2) the functions giving the sec-
ond coordinate of these two more fixed points of T .
Then the two arcs: H− = 0 for c ≤ 0, and H+ = 0
for c ≥ 0 define a transcritical bifurcation Tc20 ,
where R∗ and S∗ exchange their stability with the
fixed point P ∗ (on y = 0). For H− = 0 we have
S∗ ≡ P ∗, S2(P ∗) = S2(S∗) = +1, while for H+ = 0
and we have R∗ ≡ P ∗, S2(P ∗) = S2(R∗) = +1.
In the interval −1/4 < c < 0, S∗ is locally stable,
with y(S∗) < 0, if H− < 0, and it is a saddle if
H− > 0 while the fixed point R∗ (y(R∗) < 0) is a
saddle in a sufficiently small neighborhood of H−.
For c > 0 and H+ > 0 R∗ is locally stable, with
y(R∗) > 0. If H+ < 0 R∗ is a saddle in a sufficiently
small neighborhood of H+. The fixed point S∗ is a
saddle in a sufficiently small neighborhood of H+.
By crossing through Tc20 , with decreasing values
of γ, P ∗ become a stable node for T , while S∗ and
R∗ become saddles, with y(S∗) > 0 and y(R∗) < 0.
See the qualitative picture on such bifurcations in
Fig. 3(a) for c < 0 and in Fig. 3(b) for c > 0.

P ∗ now represents the fixed point q2 of the
Myrberg’s map. The flip bifurcation points of the
box ω1 denoted cbi in Part I, here will be denoted
c2i , i = 1, 2, 3, . . . , with c21 = 3/4 (i.e. cb1) and
c22 = 5/4 (i.e. cb2). The index i = 0 corresponds to
the fold bifurcation c(1)0, the limit point is c2∞ =
c1s 
 1.401155189.

The map T is symmetric with respect to the
axis x = 0, i.e. T (−x, y) = T (x, y). This means
that the basins are symmetric sets.
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(a) (b)

(c)

Fig. 3. Basic bifurcation curves of the interval −1/4 = c20 = c(1)0 ≤ c ≤ c1s. Related to a period 2i cycle, F2i , f2i , Tc2i ,
N2i , i = 0, 1, 2, . . . , respectively correspond to fold, flip, transcritical, and Nëımark bifurcations.
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3.3. First set of bifurcation curves

The bifurcation curves considered here [Figs. 3(a)
and 3(b)] are viewed in the interval −1/4 = c20 =
c(1)0 ≤ c ≤ c21 = 3/4 (i.e. cb1) the boundaries being
respectively the fold point and the first flip one for
the Myrberg’s map x′ = x2 − c, restriction of T
to the x-axis. We are essentially interested in cycle
points, and in the basin boundaries in the half plane
(y ≤ 0), and their bifurcations. The case c < −1/4
is out of the field of this study. It corresponds to the
boundary of the domain of bounded orbits (when it
exists, i.e. c not too small) entirely located in the
half plane (y < 0).

Note that the half plane (y < 0), with γ ≥ 0, is
invariant by application of T . The “germinal” situa-
tion is the bifurcation value γ = 1, for which the two
fixed points R∗ = S∗ = (0, c) belong to LC−1 with
multipliers (eigenvalues) S1 = 1 and S2 = 0. In the
parameter plane (c, γ) the line γ = 1 is a fold curve,
now denoted F20 , joining two sheets of the foliated
dim3 space: one related to the fixed point R∗ (a
stable node for γ = 1 − ε, ε > 0 being sufficiently
small), the other associated with the unstable fixed
point S∗ (a saddle near γ = 1). For γ > 1 the
whole phase plane has no singularity except those
on the x-axis, and for y �= 0 the points have diver-
gent trajectories.

Consider the behavior of the fixed point R∗
(i.e. a period 20 cycle). The curve Tc20 (Figs. 3(a),
3(b) and Fig. 5 with i = 1) is tangent to the fold
curve F20 at the point E0 (c = 0, γ = 1). Not too
far from F20 (c > 0) for H+ > 0 R∗ is a stable
node (y(R∗) > 0), while P ∗ (on y = 0) is a sad-
dle (−1 < S1 < 1, S2 > +1) if c ≤ 3/4, and an
unstable node (S1 < −1, S2 > +1) if c > 3/4. The
segment (−x(Q∗) ≤ x ≤ x(Q∗); y = 0) belongs
to the basin boundary ∂D(R∗) of R∗, and the half
plane y < 0 has no singularity if the point (c; γ)
remains not too far from F20 . For H+ < 0, below
the transcritical bifurcation Tc20 R∗ becomes a sad-
dle (S1 > 1; −1 < S2 < 1), and the fixed point P ∗
becomes a stable node. Close to this bifurcation its
basin is simply connected and has a part D−(P ∗)
in the region y < 0, R∗ ∈ ∂D−(P ∗). If c > 0 the
region H+ < 0 contains the arc of flip curve f20 ,
ending at (c = c21 = 3/4, γ = 0) [Fig. 3(b)]. The
flip curve f20 is related to a period doubling from
R∗. Crossing through f20, R∗ turns into an unstable
node (S1 > 1; S2 < −1) and gives rise to a period
two saddle also belonging to the basin boundary arc
∂D−(P ∗). The curve f20 contains a flip codimension

two point M0 (c 
 0.2049, γ 
 0.5482) which
is a tangential contact with a fold arc F21 . With
decreasing values of γ crossing through this F21

arc, the map generates a period two node (attract-
ing or repelling) and a period two saddle (S1 > 1;
0 < S2 < 1).

The basin part D−(R∗) does not exist in the
region (R1

1) of Fig. 4 with i = 1, because the stable
fixed point R∗ is in the positive half plane (y > 0)
and other invariant sets do not exist in the half
plane (y < 0). The region R1

1 is bounded by an
arc F21 , the point A1 = Tc20 ∩F21 (c(A1) 
 0.5662,
γ(A1) 
 0.35988) and an arc Tc20 , while the upper
boundary is the first fold bifurcation curve F20 (γ =
1). From the flip bifurcation arc f20 with c < c(M0)
a decrease of γ leads to successive period doubling
of a period 2i saddle, which gives rise to a cascade
of flip curves (the first Myrberg’ spectrum) f2i , i =
1, 2, . . . , with the limit fs when i → ∞.

The fold arc F21 [Fig. 3(b)] is tangent to the arc
N21 of Neimark bifurcation (S1,2 = e±jϕ, j2 = −1)
at the point N1 (ϕ = 0, i.e. S1 = S2 = 1). For
c(M0) < c < c(N1), decreasing γ and crossing
through the fold curve F21 gives rise to the above
period 21 saddle and the corresponding period 21

node is unstable, and the two cycles belong to y < 0.
For c(N1) < c < c(E1) crossing through F21 , a
period 21 saddle always appears, but now associ-
ated with a period 21 stable node (belonging to
y < 0), which turns into a stable period 21 focus
when γ decreases. With a further decrease of γ, the
stable period 21 focus becomes unstable, and cross-
ing through the Neimark curve N21 it gives rise to
a period 21 invariant closed curve (γ21) [path b̂gh of
Fig. 6(a)]. On the path b̂d of Fig. 6(b), the period 21

saddle may undergo a period doubling followed by
the inverse process. With a new γ decrease, moving
away the curve N21 the invariant closed curve turns
into another period 21 attractor (weakly chaotic
ring, or chaotic area [Mira et al., 1996a; Frouzakis
et al., 1997]). Then the stable period 21 invariant
closed curve, or the period 21 attractor, is destroyed
with its basin at points of the bifurcation arc N2i

after contact of the attractor with its corresponding
basin boundary.

The fold arc F21 is also tangent to a transcriti-
cal bifurcation curve Tc21 at a point E1, c 
 0.9658,
γ 
 0.247 [Fig. 3(b)]. For c > c(E1), crossing
through F21 always gives rise to a period 21 sad-
dle and a stable node, which now belong to the half
plane (y > 0). The curve Tc21 intersects γ = 0 at
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Fig. 4. Partition of the parameter plane in regions giving a similar qualitative behavior in the phase plane.

(a)

Fig. 5. Qualitative changes in the phase plane by following the path (abcdef ) in the parameter plane. Sad2i, SN2i, denote
a period 2i saddle cycle, and a stable period 2i node, respectively.
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(b)

Fig. 5. (Continued )

the points c = c21 = 3/4 (i.e. cb1) and c = c22 = 5/4
(i.e. cb2) flip points of the Myrberg’s map x′ = x2−c
(restriction of T to the x-axis). The flip curves f20

and f21 intersect the axis γ = 0 at c = c21 and
c = c22 , respectively. The bifurcation properties
related to Tc21 are given by Fig. 5(b) putting i = 1.
So let us follow the parameter path a, b, c, d, e, f of
Fig. 5(a), crossing through the fold arc F21 and
Tc21 . The stability exchange between the period
21 cycles (saddles denoted Sad21, and stable nodes
denoted SN21 with ordinates y = 0, or y < 0, or

y > 0) occurs according to Fig. 5(b) scheme, where
b, e are fold points, c, d are transcritical points.

The foliated structure related to the neighbor-
hood of Tc21 is given by Fig. 7 with i = 1, the struc-
ture for c < c(Tc21) being described by the left part
of Fig. 8, which will be discussed in Sec. 4.2. Here in
Fig. 7 the sheet y = 0 is separated into two regions
by Tc21 , one related to the stable node SN21, the
other to the saddle Sad21, located on y = 0. For
the map restricted to the x-axis these two cycles
are respectively the period 21 stable cycle, and the

(a)

(b)

Fig. 6. Qualitative changes in the phase plane by following the path (bgh) in the parameter plane (Fig. 5). Sad2i, SN2i,
denote a period 2i saddle cycle, and a stable period 2i node, respectively. SF2i, SICC2i, UF2i, UN2i are a stable period 2i

focus, a stable period 2i invariant closed curve, an unstable period 2i focus, an unstable period 2i node, respectively.
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period 21 unstable cycle, resulting from the desta-
bilization of the previous stable one after the flip
bifurcation, for c > cb1 (i.e. c21). Each point of
the sheet Sa21 (resp. Ss21) is related to a saddle
Sad21(y < 0) (resp. a stable node SN21(y < 0)).
Each point of the sheet Sa′21 (resp. Ss′21) is related
to a saddle Sad21(y > 0) (resp. a stable node
SN21(y > 0)).

4. Bifurcations Set of the ω1

Spectrum

4.1. Bifurcation curves

The bifurcation curves organization of Fig. 3,
described above considering cycles of periods 20 and
21, also recurs for the period 2i cycles, i = 2, 3, . . .
of the ω1 spectrum (cf. Part I, Sec. 2). Figure 3(c)
shows this property for i = 2, with c22 = 5/4. This
means that each curve f2i has a flip codimension-
two point M i joining a fold arc F2i+1 , locus of merg-
ing of a period 2i+1 saddle and a period 2i+1 node,
as for the case i = 1 considered in Secs. 3.2 and 3.3.

The point M i separates two arcs of f2i . The arc
c < c(M i) (Fig. 5) is such that, crossing it with γ
decreasing, the period 2i saddle turns into an unsta-
ble period 2i node (S1 > 1, S2 < −1), and gives rise
to period 2i+1 saddle (S1 > 1, −1 < S2 < 1). The
f2i arc for c > c(M i) is such that, crossing it with
γ increasing, the unstable period 2i node turns into
a period 2i saddle, but also gives rise to a period
2i+1 repelling node (S1 > 1, S2 > 1). Each fold arc
F2i is tangent to an arc N2i of Neimark bifurcation
(S1,2 = e±jϕ, j2 = −1) at a point N i (ϕ = 0, i.e.
S1 = S2 = 1). With γ decreasing, crossing through
the curve N2i the map gives rise to a stable period 2i

invariant closed curve by destabilization of a period
2i focus.

Each fold arc F2i is tangent to a transcritical
bifurcation curve Tc2i at a point Ei. The curve Tc2i

intersects γ = 0 at the points c = c2i and c = c2i+1 ,
flip points of the Myrberg’s map x′ = x2 − c. Each
flip curve f2i intersects the axis γ = 0 at c = c2i+1 ,
and the limit fs intersects this axis at c = cs =
limi→∞ c2i 
 1.401155189.

Fig. 7. Foliation of the parameter plane by crossing the transcritical curve Tc2i . Each sheet is related to a well defined cycle
of Fig. 5(b).
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Fig. 8. In relation with Fig. 5(a), additional information on the parameter plane foliation before crossing the transcritical
curve Tc2i (left part of the figure), and after crossing (right part of the figure).

Let us follow the parameter path a, b, c, d, e, f of
Fig. 5(a), crossing through the fold arc F2i and Tc2i .
The stability exchange between the period 2i cycles
(saddles denoted Sad2i, and stable nodes denoted
SN2i with ordinates y = 0, y < 0, y > 0) occurs
according to Fig. 5(b) scheme.

4.2. Foliated bifurcations structure

The foliated structure is given by Figs. 7 and 8.
Each sheet of this structure is related to a well
defined cycle. Considering Fig. 8, the sheet Sa2i is
related to the period 2i saddle cycle (denoted 2i sad-
dle), born from crossing through the flip curve f2i−1 .
The sheet Sb2i−1 related to the period 2i−1 unstable
node cycle (S1 > 1, S2 < −1). The curve f2i−1 is the
junction of three sheets. For c < c(M i−1) they are
the sheets Sa2i , Sa2i−1 , and Sb2i−1 . For c > c(M i−1)
they are the sheets Sb2i−1 , Sa2i−1 , and Ss2i related
to the period 2i node (y < 0) born from the fold
curve F2i . This cycle is always unstable near f2i−1

and near the arc M̂ i−1N i of F2i . It is stable near
the arc N̂ iEi of F2i , then with decreasing γ-values,
this period 2i node turns into a focus, becoming
unstable when c < c(N2i). In brief, for decreasing
γ values the arc c < c(M i−1) of the flip bifurcation
f2i−1 is characterized by:

2i−1 saddle → 2i−1 unstable node + 2i saddle (6)

and the arc c(M i−1) < c < c
2i is characterized by

2i−1 saddle + 2i unstable node
→ 2i−1 unstable node (7)

These cycles have their ordinates y < 0, and the
bifurcations in (6), (7) concern different sheets.

Whatever be the index i, the foliated structure
related to the curve Tc2i , given in Fig. 7, occupies
the empty place of Fig. 8, between the left and the
right parts. Here the sheet y = 0 is separated into
two regions by Tc2i , one related to the saddle Sad2i,
the other to the stable node SN2i, located on y =
0. For the map restricted to the x-axis these two
cycles are respectively the period 2i stable cycle,
and the period 2i unstable cycle, resulting from the
destabilization of the previous stable one after the
flip bifurcation, i.e. c > cbi. Each point of the sheet
Sa2i (resp. Ss2i) is related to a saddle Sad2i(y < 0)
(resp. a stable node SN2i(y < 0)). Each point of
the sheet Sa′

2i (resp. Ss′
2i) is related to a saddle

Sad2i(y > 0) (resp. a stable node SN2i(y > 0)).
The arc M̂ i−1N i of F2i satisfies (S1 > 1,

S2 = 1). The F2i arc on the right of N i satisfies
(0 < S1 < 1, S2 = 1). Figure 8 gives the three-
dimensional foliated representation of the bifurca-
tion curves shown in Fig. 5(a), from which the part
related to Fig. 7 is removed for clarity sake. Here
the sheet Ss2i is bounded by the arc M̂ i−1Ei of F2i ,
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and a f2i−1 arc, and the arc Êic2i of Tc2i . It is asso-
ciated with the unstable, or stable, period 2i cycle
node, or focus, with y < 0, born from the fold F2i .

Let us remark that in the parameter plane the
curves f2j , j = i, i + 1, . . . , intersect the curve f2i−1

(Figs. 3 and 9), but it is not the case in the three-
dimensional foliated representation (Fig. 8). Indeed
the flip curves f2i−1 and f2i are located on two dif-
ferent sheets for x > x(M i−1).

Remark. The parameter plane properties, given
below, were numerically established for only rela-
tively small values of the integer i. Nevertheless it
is possible to conjecture the same behavior on the
basis of the bifurcation structure generated by the
map restricted to the x-axis (the box-within-a-box
one). The following reasonable conjecture is also
made: the organization of the Figs. 3(a) and 3(b)
bifurcation curves recur for each interval c(k)0 ≤
c ≤ ck21 , related to a period k basic cycle. Figure 9
shows this situation for k = 3.

4.3. Regions of the parameter plane
with the same qualitative
characteristics

In the interval −1/4 = c(1)0 = c20 < c ≤ c∗1 = 2, the
different arcs of curves described above [Fig. 5(a)]
limit regions of the parameter plane with specific
properties. For c > c(Ei−1) below the region Ri−1

(with lower boundary F2i−1) there are the fold

curves set F2n , n > i − 1, delimiting n slices. Each
of these slices corresponds to a period 2n attractor,
n ≤ i − 1, located in the half plane (y > 0), sta-
ble node or focus if (c; γ) is sufficiently near F2n .
Then, when γ decreases, it turns into an unstable
focus surrounded by an invariant closed curve which
becomes a chaotic attractor. Considering the col-
ored regions in Fig. 4, if (c; γ) ∈ Ri−1 the half plane
y < 0 is without any singularity. The upper region
R0 (i = 1) has for its lower boundary F20 , which is
the fold line γ = 1. If (c; γ) ∈ R0 the whole phase
plane is empty of any singular point, except for the
x-axis. In the lower region, when (c; γ) ∈ Ri

1, a
period 2i−1 attractor (cycle, or invariant close curve,
or chaotic area), belonging to the half plane (y > 0),
exists, and the half plane (y < 0) is without any sin-
gularity. When (c; γ) ∈ Ri

2, the half plane (y < 0)
contains a part D− of the basin of a stable period
2i−1 cycle located on y = 0 (the fixed point P ∗ is
related to i = 1). The boundary ∂D− contains the
period 2i−1 saddle cycle resulting from the crossing
through Tc2i−1 for c > c(Ei−1). This cycle turns
into an unstable node when (c; γ) ∈ Ri

3, and with
decreasing γ values, after crossing through the flip
curves f2n unstable period 2n−1 nodes, and period
2n saddles, appear on ∂D−, with the Myrberg’ spec-
trum ω1 order (cf. Part I, Sec. 2).

When (c; γ) ∈ Ri
4 (cf. Fig. 4), the half plane

(y < 0) contains a part D− of the basin of a sta-
ble period 2i−1 cycle located on y = 0 (the fixed
point P ∗ is related to i = 1). For c ∈ Ii

2 from

Fig. 9. Basic bifurcation curves of the interval 1.75 = c(3)0 ≤ c ≤ c3s. Related to a period 3.2i cycle, F3.2i , f3.2i , Tc3.2i ,
N3.2i , i = 0, 1, 2, . . . , respectively correspond to fold, flip, transcritical, and Nëımark bifurcations. These curves are similar to
the Fig. 3 ones.
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Fig. 10. c = 0, 47; γ = 0, 3881: phase plane situation before
the Fig. 11 bifurcation. R∗, Sr

2 , F r
2 , r = 1, 2, are respectively

a saddle fixed point, a period two saddle, and a period two
unstable focus. W S and W u denote the stable and unstable
manifolds of the saddles. P ∗ is a stable node located on y = 0.
La is an arc of critical curve separating the phase plane into
two regions Z0 (a point has no preimage) and Z2 (a point
has two rank-one preimages).

the fold bifurcation F2i a period 2i saddle Sr
2i ,

r = 1, 2, . . . , 2i, and a period 2i unstable node, turn-
ing after into an unstable period 2i focus F r

2i , appear
out of ∂D−. The cycles Sr

2i and F r
2i belong to the

nonconnected boundary of the domain of divergent
orbit. With decreasing values of γ and c ∈ Ii

2, a
global bifurcation of “saddle-saddle” type defined by
W u(Sr

2i) ≡ W s(Sr′
2i−1), r′ = 1, 2, . . . , 2i−1, occurs.

For i = 1 this bifurcation is described before the
bifurcation in Fig. 10 (c = 0, 47; γ = 0, 3881), at the
bifurcation in Fig. 11 (c = 0.47; γ 
 0.388062942),
and after that in Fig. 12 (c = 0.47; γ = 0, 388) for
which ∂D− now contains F r

2i and the stable man-
ifold of the saddle Sr

2i (for more details cf. below
Sec. 5.4).

When c ∈ Ii
3 ∪ Ii

4 (cf. Fig. 4), (c; γ) being
sufficiently close to the fold curve F2i a period
2i stable node, or focus, or invariant close curve
exists in the half plane y < 0. The related basins
of the 2i fixed points of T 2i

and D− are with-
out any connection, and without common bound-
ary. With new γ decreasing values, this period 2i

attractor becomes unstable, leading the pair period
2i saddle and unstable focus to the same situation
occurring for c ∈ Ii

2. The boundary ∂D− contains

Fig. 11. c = 0.47; γ � 0.388062942: saddle-saddle
bifurcation.

the period 2i−1 saddle cycle (the fixed point R∗ if
i = 1) resulting from the crossing through Tc2i−1 for
c > c(Ei−1). Now a saddle-saddle bifurcation D− is
nonconnected since it is in Fig. 2(c) situation. The
islands (nonconnected parts) have the stable mani-
fold W s(Sr

2i) of the saddle Sr
2i as limit set, and for

i = 1, Fig. 13 (c = 0.6; γ = 0.25972) shows the situ-
ation. For i = 1 the above saddle-saddle bifurcation
is described in Figs. 14 (c = 0.6; γ 
 0.259716125)

Fig. 12. c = 0.47;γ = 0, 388: situation after the saddle-
saddle bifurcation. Now the basin boundary ∂D−contains F r

2i

and the stable manifold of the saddle Sr
2i .
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Fig. 13. c = 0.6; γ = 0.25972: due to the creation of a head-
land (La intersects the immediate basin boundary at three
points, as in Fig. 2(c)) the basin is nonconnected. The islands
(nonconnected parts) have the stable manifold W s(Sr

21) of
the saddle Sr

2 as limit set.

and 15 (c = 0.6; γ = 0.2597). It gives rise to a multi-
ply connected basin D−, being in the Fig. 1(c) situ-
ation (more details are given in Sec. 5.4). The basin
D− becomes simply connected (Fig. 16, c = 0.6;
γ = 0.259653) via the bifurcation in Fig. 1, begin-
ning with Fig. 1(c) and arriving at the Fig. 1(a)

Fig. 14. c = 0.6; γ � 0.259716125: saddle-saddle bifurcation
which gives rise to a multiply connected basin D− (Fig. 1(c)
situation) when γ decreases from this value.

Fig. 15. c = 0.6; γ = 0.2597: multiply connected basin
D− obtained from the Fig. 14 situation, which has induced
a direct transition nonconnected multiply-connected basin.

situation. It is worth to underline that, for c ∈ Ii
3,

the saddle-saddle bifurcation W u(Sr
2i) ≡ W s(Sr′

2i−1)
induces a direct transition nonconnected multiply-
connected basin as in Sec. 4.2 of the paper [Bischi
et al., 2006].

If (c; γ) ∈ Ri
5, a stable period 2i−1 attractor

(R∗ if i = 1) exists in the half plane (y > 0) and
the segment (−x(Q∗) ≤ x ≤ x(Q∗); y = 0) belongs

Fig. 16. c = 0.6; γ = 0.259653: the basin D− becomes sim-
ply connected via the bifurcation of Fig. 1, beginning with
Fig. 1(c) and arriving at the Fig. 1(a) situation.
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to the boundary ∂D of its basin D ⊂ (y > 0). If
(c; γ) ∈ Ri

5 is above the curve N2i (cf. Figs. 3(b) and
4) then the half plane y < 0 contains the period 2i

singularities mentioned above for c ∈ Ii
4.

The region (Ri
6) is bounded by the arcs Êic2i

of Tc2i , Êic2i of the arc C2i . This new arc C2i (cf.

Figs. 3(b) for i = 1, and 3(c) for i = 2) corresponds

to another type of saddle-saddle bifurcation. Now
the unstable manifold W u(Sr), r = 1, 2, . . . , 2i,
of the period 2i saddle (y = 0) merges with the
stable manifold W s(Sr

2i) of the period 2i saddle
(y < 0). The qualitative view of this new “saddle-
saddle” bifurcation is given by Fig. 17(b) for i = 1,
where the fixed point P ∗ (y = 0) is an unstable

(a)

(b)

(c)

Fig. 17. Other type of saddle-saddle bifurcation. P ∗ (y = 0) is an unstable node. The period two cycle (y = 0) Sj , j = 1, 2,
born from P ∗ by period doubling is a saddle, whose stable manifold (belonging to the x-axis) is W s(Sj), the unstable one
being W u(Sj). The point S1

−1 is the rank-one preimage of S1 different from S2, S2
−1 the rank-one preimage of S2 different

from S1. The points Sj
2, F j

2 , j = 1, 2, are respectively those of the period two saddle cycle and stable node (becoming a focus).
(a) Situation before the bifurcation: the immediate basin of the period two attracting set, in the region y < 0 of the phase
plane, is nonconnected. (b) Situation at the bifurcation: the unstable manifold W u(Sr), r = 1, 2, of the period 21 saddle
(y = 0) merges with the stable manifold W s(Sr

21) of the period 21 saddle (y < 0). (c) Situation after the bifurcation.
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node. Figure 17(a) represents the situation before
the bifurcation, and Fig. 17(c) the situation after
the bifurcation. The period two cycle (y = 0) Sj ,
j = 1, 2, born from P ∗ by period doubling is a sad-
dle, whose stable manifold (belonging to the x-axis)
is W s(Sj), the unstable one being W u(Sj). The
point S1−1 is the rank-one preimage of S1 different
from S2, S2−1 the rank-one preimage of S2 different
from S1. The points Sj

2, F j
2 , j = 1, 2, are respec-

tively those of the period two saddle cycle and stable
node (becoming a focus) generated by the fold bifur-
cation on the arc N̂ iEi of F2i . The stable manifold
of Sj

2, and the unstable one, are denoted W s(Sj
2)

(basin boundary of F j
2 ) and W u(Sj

2), respectively.
In Fig. 17(b) W s(Sj

2) has merged into W u(Sj). The
left part of Fig. 5(b) with i = 1 [or Fig. 3(b)] corre-
sponds to Fig. 17(c), i.e. a point of the parameter
plane is located between C21 and the arc Ê1c20 of
Tc21 in Fig. 5(a). In the Fig. 17(a) situation the
immediate basin of the period two attracting set,
in the region y < 0 of the phase plane, is noncon-
nected. It has no contact with W s(Sj), j = 1, 2,
which is a part of the basin boundary of the attract-
ing set in the region y > 0. In the Fig. 17(c) situ-
ation the stable manifold W s(Sj), j = 1, 2, now
separates the basin of the period two attracting set
in the region y < 0 from the basin of the attracting
set in the region y > 0.

The region (Ri
7) is bounded by the transcriti-

cal curve Tc2i . Its properties are given by Figs. 5
and 7. The region Ri+1 contains the regions Ri+1

m ,
m = 1, 2, . . . , 7, having the above properties but
for period 2i+1 cycles. In the neighborhood of the
Tc2i arc Êic2i+1 , these cycles have ordinates y < 0
(Fig. 5).

4.4. Global view: bifurcation aspects
in the half plane y ≤ 0

If γ > 0 the half planes (y > 0) and (y ≤ 0) are
both trapping, with T (y > 0) ⊆ (y > 0) and T (y <
0) ⊆ (y < 0). For γ = 0 the negative half plane is
invariant (T (y < 0) = (y < 0)) and the positive one
is still trapping.

As already mentioned, for γ = 0 the map
T is topologically semiconjugate to the complex
quadratic map TZ in (1) in the half plane y < 0,
with T ◦ h = h ◦ TZ , where h(x, y) = (x,−y2). This
property leads to the following remarks:

(a) inside the half plane y ≤ 0 with γ > 0
decreasing and keeping fixed the value of c,

−1/4 < c ≤ 2, the map T generates more and
more sets of infinitely many real cycles. For
γ = 0 all the possible cycles have been cre-
ated, “conjugated” to those of the (complex)
quadratic map TZ in (1). All these cycles are
unstable with multipliers |S1| = |S2| > 1. The
limit set of these cycles constitute a Julia set
J = (E′). The case γ = 0 includes two excep-
tional situations. The first one is related to
fold and flip bifurcations c-values giving rise
to a domain of convergence (but not a basin),
bounded by J , toward a cycle of y = 0 belong-
ing to J (cf. Part I, Sec. 3.4, Sec. 3.6, and below
Sec. 6.4.1). The second situation is the dendrite
ones (cf. Part I, Sec. 5.5, and below Sec. 9).
One of them gives rise to a domain of conver-
gence toward a chaotic set ACh in the half plane
y ≥ 0, a subset set of ACh touching J ∩ (y = 0)
at a periodic chaotic segment CH for the map
reduced to the x-axis (cf. Part I, Sec. 2.1). With
respect to the two-dimensional map T , CH is a
weak Milnor attractor (on y = 0) for the points
in the CH neighborhood with y > 0.

(b) For c = c∗1 = 2 all the cycles of the quadratic
map TZ in (1) and their limit points are on the
x-axis. Thus also for T with γ = 0, these cycles
are located on the segment −2 ≤ x ≤ 2, y = 0.
These cycles are the ones generated by the Myr-
berg’s map x′ = x2 − c, c = 2, denoted (k; j),
k being the period, j the cyclic permutation of
one of their points by k successive iterations by
T (cf. Part I, Sec. 2).

(c) Consider the transcritical curve Tc20 , which is
made up of the two branches H−(c, γ) = 0
(c = (1 − γ)/4− (

√
1 − γ/2)) and H+(c, γ) = 0

(c = (1 − γ)/4 + (
√

1 − γ/2)) joining at the
point (c = 0, γ = 1). Remind that the first
branch (resp. second branch) is related to a sta-
bility exchange between P ∗ and S∗(resp. R∗).
The first branch intersects γ = 0 at the point
c = c20 = c(1)0 = −1/4 first basic fold bifurca-
tion of the Myrberg’s map, the S∗ = P ∗ mul-
tipliers being S1 = S2 = 1. For γ = 0 and
c = c21 = 3/4 (i.e. cb1) the R∗ multipliers are
S1 = −S2 =

√
4 − 4c, that is S1 = −S2 = 1.

Then the second Tc20 branch (related to R∗
with S1 = +1) intersects the flip curve f20

(related to R∗ with S2 = −1) at the point
c = c21 = 3/4 (i.e. cb1) and γ = 0.

We note that for γ = 0, the Julia set J ⊂ (y ≤
0), J ≡ ∂D−, made up of all the unstable cycles and
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their limit points, is nowhere smooth, except for two
cases. The first is c = 0, when the fixed point on the
x-axis is superstable, with multiplier S = 0, and J
reduces to a circle. The second case corresponds to
c-values of fold and flip bifurcations (cf. Sec. 6.4) for
which boundary ∂D− has a numerable set of points
where the tangent can be defined, elsewhere ∂D−
having no tangent.

For γ = 0, on the c-axis of the parameter plane,
a situation equivalent to that of Tc20 takes place for
each transcritical curve Tc2i , related to the period
2i cycle with multipliers S1 = −S2 = 1, and with its
points ordinate y = 0. That is, it results that each
point c2i−1 on γ = 0 is also a meeting of the bifurca-
tion curves: transcritical Tc2i−1 , flip f2i−1, Neimark
N2i , and C2i . The points c2j , j = 0, 1, 2, . . . , form
the Myrberg spectrum ω1 (Sec. 2) with c2∞ = c1s 

1.401155189.

Then the curves Tc2i−1 , f2i−1, N2i , C2i and
also the fold one F2i , tangent to f2i−1 and Tc2i ,
are reproduced by the ω1 period doubling in the
parameter plane (c, γ). We have the same prop-
erty for all the spectra ωn

k , k = 3, 4, . . . , n =
1, 2, 3, . . . , which are organized according the frac-
tal box-within-a-box bifurcation structure. Equiva-
lently it is possible to define a transcritical curve
Tcn

k2i , flip fn
k2i, Neimark Nn

k2i , and Cn
k2i , intersect-

ing at flip points cn
k2i of the spectrum ωn

k , and a
fold one Fn

k2i . This means that these curves form
spectra organized according to the box-within-a-
box structure in the parameter plane (c; γ). From
these considerations the following proposition can
be formulated:

Proposition. Consider the flip points cn
k2i−1 , k =

1, 3, 4, . . . (for k = 1 cn
k2i−1 = c2i−1), n =

1, 2, 3, . . . , Nλ(k), i = 2, 3, . . . , related to the cycles
(k, n) of the Myrberg’s map x′ = x2 − c (restriction
of the map T to the x-axis), cn

k2i−1 belonging
to the spectrum ωn

k (cascade of period doubling
bifurcations). On the γ = 0 axis of the parameter
plane (c, γ) each point c = cn

k2i−1 is a meeting of
five bifurcation curves: the two transcritical Tcn

k2i−1

and Tcn
k2i , the flip fn

k2i−1 , the Neimark Nn
k2i , and

Cn
k2i related to a saddle-saddle bifurcation. For i =

0, 1, 2, . . . , all these curves, and the fold ones Fn
k2i ,

constitute a spectrum Ξn
k in the (c, γ) plane. The set

of all the spectra Ξn
k , k = 1, 3, 4, . . . , are organized

according to the fractal box-within-a-box structure
defined in Sec. 2 of Part I.

This proposition is illustrated in Fig. 9, with
k = 3, n = 1, c1

3.20 = 7/4, c1
3.21 
 1.786853 which

is the flip bifurcation λ = λ1
3b1 of the Myrberg’s

map. It can be compared with Figs. 3–5 and 9 notic-
ing the reproduction of the same bifurcation curves
organization. The Fig. 5 configuration recurs with
the basic cycle (3; 1) for the whole spectrum Ξ1

3, as
for all the Ξj

k spectra with (k; j) as basic cycle.

(d) Consider a fixed c value of the interval −1/4 =
c(1)0 = c20 < c < c∗1 = 2, (c; γ ≥ 0) ∈ Ξj

k.
The number of cycles of T inside the half
plane y < 0 increases (thus are created) as γ
decreases, because we know (as remarked above
in (a)) that for γ = 0 all the possible cycles
in the region (y ≤ 0) have been created, and
they are conjugated to those of the (complex)
quadratic map TZ in (1). Such cycles can be
also identified by the symbolism (k; j), defined
in Part I, Sec. 2.1, the index j being defined
from the permutation of the abscissae of the
cycle points (the validity of this symbolism is
discussed below in Sec. 6.1). This also means
that starting from γ = 0, with increasing γ val-
ues and a given value of c, it is possible to follow
the cycles (k; j) evolution until they disappear
by a fold or flip bifurcation. For c → c∗1 = 2
the spectra are such that Ξj

k → (γ = 0). When
c = c∗1 no cycle with y < 0 is created for γ > 0
in the region (y ≤ 0), the only cycles are those
of the set J = (E′) = [−2; 2].

The numerical study of the bifurcations, lead-
ing to the results presented below, shows two dif-
ferent bifurcation sequences, obtained with a fixed
value of the parameter c and with γ decreasing val-
ues, 1 > γ ≥ 0.

(i) For the first sequence, inside an interval −1/4 <
c < cl, the arcs of fold and flip bifurcation
curves of the (c; γ) parameter plane are met in
the same order as the (k; j) cycles of the Myr-
berg’s map with increasing λ values. These arcs
do not intersect and are organized according
to the box-within-a-box bifurcations structure
represented by Fig. 1 of Part I.

(ii) For the second sequence, c > cl, arcs of fold
F j

k or flip bifurcation curves, associated with
various k �= 2i and j, intersect (see Figs. 18
and 19). This situation generates a disruption
of the Myrberg cycles order: it is as if the bifur-
cation parameter γ axis has underwent a fold
(see below Figs. 20–22). The Myrberg order is
respected but following a folded axis.
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Fig. 18. Arcs of fold F j
k , associated with various k �= 2i and

j, k = 3, . . . , 7. After intersection of these bifurcation curves
a disruption of the Myrberg cycles order occurs.

4.5. General view: half plane y < 0
properties for c20 < c ≤ c1s

Let D be the basin of the attractor A (fixed point,
or cycle) located either in the half plane y < 0 or
on y = 0, ∂D its boundary, D− = D ∩ (y < 0) the
part inside the half plane (y < 0), ∂D− its bound-
ary, and −1/4 = c(1)0 = c20 < c ≤ c1s = 1.401, . . . .
We note that other attractors may exist in the half
plane (y > 0). The basin D− may be connected
(simply connected or multiply connected) or discon-
nected, in which case it is made up by an immediate
basin D0 and all its preimages of any rank. Outside
D− other singularities may exist (unstable cycles
and their stable and unstable sets). The following

Fig. 19. Arcs of fold F j
k , associated with various k �= 2i and

j, k = 3, . . . , 7. The arcs k = 11 and 13 are added. After
intersection of these bifurcation curves, a disruption of the
Myrberg cycles order occurs.

situations can be identified.

(a1) A and thus D− does not exist: no cycle belongs
to the half plane y < 0.

(a2) A and thus D− does not exist: but the half
plane y < 0 contains period 2i unstable cycles.

(b1) A ∈ (y = 0) is the stable node fixed point P ∗,
D− and ∂D− are simply connected, (regions
R1

2, and R1
3 ∩ I1

1 , of Fig. 4 for which the fixed
point P ∗ is the unique attractor of T ).

(b2) A ∈ (y = 0) is the fixed point P ∗, D− is con-
nected but not simply, ∂D− is nonconnected,
due to the existence of internal holes (cf.
Fig. 15), or D− is nonconnected (cf. Fig. 13).

(b3) A ∈ (y = 0) is the fixed point P ∗, D− is sim-
ply connected, and the boundary ∂D∞ of the
domain of divergence (basin of an attractor on
the Poincaré ’s equator) contains a period two
cycles pair: an unstable node (or focus) and
a saddle with its stable manifold (cf. Sec. 5.3,
Fig. 10).

(b4) A ∈ (y = 0) is a stable period 2i node,
i = 1, 2, . . . , D− is nonconnected, ∂D− is
connected, due to a tangential contact with
y = 0 at points of period 2i−1 unstable nodes,
i = 1, 2, . . . , and their increasing rank preim-
ages (see below Fig. 36, c = 1.08; γ = 0.17).

(b5) A ∈ (y = 0) is a stable period 2i cycle, i =
1, 2, . . . , D− is nonconnected, due to a tangen-
tial contact of ∂D0− (boundary of its immedi-
ate basin) with y = 0 at points of a period
2i−1 unstable node (y = 0), i = 1, 2, . . . , and
its increasing rank preimages, and also to the
creation of a strange repeller SR inside the half
plane y < 0 out of the closure D0− of D0−. A
strange repeller is created before the islands
birth (see Figs. 20–22).

(b5) A ∈ (y = 0) is a stable period 2i node,
i = 1, 2, . . . , D− and ∂D− are nonconnected,
due to a tangential contact of ∂D− with y =
0 at points of period 2i−1 unstable nodes,
i = 1, 2, . . . , and their increasing rank preim-
ages, and due to the creation of islands having
as limit set a strange repeller SR (cf. below
Fig. 51, where q21 and q22 are the two points
of the period 21 cycle).

(c1) A ∈ (y < 0), a period 2i cycle, or a period
2i attracting set (invariant closed curve, or
chaotic attractor), i = 1, 2, . . . , is the unique
attractor of the half plane y < 0 (no attractor
on y = 0, in particular y(R∗) > 0, i.e. H+ > 0)
D(A) ⊂ (y < 0), (y = 0) ∩ ∂D(A) = ∅. Each
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Fig. 20. c = 0.6. Disruption of the Myrberg cycles order: it is as if the bifurcation parameter γ axis has underwent a fold.
In this figure λ is the parameter of the Myrberg’s map x′ = x2 − λ, directly related to γ. A cycle (k; j) (resp. (2i · k; 1, j)) is
here denoted kj (resp. 2ikj). It is associated (below, or above the symbol) with a γ-value for which it is stable. Parameter γ∗
and λ∗ are defined in Sec. 2 of Part I. They correspond to the merging of a rank-r, r > 2, critical point with a point of an
unstable period k, k = 1, 3, . . . , or unstable period 2i · k cycle.

Fig. 21. c = 0.7. Disruption of the Myrberg cycles order. The symbols are defined as in Fig. 20.
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Fig. 22. c = 1. The number of disruptions of the Myrberg cycles order has increased. The symbols are defined as in Fig. 20.

of the 2i cycle points (fixed points of the map
T 2i

), or each of the period 2i attracting set,
have a basin boundary without any common
arc with the basin boundary of the other cycle
points [cf. case of Fig. 17(a)]. A coexists with
a period 2i saddle located on ∂D(A).

(c2) A ∈ (y < 0), a period 2i cycle, or a period
2i attracting set (invariant closed curve, or
chaotic attractor), i = 1, 2, . . . , is the unique
attractor of the half plane y < 0, D(A) ⊂ (y <
0), (y = 0) ∩ ∂D(A) = ∅, but a stable period
2i−1 cycle Acy exists on y = 0, with a basin
D(Acy) intersecting the half plane (y < 0),
D(Acy) ∩ (y < 0) = D(Acy)−. Figure 23
(c = 0.557, γ = 0.359) illustrates this situa-
tion: D−(P ∗) exists, and y(R∗) ∈ ∂D−(P ∗) is
such that y(R∗) < 0, i.e. H+ < 0.

(c3) A ∈ (y < 0) is a period 2i cycle, i = 1, 2, . . . ,
D− is nonconnected, but ∂D− is connected
from unstable period 2i−1 node cycles located
on y = 0, (y = 0) ∩ ∂D �= ∅ [Fig. 17(c)].

Fig. 23. c = 0.557, γ = 0.359. A stable period 21 invariant
closed curve γr

2 , r = 1, 2, is the unique attractor of the half
plane y < 0. It coexists with the stable fixed point P ∗ (period
20), its basin D(P ∗) intersecting the half plane (y < 0), with
y(R∗) ∈ ∂D−(P ∗), y(R∗) < 0.
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5. Bifurcations Analysis for
c = Constant. Case of Period 2n

Cycles

This section is devoted to analyze the bifurcation
situations occurring in the interval J1 defined in
Fig. 5 with i = 1, for a constant value of c and
decreasing values of γ, γ(f1s) < γ < 1, f1s =
lim f2n when n → ∞. These bifurcations are essen-
tially those of the unstable period 2n cycles, n =
0, 1, 2, . . . , either located on the basin boundary arc
∂D− (i.e. belonging to (y < 0)), or those of (y < 0)
belonging to the disconnected part of the bound-
ary ∂D−∞ of the divergence domain (basin of an
attractor on the Poincaré equator), which progres-
sively are integrated to ∂D− when γ decreases. The
limitation to period 2n cycles means that γ is here
limited to values not too small, for the restriction
Tr of the map (2) to ∂D−. The interval J1 (in Fig. 4
with i = 1) is the union of intervals I1

p , p = 1, . . . , 5,
each of them being related to a well defined bifur-
cations sequence.

5.1. Interval I1
1

This interval is defined by c(E0) < c < c(M0),
E0 (c = 0, γ = 1), M0 (c 
 0.2049, γ 
 0.5482)
(Fig. 4 with i = 1). Above Tc20 (H+ > 0, i.e.
y(R∗) > 0) and with γ close to 1, R∗ is stable
with a basin without any part inside the region
(y ≤ 0). The half plane (y < 0) contains no sin-
gularities (situation (a1) of Sec. 4.5). With decreas-
ing γ values, limited to the ω1 spectrum, from a
point below Tc20 (H+ < 0, i.e. y(R∗) < 0), P ∗
(y = 0) is the unique attractor, and we have the
situation (b1) of Sec. 4.5. Then the restriction Tr

of the map (2) to ∂D−(P ∗) (the basin boundary of
P ∗) generates from the saddle R∗ ∈ ∂D−(P ∗) the
classical bifurcations of the Myrbeg’s ω1 spectrum
[Agliari et al., 2004].

A similar behavior occurs in the interval I1
0

defined by −1/4 < c < 0 = c(E0) [see Fig. 3(a)].
When γ is close to 1, S∗ belongs to (y < 0) and
is stable with a basin inside (y < 0) and R∗ is
a saddle on this basin boundary. With decreasing
values of γ, on the bifurcation curve Tc20 the fixed
points S∗ and P ∗ merge (on y = 0), and after P ∗
becomes stable while the saddle S∗ enters the region
y > 0 [see Fig. 3(a)]. From now on, as γ decreases,
the properties are the same as those occurring
in the interval I1

1 . This will appear below in
Figs. 43(a)–43(d).

5.2. Interval I1
2

The interval I1
2 is defined by c(M0) 
 0.2049 < c <

c(N1), N1 = (c 
 0.4799, γ 
 0.39557) (Figs. 4
and 5 for i = 1). We remind that N1 is the tangen-
tial contact point of the fold arc F2i with the arc
N21 of Neimark bifurcation (S1,2 = e±jϕ, j2 = −1,
at N1 ϕ = 0, i.e. S1 = S2 = 1). Above Tc20 and
below F20 (γ = 1) one has the case (a1) of Sec. 4.5.
Below Tc20 and above the fold curve F21 the behav-
ior is the same as in I1

1 (case b1): the saddle R∗ is
the unique singularity belonging to the half plane
(y < 0). After crossing through F21 the map gen-
erates two new singularities: a period two saddle
(sheet Sa2i in Fig. 8) and a period two unstable
node inside (y < 0).

For example let c = 0.47 be the fixed value
for the parameter c, and consider decreasing values
of γ. The corresponding γ value on the fold curve
F21 is γb1 
 0.3996821. From this bifurcation, the
period two saddle Si

2, i = 1, 2, and the period two
unstable node (turning after into an unstable period
two focus F i

2) appear out of D− and out of ∂D−.
They belong to the disconnected part of the bound-
ary ∂D−∞ of the divergence domain (basin of an
attractor on the Poincaré equator), which gives the
case (b3) in Sec. 4.5. Figure 10 (γ 
 0, 3881) has
shown this situation with the unstable (resp. sta-
ble) manifolds W u(Si

2) (resp. W s(Si
2)) of the sad-

dle Si
2, and the unstable (resp. stable) manifolds

W u(R∗) (resp. W s(R∗)) of the saddle fixed point
R∗, W s(Si

2) ⊂ ∂D−∞. Here T−1
2 (F 1

2 ) ∈ Z0 is the
determination of the F 1

2 inverse different from F 1
2 ,

T−1
1 (F 1

2 ) ≡ F 1
2 ∈ Z2.

Section 4.3 global bifurcation of “saddle-
saddle” type, W u(Si

2) ≡ W s(R∗), occurs for
γb2 
 0, 388062942 (Fig. 11), from which W s(Si

2),
W s(R∗), and F i

2 belongs to ∂D− with a “mush-
room” shape when γb3 < γ < γb2 (cf. Fig. 12,
γ = 0.388), γb3 being defined below. So when
γ < γb2 we are still in the situation (b1) in
Sec. 4.5. For decreasing values of γ, the “mush-
room” swells (Fig. 24, γ = 0.35) and disap-
pears. The unstable period two focus F i

2, i = 1, 2,
turns into an unstable node N i

2 which merges with
the saddle fixed point R∗ (becoming an unstable
node) when the parameter point (c = 0.47; γ =
γb3) belongs to the flip curve f20. For γ ≤ γb3

the boundary ∂D− contains the unstable node
R∗ and the period two saddle Si

2, i = 1, 2.
When γ decreases, this period two point under-
goes the classical cascade of bifurcations by period
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Fig. 24. c = 0.47, γ = 0.35. From the Fig. 12 situation
(γ = 0.388), with decreasing values of γ the “mushroom”
shape swells and disappears after.

doubling, belonging to the spectrum ω1 in the
Myrberg’s map.

The restriction of the map T to ∂D− gener-
ates the singular points (cycles and cyclical chaotic
arcs) of the box-within-a-box bifurcation structure
(Part I, Sec. 2.2), γ = 0 corresponding to λ∗

1.

5.3. Interval I1
3

The interval I1
3 is defined by c(N1) 
 0.4799 < c <

c(A1), A1 = (c 
 0.5662, γ 
 0.35988) (Figs. 4
and 5 for i = 1). Now the crossing through the fold
curve F21 with decreasing values of γ gives rise to
the generation of a period two saddle (sheet Sa2i

in Fig. 8) and a period two stable node. This occurs
with y(R∗) < 0, i.e. H+ < 0, and P ∗ as a stable
node on y = 0, with a basin D(P ∗) intersecting the
half plane (y ≤ 0), D(P ∗)∩ (y ≤ 0) = D(P ∗)−. Due
to the very narrow closeness of the curves N21 , N2i

and F21 the node quickly turns into a period two
stable focus F i

2, j = 1, 2, which becomes unstable
generating a period two stable invariant close curve
(γi

2). The basins D(F 1
2 ) of F 1

2 (resp. D(γ1
2) of (γi

2)),
D(F 2

2 ) of F 2
2 (resp. D(γ2

2) of γ2
2), and D− are with-

out any connection, and without common boundary
(situation c2 in Sec. 4.5, and Fig. 23). After a con-
tact of (γi

2) with ∂D0(γ
j
2) (γ = γ(N2i)) the bound-

ary of the immediate basin D0(γ
j
2), γj

2 is destroyed,
letting the pair period two saddle-unstable focus in

the situation of Sec. 5.2, i.e. for decreasing values of
γ the sequence of bifurcations is the same.

5.4. Interval I1
4

In this interval, defined by c(A1) < c < c21 = 3/4
(i.e. cb1), the fold curve F21 is now above the tran-
scritical curve Tc20 , γ(F21) > γ(Tc20). This means
that y(R∗) > 0, if γ is not too small [Fig. 3(b)].
For γ > γ(F21) the fixed point R∗ is stable, and the
half plane (y < 0) is void of singularities. Cross-
ing through the fold curve F21 (Figs. 4 and 5 for
i = 1) with decreasing values of γ, the map gives
rise to the generation of a period two saddle (sheet
Sa2i in Fig. 8) and a period two stable node, as for
the interval I1

3 . The node turns into a period two
stable focus F l

2, l = 1, 2, which generates a period
two attracting closed invariant curve (γi

2), when it
becomes unstable. The situation when F l

2 is stable
corresponds to the case in Fig. 17(a). It is shown in
Fig. 25 (c = 0.6, γ = 0.3473), where the red region
corresponds to the basin of the point R∗, the blue
one to the F l

2 basin. For c(A1) < c < ca < c21 ,
ca 
 0.65, γ(N2i) 
 0.284527 [cf. Fig. 3(b)] the
map behaves as in the interval I1

3 , i.e. the bifurca-
tion arc N2i corresponds to the contact of (γi

2) with
the boundary of its immediate basin ∂D0(γi

2), which
leads to the destruction of (γi

2) for γ < γ(N2i). For
ca < c the behavior is different, due to the fact that

Fig. 25. c = 0.6, γ = 0.3473. The period two focus F r
2 ,

r = 1, 2, is stable and corresponds to the Fig. 17(a) situation.
The red region corresponds to the basin of the stable fixed
point R∗, y(R∗) > 0, the blue one to the F r

2 basin.
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Fig. 26. c = 0.6, γ = 0.335. The period two focus F l
2 is now

unstable, and has generated the period two stable invariant
closed curve γl

2.

(γi
2) turns into a period two chaotic attractor after

a bifurcations sequence (Chap. 6 in [Mira et al.,
1996a]), as this will be shown below.

The first subinterval c(A1) < c < ca, with γ
decreasing values, is illustrated for c = 0.6 < ca.
When the period two focus F l

2 becomes unstable
it generates the period two stable invariant closed
curve γl

2 (Fig. 26, c = 0.6, γ = 0.335). The imme-
diate basins D0(F 1

2 ) of F 1
2 (resp. D0(γ1

2) of γ1
2),

D0(F 2
2 ) of F 2

2 (resp. D0(γ2
2) of γ2

2), and D− are with-
out any connection, and without common boundary
(Figs. 25 and 26). The bifurcation curve N21 corre-
sponds to a contact of γl

2 with ∂D0(γl
2), the bound-

ary of D0(γl
2). Below N21 γl

2 is destroyed, letting the
pair period two saddle and unstable focus as only
singularities belonging to (y < 0).

Crossing through the transcritical curve Tc20 ,
due to y(R∗) < 0, P ∗ becomes a stable node, and
its basin D(P ∗) has a part D−(P ∗) inside the half
plane (y < 0), coexisting with the pair period two
saddle and unstable focus, located out of the closure
D−(P ∗) of D−(P ∗) (Fig. 27, c = 0.6, γ = 0.26). The
value γ 
 0.259749 is a bifurcation with transition
from D−(P ∗) connected to D−(P ∗) nonconnected
by creation of an headland: D−(P ∗) intersecting the
critical arc La at three points near the point M in
Fig. 27. This bifurcation gives rise to infinitely many
islands, the limit set of which is the stable mani-
fold W s(Sl

2) of the period two saddle Sl
2, l = 1, 2

(Fig. 13, c = 0.6, γ = 0.25972), with the unstable

Fig. 27. c = 0.6, γ = 0.26. After crossing through the trans-
critical curve Tc20 , the fixed point R∗ has turned into a sad-
dle with y(R∗) < 0. P ∗ is now a stable node, and its basin
D(P ∗) has a part D−(P ∗) inside the half plane (y < 0), coex-
isting with the pair period two saddle-unstable focus, located
out of the closure D−(P ∗) of D−(P ∗).

manifold W u(Sl
2) being out of D−(P ∗), the bound-

ary of which is defined by the manifold W s(R∗), of
the saddle R∗.

The bifurcation of “saddle-saddle” type des-
cribed in Sec. 4.3 occurs when γ 
 0.259716125,
with W u(Sl

2) ≡ W s(R∗), and ∂D−(P ∗) having a
nontransverse contact with La and La−1. Crossing
through this γ value with decreasing values leads
to the direct transition nonconnected basin to mul-
tiply connected basin for D−(P ∗) (Fig. 14). Figure
15 (c = 0.6, γ = 0.2597) has shown the situation
immediately after the bifurcation with creation of a
bay H0, the rank-one lake being H1 = T −1(H0), the
infinitely many others being

⋃
n>0T −n(H1) with

W s(Sl
2) as limit set. When H0 disappears D−(P ∗)

becomes simply connected (Fig. 28(a), c = 0.6,
γ = 0.25). A new γ decrease leads to the Fig. 28(b)
(c = 0.6, γ = 0.2) situation. The unstable period
two focus F l

2, l = 1, 2, turns into an unstable node
N l

2. This period two node merges with the saddle
fixed point R∗ which becomes an unstable node,
when the parameter point (c = 0.6; γ = γb3) belongs
to the flip curve f20 from the bifurcation (7). For
γb4 < γ ≤ γb3 the boundary ∂D− contains the
unstable node R∗ and the period two saddle Sl

2,
l = 1, 2. When γ decreases, γ(f1s) < γ < γb4,
f1s = lim f2n when n → ∞, from Sl

2 the flip
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(a) (b)

Fig. 28. (a) c = 0.6, γ = 0.25. The basin part D−(P ∗) becomes simply connected. (b) c = 0.6, γ = 0.2. The unstable period
two focus F l

2, l = 1, 2, turns into an unstable node.

bifurcations of the Myrberg’ spectrum ω1 occur, by
crossing through the curves f2i with bifurcations of
the type given in (6). For 0 < γ < γ(f1s) Secs. 5.7
and 6 will show that the restriction of the map T
to ∂D− generates the singular points (cycles and
cyclical chaotic arcs) of the box-within-a-box bifur-
cation structure (Part I, Sec. 2), but with a folding
of the γ-axis (Figs. 20–22), γ = 0 corresponding
to λ∗

1.
The interval I1

4 differs from I1
3 by the fact that

for c > ca the bifurcation arc N2i is no longer
a contact of a period two attracting closed curve
(γl

2) with ∂D0(γl
2). Indeed for c > ca and decreas-

ing values of γ, now the period two closed invari-
ant curve γl

2 undergoes a series of bifurcations,
described in Chapter 6 of [Mira et al., 1996a], which
leads to a period two chaotic area (dl), l = 1, 2,
(Fig. 29, c = 0.7, γ = 0.1937). For a parame-
ter point (c; γ) belonging to N2i the (dl) boundary
∂(dl), made up of arcs of critical curves (cf. [Mira
et al., 1996a, pp. 273–276, 392–399]), has a contact
with the immediate basin boundary ∂D0(dl). When
γ < γ(N2i) (dl) is destroyed. Moreover, with γ
decreasing, from the period two saddle Si

2, i = 1, 2,
a sequence of bifurcations by period doubling occurs
(the ones of the ω1 spectrum). After the rth bifur-
cation a period 2r+1 saddle Si

2r+1 coexists with a set
of period 2h unstable nodes, h = 2, 3, . . . , r, located
on the stable manifold W s(Si

2r+1), an extremity of

which is the unstable period two focus F i
2. This

manifold and SRi
2 belongs to the boundary of the

divergence domain inside Π (y < 0). So for c = 0.7,
γ = 0.1937, r = 1, the saddle has period four.
New γ decreasing values give rise to the bifurca-
tions related to the interval ]λ1S

;λ21 ] (see Fig. 1 of
Part I), and to a period 2mk saddle Si

2mk with its

Fig. 29. c = 0.7, γ = 0.1937. The period two closed invariant
curve γl

2 (Sec. 3.3) undergoes a series of bifurcations, which
leads to a period two chaotic area (dl), l = 1, 2.
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stable manifold an extremity of which is the unsta-
ble period two focus F i

2. After crossing through Tc20

(y(R∗) < 0) a subset D− of the basin of the sta-
ble fixed point P ∗ exists inside the half plane (y ≤
0). Then the global bifurcation of “saddle-saddle”
type (Sec. 4.3) occurs, W u(Si

2mk) ≡ W s(R∗), from
which W s(Si

2mk), W s(R∗), and F i
2 belongs to ∂D−

which has either a simply connected “mushroom”
shape, or associated with islands, or lakes, as for
I1
3 . Figure 30 (c = 0.7, γ = 0.0978) shows the

“mushroom” case with lakes, with a period 2mk
saddle (born in the [λ21 ;λ1S

[ interval) difficult to
be exactly defined, but the existence of which is
confirmed by the presence of a period 6, 8, 10, 12
unstable nodes on the numerically obtained sta-
ble manifold W s(Si

2mk) of Fig. 30. For decreasing
values of γ the “mushroom” swells and disap-
pears. The unstable period two focus F i

2, i = 1, 2,
turns into an unstable node N i

2 which merges with
the saddle fixed point R∗ (becoming an unstable
node) when the parameter point belongs to the flip
curve f20 .

Generally, a chaotic area contains infinitely
many unstable cycles with increasing period (cycle
before contained in (dl)), and their limit sets when
the period tends toward infinity. So when γ <
γ(N21) (dl) being destroyed, it might give rise for
γ < γ(N2i) to a period two strange repeller SRl

2
(Chapter 5 of [Mira et al., 1996a]) made up of
these unstable cycles, and their limit sets. Nev-
ertheless not any of these cycles, which might be

Fig. 30. c = 0.7, γ = 0.0978. “Mushroom” case with lakes,
and a period 2mk saddle on the stable manifold W s(Si

2mk).

generated in the interval ω1∪]λ1S
;λ21 ] (Fig. 1 of

Part I), was numerically found. The fact that the
cycles of ω1∪]λ1S

;λ21 ] are found on the manifold
W s(Si

2mk) leads to conjecture that the cycles of SRl
2

disappear by inverse bifurcations before creation of
the cycles on W s(Si

2mk) having the same period.
As indicated in Fig. 21, when γ decreases a

strange repeller SR is created out of ∂D−, for
γ < γf1 , followed by D− becoming nonconnected
by generation of islands.

5.5. Interval I1
5

With decreasing values of γ, and γ(C21) < γ <
γ(F21), the behavior is the same as in the interval
I1
4 , cf. Figs. 31 (c = 0.78; γ = 0.285) and 32 (c =

0.8; γ = 0.285), that is, we are in the situation
of Fig. 17(a). For γ(Tc21) < γ < γ(C21) we have
the situation of Fig. 17(c) (Fig. 33, c = 0.8; γ =
0.239). For γ < γ(Tc21), sufficiently close to Tc21 ,
the period two cycle (y = 0) N i, i = 1, 2, is stable.
The basin situation is shown in Fig. 34 (c = 0.8;
γ = 0.1) where Sn

2 (y > 0), n = 1, 2, is the saddle
of the branch Sad2i(y > 0) of Fig. 5(b).

5.6. Interval J2

This interval corresponds to J i+1 in Fig. 4 with i =
1. It repeats the organization of the intervals I1

n, n =
1, . . . , 5, but with a period doubling of the cycles,
as shown in the examples given below.

Fig. 31. c = 0.78; γ = 0.285. The behavior is the same as in
the interval I1

4 .
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Fig. 32. c = 0.8; γ = 0.285. Figure 17(a) situation.

Figure 35 (c = 1.08; γ = 0.21), (c, γ) ∈ I2
1 ∩ R1

(i = 2), gives the situation (a1) in Sec. 4.5. R∗ is a
stable fixed point in (y > 0) with the blue colored
basin. N1 and N2 is the period two stable node
(y > 0) in Figs. 5(a), 5(b) d̂e arc (i = 1) its basin
being red colored. S 1

2 and S 2
2 are the period two

saddles (y > 0) on Fig. 6(b) ĉe arc.
Figure 36 (c = 1.08; γ = 0.17 < γ(Tc21) 


0.186), (c, γ) ∈ I2
1 ∩ R2

2 (i = 2), gives the Sec. 4.5

Fig. 33. c = 0.8; γ = 0.239. Figure 17(c) situation.

Fig. 34. c = 0.8; γ = 0.1 Basins situation. Sn
2 (y > 0),

n = 1, 2, is the saddle of the branch Sad2i(y > 0) of Fig. 5(b).

situation (b1). R∗ (y > 0) is a stable fixed point
with the red colored basin. Having crossed through
Tc21 now the period two stable node N1 ∪ N2

belongs to the x-axis. This bifurcation and those
of the period two saddle (y > 0) S 1

2 ∪ S 2
2, and the

period two saddle (y < 0) S̃1
2 ∪ S̃2

2 , are represented
on the Fig. 5(b) (i = 1) red segment cd (y = 0), the
blue arc ce (y > 0), and the blue arc bd (y < 0),
respectively.

Fig. 35. c = 1.08; γ = 0.21. Situation (a1) of Sec. 4.5.
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Fig. 36. c = 1.08; γ = 0.17. Situation (b4) of Sec. 4.5.

The value c = 1.2 belongs to the interval I2
4 ,

γ(F21) 
 0.20589, γ(F22) 
 0.06473, γ(Tc21) 

0.0637. So for γ(F22) < γ < 1, the Sec. 4.5(a1)
situation is obtained with a period two stable node
(y > 0). For γ(Tc21) < γ < γ(F22) (region R2

5),
one has the Sec. 4.5(c1) situation, the attractor
A ∈ (y < 0) being a period 22 cycle, with a
nonconnected immediate basin D0−(A). The region
I2
4 ∩R2

4 (γ < γ(Tc21)) reproduces the R1
4 behaviors

with a cycles period doubling. Figure 37 (c = 1.2;
γ = 0.05442) is the “mushrooms” shaped situation
(b1) obtained with γ decreasing after the Figs. 13–
16 case (creation of islands, lakes) but from period
22 saddle and unstable focus. Here the points S1

2 ,
S2

2 , F r
22 ≡ F r

4 , Sr
22 ≡ Sr

4 , r = 1, . . . , 4, are respec-
tively a period two saddle, an unstable period four
focus, and a period four saddle with y < 0. The red
region with y > 0 is the basin of the stable fixed
point R∗ (y > 0), the blue one is the basin of the
period two stable node N1 and N2 (y = 0). With
γ decreasing, Fig. 38 (c = 1.2; γ = 0.024) corre-
sponds to the Fig. 37 evolution after F r

22 changing
into an unstable N r

2i ≡ N r
4 node, followed by the

flip bifurcation described in Eq. (7) with the merg-
ing of the node N r

22 and saddle Sj
2 (j = 1, 2), giv-

ing rise to the unstable period two node N j
2 . The

red region with y > 0 is the basin of the stable
fixed point R∗, the blue one is the basin of the
period two stable node N1 and N2 (y = 0). For
this value γ = 0.024 the unstable period 2i nodes
N r

2i , r = 1, 2, . . . , 2i, of the ω1 spectrum have been

Fig. 37. c = 1.2; γ = 0.0544. “Mushrooms” shaped situation
(b1) obtained with γ decreasing after the Figs. 13–16 case
(creation of islands, lakes) but from period 22 saddle and
unstable focus.

created, for i = 1, 2, and are located on the basin
boundary ∂D−(N1, N2).

Figure 39 (c = 1.25, γ = 0.048) corresponds to
the Sec. 4.5 situation (c1), (c, γ) ∈ (I2

4 ∩ R2
5). Here

the points S1
2 , S2

2 , F r
2i ≡ F r

4 , respectively belong
to period two saddle [y = 0, cf. Fig. 17(a)], and
a stable period four focus (y < 0) with a noncon-
nected immediate basin D0(F r

4 ). The blue region

Fig. 38. c = 1.2; γ = 0.024. With γ decreasing Fig. 37
evolution after F r

22 changing into an unstable Nr
2i ≡ Nr

4 node,
followed by the flip bifurcation described in Eq. (7).
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Fig. 39. c = 1.25, γ = 0.048. Situation (c1) of Sec. 4.5, with
a stable period four focus (y < 0) having a nonconnected
immediate basin D0(F r

4 ). The blue region with y > 0 is the
basin of the stable fixed point R∗, the brown one with y > 0
is the basin of the stable period two fixed point N1 and N2

(y > 0).

with y > 0 is the basin of the stable fixed point R∗,
the brown one with y > 0 is the basin of the stable
period two fixed points N1 and N2 (y > 0).

In the Fig. 40 (c = 1.3, γ = 0.012 < γ(Tc22))
case, (c, γ) ∈ I2

5 ∩R2
7, the blue basin is related to the

Fig. 40. c = 1.3, γ = 0.012. The blue basin is related to
the stable period 22 cycle Nr

4 , r = 1, . . . , 4, located on y = 0
(red segment cd of Fig. 5(b) with i = 3). The red area is the
basin of a stable period two cycle, the green one the basin of
a period four cycle, located in y > 0.

stable period 22 cycle N r
4 , r = 1, . . . , 4, located on

y = 0 (red segment cd of Fig. 5(b) with i = 3). Its
basin boundary contains a period 22 saddle (y > 0,
blue arc ce of Fig. 5(b) with i = 3) and a period 22

saddle (y < 0, blue arc bd of Fig. 5(b) with i = 3).
The red area is the basin of a stable period two
cycle, the green the basin of a period four cycle,
located in y > 0.

5.7. Disruption of the ω1 Myrberg’s
ordering

Consider the parameter c with a fixed value, and
with decreasing values, and the Myrberg’s order of
the spectrum ω1, related to the period 2n cycles
belonging to the half plane (y < 0). The disrup-
tion of this order occurs as soon as γ(f20) < γ(f21),
i.e. for c � 0.52259, which takes place in the inter-
val I1

3 (Fig. 4). For example consider c = 0.6. As
shown in Secs. 4.3 and 5.4, with decreasing values
of γ, the pair of period two saddle and unstable
focus cycles Si

2, F i
2, i = 1, 2, generated from the

fold bifurcation curve F21 , belongs to the boundary
of the immediate basin of P ∗ from γ 
 0.259716125,
i.e. the global bifurcation of “saddle-saddle” type,
W u(Si

2) ≡ W s(R∗), i = 1, 2, (Fig. 14). The saddle
Si

2 undergoes the flip bifurcation represented by (6)
with i = 2 (curve f21) for γ 
 0.25209. It turns into
an unstable period two node UN i

2 and gives rise
to a period four saddle Sr

4 , r = 1, . . . , 4. Moreover
with γ decreasing values the focus F i

2 becomes an
unstable node UN ′i

2 which merges with the saddle
fixed point R∗ for γ(f20) 
 0.1856. For γ < γ(f20)
the basin boundary of P ∗ contains all these points
and those resulting from the crossing through flip
curves f2i via the bifurcations (6). Then for c = 0.6
with γ decreasing values, the ω1 spectrum order is
disrupted only for the first flip bifurcation in (6)
(i = 1), and starting from the period 21 saddle
Si

2 the Myrberg’s order is respected. For intervals
Jm, m > 1, (Fig. 4), we have an equivalent prop-
erty but starting from the period 2m saddle Si

m,
m = 1, . . . , 2m.

6. Other Properties for Decreasing
Values of γ

6.1. General presentation

First let us remark that in the half plane y < 0 the
attractor (when it exists) is unique, but in y ≤ 0 two
attractors may exist, one on the x-axis, the other
with a nonconnected basin belonging to y < 0 as
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shown in Fig. 23. The bifurcations study in Secs. 4
and 5 have shown that this last situation disappears
when γ becomes sufficiently small. So this section
considers the case of a unique attractor in y ≤ 0,
then located either on y = 0, or in y < 0. It is partic-
ularly devoted to the bifurcations of unstable period
k cycles, k �= 2n, n = 1, 2, . . . , belonging to the half
plane (y < 0), and so not to the x-axis (the case
of period 2n cycles has been seen in the previous
sections). Such cycles are not generated from the
ω1 spectrum. When γ = 0, this attractor is located
on y = 0, and considering the semi-conjugacy prop-
erty related to (2), it is the one having a Julia set
as basin boundary (cf. Sec. 3 of Part I).

Remind that the symbolism k = 2n concerns
cycles generated from the ω1 spectrum. So it is
about to consider the cycles generated from the
box ∆1 and to see how the Myrberg’s order (cf.
Sec. 2.2 and Fig. 1 of Part I) can be perturbed,
γ = 0 corresponding to λ∗

1. A cycle k �= 2n is char-
acterized by the Sec. 2 symbolism (k; j), the index
j being defined from the permutation of the abscis-
sae of the cycle points. As long as the basin bound-
ary part ∂D− ⊂ (y < 0) is simply connected, and
each abscissa x is associated with only one point
of ∂D−(single-valued situation) it appears that the
cycles bifurcations are those of the map restricted to
∂D− having the box-within-a-box structure for an
interval equivalent to λ(1)0 < λ < λc ∈ ∆1 (Fig. 1
of Part I). If there are x-intervals, each one asso-
ciated with more than one arc of ∂D− (multival-
ued situation), at first view it would seem that the
choice of j based on the permutation of the abscis-
sae of the cycle points cannot work. Nevertheless it
was observed that all the period k cycles abscissae
(some of them until the period 18), having helped
to identify the ∂D− properties, satisfy the neces-
sary and sufficient condition for a permutation of
k integers be the one of a cycle generated by an
unimodal map (cf. [Mira, 1987], pp. 136–138). So
in spite of the multivalued situation, it is as if the
permutation of the k points on ∂D− remains the
one of a cycle of a unimodal map, then represented
by the symbolism (k; j) defined in Part I. We con-
jecture this property for all the ∂D− cyles, j being
based on the permutation of the abscissae of the
cycle points, which implies a particular location of
the cycles points with respect to the “multivalued”
arcs of ∂D−.

Consider the total basin D−(A), A being the
attractor belonging to the half plane y ≤ 0, ∂D−
its boundary. As we have seen, it is possible that

repelling cycles exist out of ∂D−, these cycles
belong to the boundary ∂D−∞ of the diverging
orbits domain.

Let Tr be the map restricted to ∂D−. When γ
decreases, c having a constant value, −1/4 < c <
c1s (c belonging to the ω1 spectrum), the repelling
(k; j) cycles, k �= 2n, appear outside ∂D− with the
Myrberg’s order if −1/4 < c < cp, and with a dis-
ruption of this order if c > cp, when repelling cycles
exist outside ∂D−. Estimating the cp value is not an
easy task. It is only possible to say that this order
is disrupted as soon as the fold curves F j

k related
to (k; j) cycles intersect, but the first intersections
occurs for cycles with a period k → ∞. Our conjec-
ture is that a very rough estimation of the beginning
of folds intersection is 0.4 < cp < 0.5.

When cp < c < c1s (c1s = lim c2n when n → ∞)
the Myrberg’s order is disrupted in the sense that
unstable (repelling) (k; j) cycles appear before their
natural place, and so coexist with “regular” cycles
with respect to this order. It is as if one has a folding
of the γ axis, with overlapping of several γ intervals.
This situation is represented by Figs. 20 (c = 0.6),
21 (c = 0.7), 22 (c = 1), where the γ fold bifurcation
F j′

k of a (k; j′) cycle is denoted kj′ in the nonem-
bedded representation, and (2mk; j′) in the embed-
ded representation of boxes Ω2m. These bifurcations
are associated with their numerical approximations,
and also with bifurcations γ∗

2i related to the c∗2i ones
(cf. Sec. 2 of Part I). The first irregularity in the
order occurs for γ = γf1, giving rise to unstable
“irregular” cycles. Via the several numerical expe-
riences made for this study, the following important
property appears.

Property. When the “irregular” repelling cycles
appear, they are located out of ∂D−, and they belong
to the boundary ∂D−∞ of the domain of diverging
orbits. With γ decreasing, infinitely many such sets
of unstable cycles are created from γ = γf1 − ε,
ε > 0, ε → 0, which gives rise to a strange repeller
SR ⊂ (y < 0) out of D− ∪ ∂D−. As soon as an
islands set is created, such a SR becomes its limit
set, and so SR belongs now to ∂D−(SR ⊂ ∂D−).

The first set of irregular repelling cycles occurs
when D− is simply connected, before the creation
of an islands set. Figure 41 (c = 0.53; γ = 0.010974)
shows that the unstable (k; j) cycle k = 12, j = 40,
out of ∂D0− as belonging to a strange repeller SR
limit of islands (belonging to D−) which are gener-
ated for γ < γf1. The same situation is obtained for
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Fig. 41. c = 0.53; γ = 0.010974. The unstable (k; j) cycle
k = 12, j = 40, out of ∂D0− as belonging to a strange repeller
SR limit of a islands set.

c = 0.53, γ = 0.011064229 with an unstable (k; j)
cycle k = 11, j = 25.

6.2. Conservation of the Myrberg’s
order on ∂D−

For −1/4 < c < cp, with γ decreasing values, and
for period k �= 2i cycles, the basin D− and its
boundary ∂D− located in (y < 0) are simply con-
nected, with preservation of the Myrberg’s order on
its boundary ∂D−. The map Tr restricted to ∂D−
can be considered as conjugate to the Myrberg’s
map. This situation is described in [Agliari et al.,
2004] for c = −0.15. Different situations are repre-
sented by Figs. 42 (c = −0.15; γ = γ∗

22 = 0.3865),
43(a) (c = −0.15; γ = 0.33, γ∗

21 < γ < γ∗
22), 43(b)

(c = −0.15; γ = 0.3242, γ = γ∗
21), 43(c) (c = −0.15;

γ = 0.315, γ∗
1 = 0 < γ < γ∗

21). In these figures the
rank n critical point Ca

n−1 of Tr, n = 1, 2, 3, . . . ,
Ca

0 ≡ Ca, is given by Ca
n−1 = ∂D− ∩ La

n−1, La
n−1 =

TLa being the rank n − 1 image of the critical arc
La. The saddle cycles (k; j) ∈ ∂D− of the two-
dimensional map T in (2) are the stable cycles of
the one-dimensional unimodal map Tr.

6.3. Disruption of the Myrberg’s
order in the ∆1 interval

We use the “compact” notation kj to represent the
fold bifurcation γj

(k)0
(c being fixed) of the (k; j)

Fig. 42. c = −0.15; γ = γ∗
22 = 0.3865. The rank n critical

point Ca
n−1 of Tr, n = 1, 2, 3, . . . , Ca

0 ≡ Ca, is given by

Ca
n−1 = ∂D− ∩ La

n−1, La
n−1 = TLa being the rank n − 1

image of the critical arc La.

cycle as in Figs. 20–22. We note that their Myr-
berg’s order (the one for −1/4 < c < cp) is given by
the inequalities:

γ1s > · · · > γ∗
22 · · · > 21 · 51 > 21 · 3 > 21 · 52

> 21 · 4 > 21 · 53 > 21 · 65 > 21 · 79 > 21 · 816

> 21 · 928 · · · > γ∗
21 > · · · > · · · 171 > · · · > 131

> · · · > 111 > · · · > 91 > · · · > 71 > 92 > 51

> · · · > .93 > 72 > 94 > ·83 > · · · > 3
> 3 · 21(= 62) > · · · > 3 · 3(= 95) > · · · 84 · · ·
> 73 > 85 > · · · > 52 > · · · > 74 > · · · > 63

> · · · > 75 > · · · > 42 > · · · > 76 > · · · 64

> · · · > 77 > · · · > 53 > · · · > 78 · · · > 65

> · · · > 79· > · · · > · · · γ∗
1

= 0.

Figures 20 (c = 0.6), 21 (c = 0.7) and 22
(c = 1) use this notation, and show that the more
c increases, the more the above Myrberg’s order
is disrupted, giving rise to overlapping of γ inter-
vals defined by horizontal lines. The order is pre-
served (but with inversion of the sense of γ increase)
on the horizontal lines with a jump for γ = γfn,
n = 1, 2, . . . . Consider the interval cp < c < c1s 

1.401, and γ decreasing values from a value giving
period k �= 2i “regular” cycles belonging to ∂D−,
i.e. ∂D− contains a strange repeller, say Ω, made
up of all the repelling cycles on ∂D0− their limit
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(a) (b)

(c)

Fig. 43. (a) c = −0.15; γ = 0.33, γ∗
21 < γ < γ∗

22 . (b) c = −0.15; γ = 0.3242, γ = γ∗
21 . (c) c = −0.15; γ = 0.315,

γ∗
1 = 0 < γ < γ∗

21 . Here the rank n critical point Ca
n−1 of Tr, n = 1, 2, 3, . . . , Ca

0 ≡ Ca, is given by Ca
n−1 = ∂D− ∩ La

n−1,

La
n−1 = TLa being the rank n − 1 image of the critical arc La.

set, all the increasing rank preimages of all these
points. Then the map restricted to this boundary
is chaotic. The basin D− may be either simply con-
nected, or nonconnected. From γ = γf1 “irregular”
(unstable) cycles appear before their natural place
in the Myrberg’s order, i.e. such cycles, resulting
from the first overlapping intervals of the γ axis, are
external to D− and ∂D−, and give rise to a strange
repeller SR1 belonging to the boundary ∂D∞− of
the domain of diverging orbits. In other words from

the first point of overlapping γ = γf1, with decreas-
ing values of γ, the unstable cycles related to the
lines above the lower horizontal line of Figs. 20–22
are located out of D− ∪ ∂D−, this before the birth
of a set of infinitely many islands. The presence of
an unstable period k �= 2i “irregular” cycle implies
infinitely many such cycles belonging to the strange
repeller SR1.

Considering Figs. 20–22 for a given c-value, as γ
decreases in the range γ∗

21 < γ < γ1s the critical line
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La approaches the x-axis and the preimages of the
period 2i−1 cycle cross through La entering from
Z0 in Z2 (γ∗

2i is a homoclinic bifurcation value).
Although the frontier ∂D− includes (for γ < γ1s) a
strange repeller, it has a smooth shape when c ≤ cp.
For γ < γ∗

21 , cycles of odd period begin to appear,
with other cycles of even period, however not neces-
sarily confined to ∂D−. This means that some bifur-
cation sequences create cycles and strange repellers
SR also outside the frontier of the immediate basin,
which maintain a smooth shape.

When c decreases from c = 1 to c = cp, the
Figs. 20–22 structures unfold, i.e. with less and less
overlapping, until obtaining the Myrberg’s order
−1/4 = c20 < c < cp for the cycles birth on ∂D−
[Agliari et al., 2004].

6.4. Strange repellers and birth of
islands sets

From a γ value γ = γ̃1 < γf1, c > cp, after the
birth of a strange repeller SR1, a set of infinitely
many islands is created according to the bifurca-
tion described in Figs. 2(a)–2(c), SR1 being the
limit set of these islands. So independently of the
cycles external to ∂D−∪D− and numerically found,
the existence of SR1 (which contains such cycles)
becomes obvious after the islands birth. Such non-
connected parts of D− are due to the contact bifur-
cation of ∂D− with the critical line La, followed by
its crossing which creates a headland ∆0 (Fig. 2).
In this case the strange repeller SR1, created for
γ ≤ γf1, belongs to the limit set of the islands
∪n≥1T

−n(∆0). Now Λ∗ = SR1 ∪ Ω is the total
limit set of these islands, and SR1 belongs to ∂D−.
The main island D1 is the one crossing through
La
−1, D1 = T−1(∆0). After the contact bifurcation

the basin D− consists of the immediate basin D0−
(which includes the headland ∆0) and all its preim-
ages of any rank:

D− = D0−
⋃
n≥1

T−n(∆0).

In Figs. 20–22, the formation of strange
repellers, and the birth of islands sets, are red col-
ored. For cp < c < c21 = 3/4 (i.e. cb1), with
γ > 0 decreasing values, an islands aggregation
occurs before attaining γ = 0, which corresponds
to the inverse bifurcation in Figs. 2(a)–2(c), i.e. in
the sense (c, b, a). Such an aggregation changes the
shape of D−, which now presents infinitely many
parts with a peduncle shape, that we call appen-
dices. Without islands aggregation, it also happens

that appendices occur when, without attaining the
Fig. 2(b) case, the Fig. 2(a) situation presents a
very strong variation of the distance between the
∂D− points and the critical line L.

In a fractal way each island T−n(∆0), n =
1, 2, 3, . . . , reproduces on its boundary the immedi-
ate basin boundary behavior, i.e. an island bound-
ary contains around it a limit set of a subset of
islands. As γ decreases, more and more islands sets
are created. They are due to the formation of head-
lands ∆j, j = 1, . . . , p, each one giving rise to a new
islands set

⋃
n≥1 T−n(∆j), and also to the intersec-

tion of one of the islands with La (see Sec. 3.1).
When no islands aggregation occurs (c ≥ c21 i.e.
c ≥ cb1), all these islands have a common limit
set SR out of ∂D− ∪ D−, made up of the SR1

points increased by new “irregular cycles”, related
to unstable cycles sets SRj , j = 2, 3, . . . , born for
γ < γfj . If an islands aggregation (cp < c < c21 =
3/4) takes place, or in presence of appendices, the
index j is bounded. Nevertheless appendices can
give rise to new sets of islands (see Fig. 21 for
c = 0.7, for γ 
 0.00575), but when γ → 0 this
process ceases in order to obtain the fifth type of
Julia set (cf. Part I). For c21 ≤ c ≤ 1 islands aggre-
gation does not occur.

If c belongs to the interval c21 ≤ c < c1s,
as γ approaches 0, the critical line La approaches
the x-axis, and infinitely many contact bifurca-
tions occur with creation of headlands and related
islands, and also when one island crosses through
La from Z0 to Z2, etc. (as described in [Mira
et al., 1994], and in [Mira et al., 1996b]). At the
same time, the box-within-a-box bifurcation struc-
ture increases the unstable cycles sets of the strange
repeller Ω on the immediate basin boundary ∂D0−,
and of the strange repeller SR out of ∂D0−.

At γ = 0, a subset of islands belonging to
T−n(∆0) have a contact with ∂D0− at the points
of Ω. The other islands have contacts at the points
of SRj. The union of the limit sets Ω and SR gives
the points of a Julia set.

7. Toward the Julia Set for c ∈ ω1

7.1. General properties

Remind that for γ = 0, the map T gives rise to a
Julia set, we denote J ′ (differently from J related
to the complex map TZ), the boundary ∂D− of the
basin part, or of the convergence domain (if |Si| = 1,
i = 1, 2), located in (y ≤ 0). This set J ′ consists
of the closure of all the unstable cycles, their limit
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sets, their increasing rank preimages, generated by
the bifurcations of the box-within-a-box structure
of the map Tr restricted to ∂D−. Due to the fact
that Tγ=0 is semiconjugate to TZ in the invariant
half plane (y ≤ 0), the Part I results (dealing with
the J structure) define completely the properties of
the boundary ∂D−.

Section 5 of Part I has shown that five very dif-
ferent types of Julia sets J , depending on c intervals
and their boundaries, are generated by the complex
map TZ . Then, it is the same for the ∂D− shapes
generated by T when γ = 0. The first, second,
fifth types correspond to boundaries of parameter c
intervals, the crossing of which gives rise to a nons-
mooth change of the shape of the Julia set J ′. Inside
the c-intervals associated with the third and fourth
types smooth changes of ∂D− (semi-conjugate of
J) occur. The purpose of this section is a study
of the bifurcations route toward each of these ∂D−
type, when γ > 0 decreases up to γ = 0, limit-
ing to a constant value of the parameter c ∈ ω1.
It is worth noting that a γ decrease is associated
with a decrease of the slope of the critical arc La,
corresponding to a rotation of La with the center
point (x = −c, y = 0). The slope tends toward zero
as γ → 0. This property permits to explain some
behaviors of ∂D− during the route toward the Julia
set J ′.

In the ω1 interval c(1)0 ≤ c < c1s, an attract-
ing (resp. neutral, i.e. |Si| = 1) period 2n cycle
exists on the x-axis. It is generated by a sequence
of period doubling from the fixed point P ∗. If γ is
sufficiently close to zero, this cycle has an imme-
diate basin (resp. immediate domain of conver-
gence, for simplifying also called basin) denoted
D0(2n), made up of 2n open regions invariant by
T 2n

. For γ = 0 the total basin D(2n) has a
portion in (y > 0), the boundary part ∂D−(2n)
located in the half plane (y ≤ 0) becomes the
Julia set J ′. In this half plane ∂D−(2n) sepa-
rates the domain of diverging trajectories from the
domain of the period 2n cycle belonging to y =
0. Denoting ∂D0(2n) the boundary of D0(2n), we
have:

∂D0(2n) ∩ (y ≤ 0) ⊂ J ′,

∂D(2n) ∩ (y ≤ 0) = ∂D−(2n) ≡ J ′, when γ = 0

The segment [Q∗−1, Q
∗] (denoted [q−1

1 , q1] in
Part I) of the x-axis contains all the unstable period
2l cycles, l = 0, 1, 2, . . . , n−1, generated for c < c2n

(or c < cbn as in Part I), their increasing rank preim-
ages restricted to y = 0, and the limit set of all these

points. When γ is sufficiently close to zero, the basin
D(2n) has the following properties:

• The unstable period 2n−1 cycle (y = 0) belongs
to the boundary ∂D0(2n).

• All the other unstable period 2h cycles (y = 0),
h = 0, 1, 2, . . . , n− 2, belong to ∂D(2n). They are
limit points of a subset of increasing rank preim-
ages of the unstable period 2n−1 cycle, and of
increasing rank preimages of the unstable period
2r cycles, r = h+1, . . . , n−2. They are also limit
points of a subset of increasing rank preimages of
D0(2n) ∩ (y ≤ 0).

When γ > 0 decreases toward γ = 0 with c ∈
ω1, depending on the parameter point position with
respect to the curves Tc2n , F2n+1 , N2n+1 , N2n+1 , a
stable period 2n cycle exists on the x-axis, or in the
half plane y < 0. If this cycle belongs to the x-axis,
D0(2n) and a subset of its increasing rank preim-
ages intersects y = 0. When D0(2n) belongs to the
half plane y < 0, with c ∈ Rn

5 (cf. Fig. 4), the clo-
sure of its immediate basin D0(2n) is nonconnected
(Figs. 25, 31 and 39). Then a subset of the increas-
ing rank preimages of D0(2n) has also for limit set of
all the unstable period 2l cycles, l = 0, 1, 2, . . . , n−1
of the x-axis, generated for c < c2n , their increasing
rank preimages restricted to y = 0, and the limit
set of all these points. When D0(2n) belongs to the
half plane y < 0 with c ∈ Rn

4 (cf. Fig. 23), as for
the case c ∈ Rn

5 , a γ decrease toward zero leads
to the situation of D(2n) becoming the basin of a
stable period 2n cycle on the x-axis with D(2n) ∩
(y > 0) �= ∅.

7.2. Toward the Julia sets of the
interval c(1)0 ≤ c ≤ c21 (i.e. cb1)

7.2.1. Behavior for the bifurcation values
c(1)0 and c21

For c ∈ ω1, γ = 0, the first type of Julia set (classifi-
cation of Part I) corresponds to the fold bifurcation
c = c20 = c(1)0 = −1/4. For these parameter values
the fixed points P ∗, Q∗, and S∗ merge at (x = 1/2,
y = 0), and belong to ∂D−. In such a situation
the region D− is not a basin, because its bound-
ary ∂D− (Julia set) limits a domain of convergence
toward the neutral fixed point P ∗ ≡ Q∗ (which is
the point q2 ≡ q1 in Part I).

The fixed point R∗ (x = −1/2, y = −1) belongs
to the Julia set J ′ ≡ ∂D−, which has an horizon-
tal tangent at P ∗ ≡ Q∗ ≡ S∗. The boundary ∂D−
contains a numerable set made up of the increasing
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rank preimages of this point, where the tangent can
be defined with a cusp point. Elsewhere ∂D− has
no tangent (Part I, Sec. 5.1). The rank-one preim-
age of P ∗ ≡ Q∗ ≡ S∗ in the half plane y > 0 is the
point S∗−1 (x = 0; y = 1/4) apex of ∂D+ (Fig. 44(a),
c = −1/4; γ = 0). In this case, the map T has no
attractor in the whole plane except for the neutral
fixed point P ∗ ≡ Q∗ ≡ S∗. The total domain of con-
vergence D = D− ∪ D+ toward P ∗ is bounded by
∂D− and the boundary ∂D+. As this will be shown
below it is not the case of D+ at a fold cj

(k)0
or

cj1...,ja

(k1....ka)0
bifurcation values (belonging to ∆1) with

γ = 0, which give rise to an attracting set with a
basin D+.

With c = −1/4, and γ > 0 decreasing values
from γ = 1, the fixed point S∗ (y < 0) is sta-
ble, and D+ does not exist [cf. Fig. 3(a)], i.e. the
half plane y > 0 belongs to the domain of diverging
orbits (Fig. 44(b), c = −1/4; γ = 0.1). On the basin
boundary ∂D− the bifurcations occur with the Myr-
berg’s order inside the interval 1 > γ ≥ 0. The
boundary ∂D− remains smooth but with more and
more “oscillations” as γ tends toward 0. At γ = 0
(the Julia set case) it becomes nonsmooth with
a numerable set of cusp points [Fig. 44(a)]. The
domain of convergence D+ exists only for γ = 0.

So with γ decreasing values, the domain of conver-
gence toward (x = 1/2, y = 0) undergoes a sud-
den increase when γ = 0, due to the “jump” of the
point S∗−1.

The second type of Julia set (classification of
Part I) corresponds to the flip bifurcation c21 = 3/4
(i.e. cb1 in Part I) of the ω1 spectrum. When γ = 0,
the fixed point P ∗(point q2 in Part I) has merged
with R∗, x(P ∗) = x(R∗) = −1/2, y(P ∗) = y(R∗) =
0. It is neutral with multipliers S1 = S2 = −1. It
belongs to y = 0 and also to ∂D− [an arc limiting
a domain of convergence toward P ∗, Fig. 45(a)].

Consider γ decreasing values for c = cb1 = 3/4
(i.e. c21), boundary between the intervals I1

4 and
I1
5 (Fig. 4). We are in the Fig. 17(a) situation but

with the period two saddle Sj, j = 1, 2, merging
into P ∗. Figure 3(b) shows that the curves N21

and C21 are not crossed when γ decreases. When
γ < γ(F21), D− is the basin of the period two
focus F j

2j , j = 1, 2, basin which is always non-
connected for γ > 0, with increasing rank preim-
ages (islands) of its immediate basin. More pre-
cisely, as indicated in Sec. 5.4, the immediate basins
D0(F 1

2 ) of F 1
2 (resp. D0(γ1

2) of γ1
2), D0(F 2

2 ) of F 2
2

(resp. D0(γ2
2) of γ2

2), are without any connection,
without common boundary, and without contact

(a) (b)

Fig. 44. (a) c = −1/4; γ = 0. The rank-one preimage of P ∗ ≡ Q∗ ≡ S∗ in the half plane y > 0 is the point S∗−1 (x = 0;
y = 1/4) apex of ∂D+. The total domain of convergence D = D− ∪ D+ toward P ∗ is bounded by ∂D− and the boundary
∂D+. (b) c = −1/4; γ = 0.1. The fixed point S∗ (y < 0) is stable, and D+ does not exist [cf. Fig. 3(a)], i.e. the half plane
y > 0 belongs to the domain of diverging orbits.
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(a) (b)

Fig. 45. (a) c = 3/4; γ = 0. Julia set semi-conjugate of the one generated by z′ = z2−3/4. (b) c = 3/4, γ = 0, 01. The islands

(nonconnected parts of the basin) have a strange repeller as limit set. The main island D0
1 intersects symmetrically L

(a)
−1 .

with y = 0. The total basin D− is nonconnected
with infinitely many islands having the fixed point
Q∗ and Q∗−1 its rank one preimage as limit set.
On the boundary ∂D0− of the immediate basin
of F j

2 , decreasing γ-values give rise to more and
more sequences of infinitely many repelling cycles.
With their limit set, and all their increasing rank
preimages, a strange repeller Ω ⊂ ∂D0− results.
From γ < γf1 now a first strange repeller SR1 is
created but out of ∂D0− (Figs. 21 and 22), fol-
lowed after by a new islands set resulting from
a new intersection of ∂D− with the critical arc
L(a). Each island reproduces on its boundary this
behavior, i.e. it contains a limit set of a subset
of islands around it (Fig. 45(b), c = 3/4, γ =
0.01). The main island D0

1 intersects symmetri-
cally L

(a)
−1.

As γ decreases, more and more headlands ∆j ,
j = 0, 1, . . . , q, are created, and when γ → 0,
q → ∞, with main island Dj

1, and the period two
focus F j

2 , j = 1, 2, tends toward P ∗. The way La

crosses through D− implies that the inverse bifur-
cation of Fig. 2 cannot happen. This results in
the impossibility of having islands aggregation for
γ > 0. At the limit γ = 0 , R∗ merges into the
fixed point P ∗ (y = 0), ∂D− and islands sets have
contacts.

The first island set IS0 =
⋃

n≥1 T−n(∆0) is cre-
ated from γ 
 0.0167 with the headland ∆0, belong-
ing to the second bulge on the left of P ∗, D0

1 =
T−1(∆0) being the “main” island (the one inter-
secting La−1). The limit set Λ∗0 of the islands is the
strange repeller SR0, and the set Ψ∗0 of the unsta-
ble cycles (with their limits points, and increasing
rank preimages) belonging to ∂D0−, Λ∗ = SR0∪Ψ∗.
With γ decreasing values, the La slope decreases,
more and more islands sets ISq =

⋃
n≥1 T−n(∆q),

q = 1, 2, 3, . . . , with main island Dq
1, appear from

headlands ∆q, belonging to the (q + 1)th bulge
on the left of P ∗, without vanishing of the previ-
ous islands sets ISh, h < q. Before the ISq birth
a strange repeller SRq was created. The limit set
of the islands

⋃q
j=0 ISj so created is Λ∗q. When

γ = 0, q = ∞, a perfect set results, the Julia set
∂D−, without any aggregation, with only contact
points of the islands between themselves and with
the boundary of the basin D0−.

Figure 45(a) (c21 = 3/4, γ = 0) has shown
the Julia set ∂D−, where ∆q and Dq

1 are respec-
tively headlands and main islands. The contact of the
islands limits and ∂D0− limit are located on fractal
hollows of D−. The formation of the first main island
D0

1 from the headland ∆0, approaching a hollow of
D− is illustrated in Fig. 45(b) (c21 = 3/4, γ = 0.01).
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7.2.2. Behavior in the interval
c(1)0 < c < 0

Inside the interval −1/4 = c(1)0 < c < c21 = 3/4,
γ = 0 gives rise to Julia sets of fourth type with
Class A (Sec. 5.4 of Part I), having the same struc-
ture. We remind that here the qualifier “structure”
is only related to the identification of the localiza-
tion of the (k; j) unstable cycles, the J outline not
being considered. (cf. Sec. 1 of Part I).

For the parameter values c = 0 and γ = 0,
at which the fixed point P ∗ of the x-axis has the
multipliers S1 = S2 = 0, P ∗ is the only attractor
of the map. The boundary ∂D− = J ′ is made up
of an arc [Fig. 46(a)] semi conjugate to the circle
|z| = 1 generated by the complex map TZ . When γ
decreases from γ = 1 to γ = 0, the box-within-a-box
bifurcations take place on ∂D− without any disrup-
tion. The basin boundary ∂D− remains smooth, but
now with small “oscillations” [resulting from a sign
change of the curvature radius Fig. 46(b)], which
disappear at γ = 0. The parameter value c = γ = 0
separates two subintervals for which the J shape
(directly related to its outline) undergoes a qualita-
tive change.

When γ = 0, a continuous variation of the Julia
set J ′ = ∂D− occurs, for −1/4 < c < 0. The Julia
set J ′ has the same bumpy shaped fractal aspect
(petal-like), which reduces until attaining c = 0.

This aspect results from a continuous modification
of the case c = c(1)0 = −1/4, but for −1/4 < c < 0
now J ′ is nowhere differentiable.

For c(1)0 = −1/4 < c < 0, when γ decreases
from γ = 1, the fixed point P ∗ is the only attrac-
tor of the map T , the box-within-a-box bifurcations
take place without any disruption on the arc ∂D−
of the basin boundary of P ∗. The arc ∂D− remains
smooth [Figs. 43(a)–43(c)], but with more and more
“oscillations” [Fig. 47(a)] as γ approaches 0, and at
γ = 0 (the Julia set case) it becomes nonsmooth
[Fig. 47(b)].

7.2.3. Interval 0 < c < cp

When c(E0) = 0 < c < cp (cp is defined in Sec. 6.1)
the ∆1 Myrberg’s order on ∂D− is not disrupted
for γ decreasing values. The fixed point R∗ ∈ ∂D−
(y(R∗) < 0) is located on a local “dip” of D−, now
with a pointed shape of the Julia set ∂D− (Fig. 48,
c = 0.3, γ = 0). When γ decreases from the global
bifurcation of “saddle-saddle” type (cf. Secs. 4.3
and 5.2), and after the merging of the period two
unstable focus (Fig. 24) F j

2 , j = 1, 2, with R∗,
D− presents a sequence of bulges separated by R∗
and its increasing rank preimages. This gives rise
to a “dampened oscillations” shape of ∂D− toward
Q∗∪Q∗−1, which leads to the Fig. 48 situation when

(a) (b)

Fig. 46. (a) c = γ = 0. The fixed point P ∗ of the x-axis is the only attractor of the map. The boundary ∂D− = J ′ is made
up of an arc semi conjugate to the circle |z| = 1 generated by the complex map z′ = z2. (b) c = 0; γ = 0.1.
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(a) (b)

Fig. 47. (a) c = −0.15; γ = 0.01. The basin arc ∂D− remains smooth but with more and more “oscillations” as γ approaches 0.
(b) c = −0.15; γ = 0. Julia set case. The arc ∂D− is nowhere smooth.

γ = 0. As for the route toward this Julia set, all
unstable cycles of ∂D−, and their limit sets, result
from all the box-within-a box bifurcations (Part I,
Fig. 1) without any perturbation, when γ decreases.

7.2.4. Interval cp < c < cb1 = 3/4

In the interval cp < c < c21 = 3/4, the ∆1 Myr-
berg’s order on ∂D− is disrupted, and y(R∗) → 0
with negative values, when c → cb1 ≡ c21 . This

Fig. 48. c = 0.3, γ = 0. Shape of the Julia set ∂D−.

interval is characterized by the birth of island sets
followed by aggregation of these islands to the
immediate basin D0 when γ decreases. Births of
island sets (or related aggregations) are infinitely
many, either by creation (or destruction) of head-
lands, or when an island intersects the critical line
La. When γ = 0, this situation leads to a new
aspect of the fractal set ∂D− = J , represented by
Fig. 49(a) (c = 0.6, γ = 0).

Consider γ decreasing values, from γ = γb3

(Sec. 5.4), (c; γb3) ∈ f20 . In order to see how
Fig. 49(a) is obtained we consider the basin situa-
tion for c = 0.6, γ = 0.0595 [Fig. 49(b)], with a non-
connected basin D−. We remark that the immediate
basin boundary ∂D0− is made up of a sequence of
“bulges” of decreasing size, in the form of a damp-
ened half oscillations, tending toward the points Q∗
and Q∗−1 on y = 0. Remind that Q∗−1 is a rank-
one preimage of the fixed point Q∗, T−1(Q∗) =
Q∗ ∪ Q∗−1, x(Q∗−1) = −x(Q∗). The “bulges” are
created from the “mushroom” shaped basin (for
γ > γb3, cf. Secs. 5.3, 6.4). This shape disappears
when γ decreases. The second bulge on the left of R∗
creates the headland ∆0, the island D0

1 = T−1(∆0)
crossing through La

−1, and infinitely many islands⋃
n≥1 T−n(∆0) constituting the first islands set of

Fig. 20. The limit set Λ∗ of the islands is the strange
repeller SR, and also the set Ω made up of the
unstable cycles, their limit points, and increasing
rank preimages, belonging to ∂D0−, Λ∗ = SR ∪ Ω.
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(a) (b)

(c)

Fig. 49. (a) c = 0.6, γ = 0. Shape of the Julia set ∂D−. (b) c = 0.6, γ = 0.0595. Nonconnected basin D−. (c) c = 0.6,
γ = 0.0075. Swellings of D− resulting from the aggregation of the first set of islands.

When γ decreases, the slope of the critical arc
La decreases by rotation with center point (x = −c;
y = 0) and tends toward zero if γ → 0. For c = 0.6
the inverse bifurcation of Fig. 2 (sense

−→
cba) leads

to the aggregation of the islands set to D0− for
γ � 0.0582. A second islands set, due to the head-
land ∆1 in the third bulge on the left of R∗, appears
from γ 
 0.00875, D1

1 = T−1(∆1), being the

island crossing through La
−1. Figure 49(c) (c = 0.6,

γ = 0.0075) shows this case and swellings resulting
from the first islands aggregation. Decreasing val-
ues of γ cause the aggregation of these islands when
γ � 0.0059. This situation is followed by a sequence
of global bifurcations with formation of island sets,
due to the headland ∆n in the rank (n + 2) bulge
on the left of R∗, followed by islands aggregation,
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Fig. 50. c = 0.74, γ = 0. Julia set ∂D−.

n → ∞ when γ → 0. The fractal Julia set ∂D−
of Fig. 49(a) (c = 0.6, γ = 0) is the result of such
infinitely many global bifurcations.

When c is not far from c21 = 3/4, and with
decreasing γ values, γ < γ(f20), the alternation of
islands birth and aggregations no longer occurs, i.e.
several births of islands sets happen before an aggre-
gation. This gives rise to the fractal Julia set ∂D−
of Fig. 50 (c = 0.74, γ = 0) where the swellings
basis is smaller.

7.3. Toward the Julia Set generated
between the flip bifurcations c2i

and c2i+1

The parameter interval considered here is c2i ≤ c ≤
c2i+1 , i = 1, 2, 3, . . . , which belongs to the Myrberg’s
spectrum ω1. Here c2i is the flip bifurcation denoted
cbi in Part I. When γ = 0, the neutral period 2i

cycle, with multipliers S1 = S2 = −1, belongs to
y = 0 and also to ∂D− which is an arc limiting
a domain of convergence toward this neutral cycle
inside the half plane y ≤ 0. In the simplest case
c = c21 = 3/4 (i.e. cb1), γ = 0, the cycle is the fixed
point P ∗ (point q2 in Part I), which merges with R∗
(see the previous section).

For c = c2i , i = 2, 3, 4, . . . , consider the total
domain of convergence D(2i) = D−(2i) ∪ D+(2i)
of the neutral period 2i cycle located on y = 0,
D+(2i) = D(2i) ∩ (y > 0), ∂D−(2i) = ∂D− = J ′ is

such that D+(2i) coexists with an attractor in the
half plane y > 0, with a basin D+.

The fourth type of Julia set (with class A) is
obtained for each c-value of the interval c2n < c <
c2n+1 (denoted cbn < c < cb(n+1) in Part I) of the
ω1 spectrum, n = 1, 2, . . . , and γ = 0. This situa-
tion is described in Sec. 5.4 of Part I. For n = 1
and c = c21 , R∗ merges into the fixed point P ∗
located on y = 0 [Fig. 45(a)]. When c > c21 one has
y(R∗) > 0, and P ∗ ∈ ∂D−. It results that for c ≥ c21

∂D− contains P ∗ and the increasing rank preimages
of P ∗, whose limit set on y = 0 is Q∗ ∪ Q∗

−1. This
situation has a new consequence on the Julia set
∂D− obtained for γ = 0. Indeed now each of the
Fig. 45(a) “bulges” intersects y = 0 at two points
belonging to the increasing rank preimages of P ∗.
Then with γ decreasing values, there exists a c-value
(say c1

p) such that as soon as La crosses through
such a bulge, the inverse bifurcation of Fig. 2 can-
not happen. It results in the impossibility of having
islands aggregation to D0− for γ > 0.

Figure 51 (c = 0.78, γ = 0.01) shows the for-
mation of islands before attaining γ = 0. From
Figs. 52(a), 52(b) (c = 0.8, γ = 0) it appears
that a c increase gives rise to local fractal spikes
at the contact of islands inside of fractal hollows
(see the Fig. 52(b) enlargement of ∂D0− ∩ ∂D0

1 at
x = 0). With increasing values of c the hollows
size decrease, until they vanish, as shown in Fig. 53
(c = 1, γ = 0), and the Fig. 54 (c = 1.1, γ = 0)

Fig. 51. c = 0.78, γ = 0.01. Formation of islands before
attaining γ = 0.
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(a) (b)

Fig. 52. (a) c = 0.8, γ = 0. Julia set ∂D−. (b) Enlargement showing local fractal spikes at the contact of islands inside of
fractal hollows.

enlargement. For c = 1, γ = 0.0008, Fig. 55 gives
a view of the situation before contact with all the
islands. When c increases Figs. 56 (c = 1.24, γ = 0),
57 (c = 1.25, γ = 0), 58 (c = 1.28, γ = 0), 59
(c = 1.3, γ = 0), illustrate the modifications of the
Julia set J ′ semi-conjugate of the Julia set J gener-
ated by the map z′ = z2−c. For γ > 0, with decreas-
ing values toward γ = 0, and for the other intervals
bounded by two consecutive flip bifurcations of ω1,

Fig. 53. c = 1, γ = 0.

as for the previous intervals, the route toward the
Julia set J ′ is defined from the Fig. 5 bifurcation
structure.

7.4. Interaction of the half plane
y ≤ 0 on the half plane y > 0

Consider the parameter interval ω1 and c > c22 .
When γ = 0, due to the presence of the stable

Fig. 54. c = 1.1, γ = 0.
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period 2i cycle (i = 2, 3, . . .) on the x-axis with a basin overlapping this axis, the number of stable cycles
located in the half plane y > 0 increases with i. That is, for γ = 0 the stable cycles of the half plane y ≥ 0
have a remarkable property, which we have obtained only numerically, as follows:

• For c2i < c < c2i+1 , i ≥ 1, the half plane y ≥ 0 includes:

(a) one stable cycle of period 2i−1

(b) 2i−1 stable cycles of period 2i

The case i = 1 is obvious, while the three following examples show a few cases with i = 2, 3, 4.
(E1) at c22 < c = 1.36 < c23 , γ = 0 we have the following cycles:

c = 1.36, γ = 0 period x y S1 or ρ S2 or ϕ

Cycle 2i−1 = 21 0.20089 0.7516 ρ = 0.925 ϕ = π/2
Cycle 1
Cycle 2

2i = 22 −0.07326
−0.71395

0.0000
0.41048

0.732
−0.856

−0.856
−0.856

and Fig. 60 shows the basins of the stable cycles, the 2-cycle has a green basin, the 22-cycle in (y > 0) has
a blue basin and the 22-cycle on the x-axis a red basin.

(E2) at c23 < c = 1.3816 < c24 , γ = 0, we have the following cycles:

c = 1.3816, γ = 0 period x y S1 or ρ S2 or ϕ

Cycle 2i−1 = 22 = 4 0.49061 0.00134 ρ = 0.064 ϕ = π/2
Cycle 1
Cycle 2
Cycle 3
Cycle 4

2i = 23

−1.38160
−1.27854
−0.75921
−0.77259

0.0000
0.01062
0.35478
0.37089

0.000
−0.004
−0.004
−0.004

−0.004
−0.004
−0.004
−0.004

and Fig. 61 shows the basins of the stable cycles, the 22-cycle has a blue basin, the four cycles of period
23 = 8 have basins in red, violet, yellow and green.

Fig. 55. c = 1, γ = 0.0008. Fig. 56. c = 1.24, γ = 0.
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Fig. 57. c = 1.25, γ = 0. Fig. 58. c = 1.28, γ = 0.

(E3) at c24 < c = 1.3975 < c25 , γ = 0, we have the following cycles:

c = 1.3975, γ = 0 period x y S1 or ρ S2 or ϕ

Cycle 2i−1 = 23 = 8 0.54900 0.00004 ρ = 0.448 ϕ = π/2
Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
Cycle 6
Cycle 7
Cycle 8

2i = 24

−1.39749
−0.78219
−0.80460
−1.30175
−1.38120
−0.78831
−0.80228
−1.30408

0.00000
0.32546
0.35152
0.00830
0.00027
0.33247
0.34878
0.00873

0.040
−0.200
−0.200
−0.200
−0.200
−0.200
−0.200
−0.200

−0.200
−0.200
−0.200
−0.200
−0.200
−0.200
−0.200
−0.200

Fig. 59. c = 1.3, γ = 0.

Fig. 60. c = 1.36, γ = 0. The basin of the period 2i with
i = 1 is blue colored. The basins of the two cycles with i = 2
are green and red colored.



November 12, 2009 10:59 02475

3278 C. Mira et al.

Fig. 61. c = 1.3616, γ = 0. The basin of the period 2i with
i = 2 is blue colored. The basins of the four cycles with i = 3
are green, yellow, pink and red colored.

and Fig. 62 shows the basins of the nine coexisting
stable cycles.

Moreover, we have noticed that:

• One of the 2i−1 stable cycles of period 2i is on the
x-axis (y = 0) with multiplier S∗ related to y = 0,
and the other 2i−1 − 1 stable cycles in (y > 0) of
period 2i have the multipliers S1 = S2 = S∗.

Fig. 62. c = 1.3975, γ = 0. The basin of the period 2i with
i = 3 is green colored. The basins of the eight cycles with
i = 4 correspond to the other eight differently colored areas.

• The unique cycle of period 21−1 is a stable focus,
or a stable node either with S1 = S2 or S1 = −S2.

8. Toward the Julia Set for c ∈ ∆1

Due to the fact that T γ=0 is semiconjugate to TZ

in the invariant half plane (y ≤ 0), when γ = 0 the
Part I results define completely the properties of
the boundary of J ′ ≡ ∂D− generated by (2). In the
interval c1s < c < 2, except the dendrites cases, an
attracting, or a neutral (|Si| = 1) period (k; j) cycle
exists on the x-axis, k �= 2p, p = 0, 1, 2, . . . (i.e. not
generated by the period doubling from P ∗). This
cycle is born from the fold bifurcation c = c(k)0 .

With respect to the Julia set obtained for c ∈
ω1, now the segment [Q∗−1, Q

∗] of the x-axis contains
all the unstable cycles generated for c < c(k)0 , their
increasing rank preimages restricted to y = 0, and
the limit set of all these points.

Section 4.4 has shown that, in the (c, γ) plane,
the set of all the spectra Ξn

k , k = 1, 3, 4, . . . , n =
0, 1, 2, . . . , are organized according to the fractal
box-within-a-box structure defined in Sec. 2 of Part
I. That is, the shape of the Figs. 3 and 9 bifurcation
curves is reproduced for other parameter intervals.
So the route toward the Julia set J ′ is here similar
to the one described in the previous section.

9. Dendrite Cases for the Julia Set
(γ = 0)

The situations of dendrites are defined in Sec. 5.5 of
Part I. Such situations are given by the values c = ĉ
(Sec. 2.4 of Part I, λ becoming now the parameter
c), i.e. c∗jk , cj

ks, c̃ and their embedded forms in rank-
a boxes, a > 1. For such c-values ∂D− is not the
basin boundary of an attracting set on the x-axis,
but the boundary of the domain of diverging orbits
in the half plane y < 0. The dendrites resulting
from the limit of Myrberg spectra are, as stated
above, those generated for c = c1s, c = cj

ks, or more
generally for the embedded cases c = cj1,...,ja

(k1,...,ka)s
.

The situation in the half plane (y ≥ 0) is not
so evident. Let us introduce such particular cases
c = ĉ, associated with a dendrite when γ = 0, con-
sidering the first case γ = ε > 0. This is because
for γ = ε > 0 the map T is invariant in the posi-
tive half plane (i.e. any point (x, y) with y > 0 is
mapped again at a point with y > 0) and in this
half plane there exist some (also many) invariant
attracting sets, while for γ = 0 the map T is no
longer invariant in the positive half plane, as any



November 12, 2009 10:59 02475

From the Box-within-a-Box Bifurcation Structure to the Julia Set 3279

point with (0, y) with y > 0 is mapped into a point
of the x-axis, which in its turn is invariant, thus the
trajectory will stay forever on the x-axis.

For example, consider the case c = c1s 

1.401155189 which is the limit of c2i as i → ∞.
As we have seen in Sec. 7.4, at γ = 0 and c = c2i

in the half plane y > 0 we expect the existence of
2i−1 − 1 stable cycles of period 2i and one stable
cycle of period 2i−1. Thus, as i → ∞, it is possi-
ble that infinitely many attracting sets exist, but
also their periods tend to infinity, which lead to the
conjecture that the stable cycles in the half plane
(y > 0) are finite in number for any finite i while in
the limit the invariant set has a different structure.
And this is probably true also for γ = ε > 0 when
the map T is invariant in the positive half plane. In
such cases, for (c1s, ε) we have an invariant set on
the x-axis and a different invariant set in (y > 0),
and perhaps with the same “critical” property, as a
critical attractor Acr (with a Cantor like structure,
cf. Part I, Sec. 2.1) that we know to exist on y = 0.
Then, in the limit, for (c1s, 0) we have an invariant
set Acr on y = 0 which now attracts also points from
the positive half plane (y > 0): the vertical segment
on the x = 0 axis and all its preimages of any rank,
which are probably intermingled in a complex way
with the existing invariant sets in the half plane
(y > 0). Clearly for (c1s, 0) in the half plane (y < 0)
we have the points of the dendrite, as described in
Sec. 5.5 of Part I, which belongs to the stable set
D(Acr), set of points of zero measure (in the two-
dimensional plane) which are ultimately mapped
into the critical attractor on the x-axis. However,
the closure of this set is probably such to include
the points which are invariant in the positive half
plane (y > 0).

This kind of values of c, leading to critical
attractors on the x-axis and dendrites in the neg-
ative half plane (y < 0) are perhaps more difficult
to understand with respect to those for which we
have a chaotic interval or cyclical chaotic intervals
on the x-axis and dendrites in the negative half
plane (y < 0). In fact, let us consider, for exam-
ple, the case of c̃ 
 1.89291098791. At this value,
on the x-axis we have an invariant chaotic interval
CC1 where C is the critical point of the Myrberg’s
map, that is, C = −c (on the x-axis), and Ci is its
ith iterate by the one-dimensional Myrberg’s map
(restriction of T on the x-axis). At c = c̃ the third
iterate C3 is merging with the unstable fixed point
q2, i.e. P ∗ for the map T . The set J ∩(y = 0) is con-
stituted by CC1 and its increasing rank preimages

Fig. 63. c = c̃ � 1.89291098791, γ = 0. Chaotic set ACh.
The dendrite part in the region y < 0 is not visible.

located on y = 0, which gives the closed linear
continuum bounded by the fixed point Q∗ and its
rank-one preimage Q∗−1 different from Q∗. Well, let
us consider first the case (c̃, γ = ε) (see Fig. 64 for
ε = 0.01). For this set of parameter values we have
two disjoint invariant sets, one is the dendrite in
the negative half plane J ∩ (y ≤ 0), whose shape

Fig. 64. c = c̃ � 1.89291098791, γ = 0.01. Chaotic area
bounded by three critical arcs without any contact with
y = 0.
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has been described in Part I, Sec. 5.5, and the
second one, A, belongs to the positive half plane
(y > 0), and its basin of attraction D(A) as well.
In Fig. 64 the invariant set A looks like a chaotic
area, bounded by arcs which are images of the crit-
ical curves La−1 and Lb−1. Two segments on La and
Lb on the boundary of A are shown in Fig. 64.
The colored region around it denotes its basin of
attraction D(A), and it seems that the x-axis is
a limit set of this basin, and thus belongs to its
boundary. This is the situation for any γ = ε > 0,
as ε → 0.

In the limit, at the parameters (c̃, γ = 0),
the portion in the negative half plane (y < 0) has
the same properties described above. While now the
points on the y-axis inside the previous set D(A)
are mapped into the x-axis, together with all their
preimages of any rank, which are dense in the old
area A, it follows that the stable set of the chaotic
segment CC 1 on the x-axis has an explosion. If in
the positive half plane (y > 0) some attractor B
(with an open basin D(B) with positive measure)
exists, then CC 1 is a Milnor attractor: the stable
set of CC 1 is a set with positive measure which is
riddled with the basin D(B) in (y > 0), and it is
the dendrite in the region (y < 0). But it is also
possible that what is left as invariant in the posi-
tive half plane (y > 0) is not a basin but a Milnor
attractor as invariant set with a stable set of posi-
tive measures that is also riddled with the stable set
of CC 1, which means that considering any point in
(y > 0) whose trajectory is not divergent, then in
any neighborhood of it, we have points belonging
to both sets, i.e. points whose trajectory ends on
the x-axis, and also points whose trajectory stays
forever in the positive half plane (y > 0). A third
possibility is that two chaotic sets, disjoint for ε > 0,
are merging at ε = 0 (as suggested from Fig. 63).
That is, the whole invariant chaotic set is now a
set ACh which is bounded by an arc of the crit-
ical set La which is now on the x-axis (y = 0)
(that is, it includes now also the segment CC 1),
an arc of Lb (y = (x + c̃)2, x ≥ −c̃), and an arc
of its rank-one image Lb

1 intersecting Lb angularly
(Fig. 63). Its basin Dc is the set in color in Fig. 63,
whose boundary ∂Dc is made up of two symmetric
smooth arcs joining in the region y > 0, while in the
region y < 0, the boundary ∂Dc of Dc is made up of
the dendrite described in Sec. 5.5 of Part I. In this
case, the situation (c̃, γ = 0) is that of the contact
of a chaotic area boundary with its basin bound-
ary, here not at a set of isolated points (i.e. not a

classical bifurcation, cf. [Gumowski & Mira, 1980;
Mira et al., 1996a]), but along a whole segment.
For γ < 0, ACh is destroyed turning into a strange
repeller.

Similarly we can reason for any value of c, lead-
ing to chaotic intervals (cyclical or not) and associ-
ated with dendrites in the half plane (y ≤ 0).

As a second example let us consider c = c∗13 

1.790327493. The half plane y ≤ 0 contains a den-
drite (cf. Part I, Sec. 5.5) which is the boundary
of the domain D∞− of diverging orbits. In the half
plane y ≥ 0 the map has a basin of points whose
trajectory tends to a chaotic set ACh. This set ACh

now has a contact with J ∩ (y = 0), and it includes
the period three chaotic segments CH1

3 for the map
restricted to the x-axis (cf. Part I, Sec. 2.1). With
respect to the two-dimensional map T , this invari-
ant chaotic set ACh has not an open set as basin
because it has a contact with its basin boundary in
y ≤ 0, and thus we are at a particular contact bifur-
cation. The chaotic set ACh is made up of regions
of low density of orbits, and regions of higher den-
sities. It is bounded by an arc of the critical sets
made up of La (y = 0), an arc of Lb (y = (x + c̃)2,
x ≥ −c̃), and arcs of its rank-n images, n = 1, . . . , 5,
Lb

1 intersecting Lb angularly (Fig. 65). The region
y ≤ 0, contains the dendrite. For γ = ε, ε > 0
sufficiently small, one has a chaotic area bounded
by the above critical arcs, but without any contact
with y = 0 (Fig. 66).

Fig. 65. c = c = c∗13 � 1.790327493, γ = 0. Chaotic set
ACh. The dendrite part in the region y < 0 is not visible.
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Fig. 66. c = c = c∗13 � 1.790327493, γ = 0.001. Chaotic
area bounded by three critical arcs without any contact with
y = 0.

10. Conclusion

For explaining the different configurations of the
Julia sets, generated by the complex map TZ , z′ =
z2−c, c being a real parameter, the method used in
this paper belongs to the embedding one. More gen-
erally such an approach has the advantage to clarify
a particular complicated and multifaceted situation
by inserting in it a larger family of equations (here a
two-dimensional noninvertible map) depending on
one more parameter (here γ ≥ 0 for T ), which
restores the initial equation when this new parame-
ter vanishes. In the present case, this enlightenment
has been obtained from the sequences of local and
global bifurcations generated when γ decreases and
tends toward zero. Moreover, it has been shown that
the fractal bifurcation organization box-within-a-box
[Gumowski & Mira, 1975; Mira, 1975], or embed-
ded boxes [Guckenheimer, 1980] of the Myrberg’s
unimodal map, x′ = x2 − c, play a fundamental
role, not only for the restriction of T to y = 0, but
also in the (c, γ) parameter plane. This occurs for a
well defined set of bifurcation curves, which recurs
according to this fractal structure, and also when,
for a given value of c, the parameter γ decreases
reproducing this organization either completely, or
in a perturbed form. In this sense, enlightening
some sequences of global bifurcations, the paper has
given the opportunity of a more complete study of
the two-dimensional noninvertible map with respect
to previous publications [Agliari et al., 2003, 2004].

At this study stage the paper does not pretend to
analyze all the situations generated by the complex
map TZ , because unfortunately the “indirect” (cf.
Sec. 1) embedding achieved by T does not work
with a complex parameter c = a ± jb, j2 = −1.
Among other open questions this paper does not
explain the striking numerically obtained proper-
ties in Sec. 7.4. A theoretical proof of this result
would be interesting.

It is worth noting that many different types
of imbedding are possible for the paper purpose,
but not having the advantages of the “indirect”
one adopted for this study. These advantages are
induced by the critical line La, the slope of which
decreases by rotation with center point (x = −c,
y = 0) and tends toward zero if γ → 0. This has
been at the origin of the understanding of the γ = 0
case from the phenomena related to the islands,
appendices formation, aggregation, and from the
follow up of box-within-a-box bifurcations gener-
ated on the basin boundary ∂D− of the attractor
located inside y ≤ 0, until attaining the “full” num-
ber of real unstable cycles on this boundary at the
parameter limit. It is easy to see that this is not easy
from a “direct” embedding consisting of the intro-
duction of a perturbation of the map TZ , from a
parameter ε restoring immediately TZ when ε = 0,
and such that the resulting map does not satisfy the
Cauchy Riemann conditions for ε �= 0, (cf. [Mira,
1987, p. 423]). Indeed in this case, for the maps fam-
ily so created, the TZ critical point (−c; 0) turns into
a critical close curve tending toward (c; 0) when the
embedding parameter ε → 0, as shown in pp. 444–
456 of Mira et al. [1996a] for the map

x′ = x2 − y2 + εx + c; y′ = 2xy − 5εy
2

This approach has not permitted results equiv-
alent to those of the present study.
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