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Abstract

The paper deals with the solutions generated by a two-dimensional noninvert-
ible map defined by a cubic polynomial. The map is of the (Z1−Z3−Z1) type, i.e.
the plane is divided into three unbounded open areas: one Z3 generating three real
rank-one preimages, bordered by two regions Z1 generating only one real rank-one
preimage. This short study concerns the bifurcations leading a basin in a non
fractal situation into a fractal one (multiply connected basin, or non connected
basin). In this route to fractalization the first step is the existence of a chaotic
attractor which after destabilization gives rise to a strange repeller, limit set for
the the basin elements, when it is no longer simply connected. More specially one
of such routes is considered, when the strange repeller is said to have a structure
with ”high density”.

1 Introduction

This paper is devoted to one of the routes leading to the fractalization of a basin gen-
erated by a two-dimensional noninvertible map. Publications Mira et al. [1994, 1996]
have shown that such maps may lead to a fractal basin the elements of which have a
strange repeller as fractal limit set. Generally this set results from the destabilization
of a chaotic attractor (said ”chaotic area” for noninvertible maps) before the fractaliza-
tion occurrence. Then the fractal properties of the basin depend strongly on the chaotic
attractor structure, at the origin of this situation. This because the resulting strange
repeller constitutes the ”skeleton”, the framework of the fractal basin. The following ex-
ample of a (Z1−Z3−Z1) two-dimensional family of maps T , defined by two polynomials:
a linear one, and a cubic one, in the form:

x′ = y (1)

y′ = ax + bx2 + cx3 + dy
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illustrates a route to a fractal basin from a chaotic attractor with a ”high degree” of
chaos, leading to a ”high degree” of fractalization (these two terms will be roughly
defined below).

The map (1) depends on the parameters a, b, c, d. It is reminded that two-dimensional
maps are identified by a symbolism based on the configuration of regions Zk of the
plane, each point of Zk having k distinct rank-one real preimages. For the map (1),
(Z1−Z3−Z1) means that the plane is divided into three unbounded open areas: one Z3

generating three real rank-one preimages, bordered by two regions Z1 generating only
one real rank-one preimage. Here the boundaries of the regions Zk, k = 1, 3, are made
up of two parallel straight lines L, L′, branches of the rank-one critical curve LC, locus
of points such that two determinations of the inverse map T−1 are merging on the set
LC−1 = L−1∪L′−1, made up of two vertical parallel straight lines. The set LC−1 is given
by equaling to zero the Jacobian determinant of T . It is worth noting that noninvertible
polynomial maps are incompletely identified by their degree. Indeed two-dimensional
quadratic maps may lead to regions Zk, for which the highest integer k is either 2, or 4.
For two-dimensional cubic maps the highest integer k may be either 3, or 5, or 7, or 9.
The map complexity depends on the highest value of k.

It is known that basins generated by two-dimensional noninvertible maps may be
either simply connected, or multiply connected, or non connected, depending on the
situation of their boundary with respect to the critical set LC (Mira et al. [1994, 1996]).
This dependance occurs in different ways. It is reminded that a basin is multiply con-
nected when it is pierced by infinitely many holes, called lakes in the above references.
When it is nonconnected it is generally made up of infinitely many elements (called
islands) without any connection. For language convenience by ”high degree” of fractal-
ization (resp. ”high degree” of chaos) we mean that lakes, or islands, (resp. the orbits
of the chaotic attractor) cover tightly a whole region of the (x, y) plane. These rough
definitions are sufficient for the paper purpose. They will come into an evident view
from the basin numerical representation in the (x, y) plane (cf. for example Figures 5,
6).

The basic ”mechanism” of the basin with ”high degree” of fractalization can be
summarized as follows for the map family (1). A suitable parameter choice gives rise to
two attractors: a stable fixed point O with a non connected basin D(O), and a chaotic
attractor (d) (chaotic area) with a multiply connected basin D(d), located in a bounded
region of the (x, y) plane. The closure D = D(O) ∪D(d) of the union of the two basins
is the basin of bounded orbits. A parameter variation destroys (d) leading to a simply
connected basin D ≡ D(O), and the formation of a strange repeller (denoted SR). SR is
an unstable fractal set constituted by unstable cycles with increasing period, unstable set
of saddles cycles, their limit set when the period tends toward infinity, and the increasing
rank preimages (arborescent sequence) of all these points. As a repulsive set, the strange
repeller belongs to a basin boundary ∂D(O) (Mira et al. [1996]a), and is located inside
the domain bounded by the ”external” boundary ∂eD(O), which is also the boundary
of the domain of unbounded orbits. When D(O) is simply connected SR gives rise to
chaotic transients toward the fixed point O. When D(O) is non connected or multiply
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connected, SR gives rise to a fractal basin. In the first case the SR points are not limit
points of lakes, or islands. An initial point in the region containing SR generates an orbit
which has an erratic behavior during more or less iterations, before a regular convergence
toward the stable fixed point O. In the second case the SR points are limit points of
lakes (for multiply connected basins), or islands (for nonconnected basins). Then SR
constitutes the ”skeleton”, i.e. a nucleus of the corresponding fractal basin. As in Mira
et al. [1994, 1996], for language convenience, in relation with basin structure, this paper
uses geographic analogies: sea for the domain of divergent orbits, continent for domain
of bounded orbits, lakes, islands, respectively as elements of multiply connected and
nonconnected basins.

Section 2 is devoted to some reminders about general properties of two-dimensional
noninvertible maps. Section 3 describes the bifurcation giving rise to the strange repeller.
Section 4 concerns the bifurcations leading to the fractal structure of the multiply con-
nected basin and the nonconnected one. The conclusion deals with the problems induced
by numerical simulations for studying the generation of basins.

2 Some reminders

We consider a two-dimensional noninvertible map T , not specially (1). As in any neigh-
borhood of a point of the critical set LC there are points for which at least two distinct
inverses are defined, LC−1 is a set of points for which the Jacobian determinant of T
vanishes. The set LC satisfies the relations T (LC−1) = LC, and T−1(LC) ⊇ LC−1.
LCk = T k(LC), = 1, 2, 3, ..., constitute the rank-(k + 1) critical set of T .

A closed and invariant set Ω is called an attracting set if some neighborhood U of
Ω exists such that T (U) ⊂ U , and T n(X) → Ω as n → ∞, ∀X ∈ U . An attracting
set Ω may contain one, or several attractors coexisting with sets of repulsive points
(strange repellers) giving rise to either chaotic transients towards these attractors, or
fuzzy boundaries of their basin (Mira [1987], (Mira et al. [1996]). As an attracting set
a chaotic area (d) is an invariant absorbing area (cf. Mira et al. [1996] p.188) bounded
by arcs of critical curves LCn (n = 0, 1, 2, ..., p, LC0 ≡ LC, p being a finite or an infinite
integer), inside which a numerical simulation shows a stable chaotic behavior. ”Chaotic”
may be considered either in a ”non-strict sense”, or in a ”strict sense”. ”Chaotic in
a non-strict sense” means that the observed dynamics presents no regularity from a
numerical simulation (always implying finite precision and finite number of iterations).
”Chaotic in strict sense” means that it is possible to prove that the set (d) is a true
strange attractor.

The open set B =
⋃

n≥0
T−n(U) is the total basin of Ω, i.e. B is the open set

of points X whose forward trajectories (set of increasing rank images of X) converge
towards Ω. B, as its boundary ∂B, is invariant under backward iteration T −1 of T , but
not necessarily invariant by T :

T−1(B) = B, T (B) ⊆ B, T−1(∂B) = ∂B, T (∂B) ⊆ ∂B
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The strict inclusion holds iff B contains points of a Z0 region, which is not the case for
the map (1). If Ω is a connected attractor (particular example: Ω is a fixed point), the
immediate basin B0 of Ω, is defined as the widest connected component of B containing
Ω.

We remark that T−1(∂B) = ∂B implies that ∂B must contain the set of preimages
of any of its cycles, i.e. must contain the stable set W s of any cycle of T belonging to
∂B. It is worth noting that, for unstable node and focus cycles, the stable set W s is
made up of the set of increasing rank preimages of cycle points (such a set does not exist
in the case of an invertible map). For a saddle cycle, W s is made up of the local stable
set W s

l , associated with the determination of the inverse map which let invariant this
cycle, and its increasing rank preimages.

When Ω is the widest attracting set of a map T , its basin D (called continent in
Mira et al. [1994, 1996]) is the open set D containing Ω such that its closure D is the
locus of points of the plane having bounded trajectories. Its complementary set, denoted
by D′ (i.e. D ∪ D′ = R2) when it is non void, is the basin (called sea in Mira et al.
[1996a]) of an attracting set at infinite distance (on the Poincaré’s equator), i.e. the
locus of points of the plane having divergent trajectories. In such a case the two basins
have a common boundary (the separating set). A map T may also possess no attracting
set at finite distance (when only repellers, chaotic or not, exist at finite distance). In
such a case, the locus of points of the plane having bounded trajectories belongs to the
boundary ∂D′ of D′ (and R2 = D′). Then ∂D′ may be a strange repeller giving rise
to a chaotic transient toward the Poincaré’s equator. Here these bounded trajectories
have no ”physical” sense, because they suppose an infinite accuracy on the data, and
the absence of disturbance on the system which is modelled by the map.

Conditions of existence of a non connected basin, and a multiply connected basin
are given in Mira et al. [1994, 1996]. They depend on the geometric situation of basins
boundary with respect to the critical set LC. This occurs in several ways, leading to
many global bifurcations characterizing the transitions: simply connected basin↔ non-
connected one, simply connected basin ↔ multiply connected one, multiply connected
basin ↔ non connected one. Such transitions are generally related to homoclinic and
heteroclinic bifurcations.

3 Generation of a strange repeller by the map T

The map T in (1) has three fixed points O = (0, 0), P and Q:

xP = [−b−
√
∆]/(2c), xQ = [−b +

√
∆]/(2c), ∆ = b2 − 4c(a + d− 1)

yP = xP , yQ = xQ

Their multipliers (eigenvalues) are denoted by S1 and S2. We consider the parameter
set a = −0.75, c = −0.5, d = 0.25, 1.84 ≤ b < 2.3.
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For b = 1.84 the fixed points O and P are two stable foci. The fixed point Q is an
unstable node (S1 < −1, S2 > 1) associated with a period two saddle C j

2 , j = 1, 2. The
closure of the basin D(Ω) of the attracting set Ω = O ∪ P is the domain of bounded
orbits. The boundary ∂D(Ω) of this basin is an invariant closed curve made up of
the stable manifolds W s(Cj

4), W s(C ′ j
4 ) of two period 4 saddles Cj

4 , C ′j
4 , j = 1, 2, 3, 4,

ending at two period 4 unstable nodes N j
4 , N ′j

4 (Figure 1). The basin D(O) of O is non
connected, D0(O) being the immediate basin (the part containing O). The basin D(P )
of P is multiply connected. The common boundary ∂D(O) ∩ ∂D(P ) is made up of the
stable manifold W s(Cj

2), j = 1, 2, of the period two saddle C1
2 , C2

2 . The limit set of the
basins D(O), D(P ) is ∂D(Ω) made up of the stable manifolds W s(Cj

4), W s(C ′ j
4 ). The

basins D(O), D(P ) and their limit set have not a fractal structure.

Figure 1: a = −0.75, c = −0.5, d = 0.25, b = 1.84. The dark grey region is the
non connected basin D(O) of the stable fixed point O. The grey region is the multiply
connected basin D(P ) of the stable fixed point P . The white part is the domain of
diverging orbits.

When b increases from b = 1.84, the fixed point P undergoes a Nëimark bifurcation
turning into an unstable focus surrounded by a stable invariant closed curve,which grows
to be a chaotic area (d) (cf. Figure 2 for b = 2).

The closure of the basin D(Ω) of the attracting set Ω = O ∪ (d) is the domain of
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Figure 2: a = −0.75, c = −0.5, d = 0.25, b = 2. The grey region is the non connected
basin D(O) of the stable fixed point O. The dark grey region is the multiply connected
basin D(d) of the chaotic area (d). The white part is the domain of diverging orbits.

bounded orbits. With b increasing from b = 1.84, the period 4 saddles C j
4 , C ′j

4 , give rise
to a classical period doubling bifurcation followed by the creation of unstable period 4k2i

cycles, i = 0, 1, 2, ..., k = 1, 3, ..., and after by unstable cycles with a period different
from 4k2i. All these cycles are located on the basin boundary ∂D(Ω) (cf. Figure 3 with
cycles until the period 13).

Considering the one-dimensional map Tr reduced to the repulsive invariant closed
curve ∂D(Ω), this situation means that the dynamics is chaotic on this closed curve.
Then the set of the corresponding unstable cycles, and their increasing rank preimages,
have a fractal structure on ∂D(Ω).

Consider now the parameter set 2 ≤ b < 2.3. The fixed point O remains a stable
focus. The points P and Q are respectively an unstable focus and an unstable node
(S1 < −1, S2 > 1). The period two saddle Cj

2 , j = 1, 2, continues to exist in the
domain bounded by ∂D(Ω). For b = 2 the map T has two attractors: the fixed point
O and a chaotic area (d) (Figure 2) bounded by arcs of rank-k critical curves LCk,
k = 0, 1, 2, 3, 4, LC0 ≡ LC, LCk = T k(LC). A large segment of the critical line L
belongs to the (d) boundary. The corresponding basins are denoted D(O) and D(d), with
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Figure 3: Enlargement of the figure 2 lower part.

D(Ω) = D(O) ∪ D(d). The basin D(O) is non connected, D0(O) being the immediate
basin (the part containing O). D(d) is multiply connected. The common boundary
∂D(O) ∩ ∂D(d) is made up of the stable manifold W s(Cj

2), j = 1, 2, of the period two
saddle C1

2 , C2
2 . The limit set of the basins D(O), D(d) is ∂D(Ω) where the dynamics

is chaotic. The basins D(O), D(d) have not a fractal structure, but their limit set is
fractal. In this sense we shall say that they have a ”limit fractal structure”.

For b = bf1 ' 2.004993 a contact bifurcation between the chaotic attractor (d) and
the stable manifold W s(Cj

2) occurs. It results a homoclinic bifurcation by tangency of
W s(Cj

2) with the branch of the unstable manifold W u(Cj
2) tending toward (d). Then

(d), destroyed for b = bf1 + ε as small as ε may be, gives rise to a strange repeller SR.
Figure 4 (b = 2.007) shows the basin D(O) of the fixed point O. The ”granular” region
inside D(O) reproduces the ancient basin D(d). It corresponds to the strange repeller
SR. The boundary ∂D(O) of the basin D(O) is ∂D(O) = ∂eD(O) ∪ SR.

The bifurcation b = bf1 changes the non connected basin D(O) into a simply con-
nected one with the formation of a strange repeller from the chaotic area (d).

4 Basin fractalization

For b = 2.022, a bay H0 has been generated via a tangential contact of ∂eD(O) with the
critical line L (Mira et al., 1994, 1996 ) near a local minimum of the ∂eD(O) ordinate,
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Figure 4: a = −0.75, c = −0.5, d = 0.25, b = 2.007. The grey region is the basin
D(O) of the stable fixed point O. This basin is now simply connected. Its boundary
contains a strange repeller SR, located in the region with black points, and born from the
destabilisation of the chaotic area (d). The white part is the domain of diverging orbits.

when b = bf2 ' 2.02113. So the basin D(O) is now multiply connected (cf. Fig 5
b = 2.022, where the lakes are white colored as the sea). The rank-one lake is H1 =
T−1(H0), made up of the union of two inverses of T . The third inverse of ∂H0 gives an
arc of ∂eD(O). The lake H0 belongs to Z3, and the rank-n+1 lakes T−n(H1) = H i1.....in

n+1 ,
n = 1, 2, ...., form an arborescent sequence when n → ∞. These lakes have SR and
∂eD(O) as limit set. Note that the point E, local maximum of the ∂eD(O) ordinate,
belongs to Z1. Below it will play a role in the bifurcation changing the multiply connected
basin into a non connected one. Figures 5 ( b = 2.022) and 6 ( b = 2.05) show the lakes
covering tightly the largest part of the domain bounded by ∂eD(O), the one inside the
SR region represented in the ”granulated” region of Figure 4. Such a situation is due
to the high density of the iterated points of the chaotic attractor (d) just before the
bifurcation b = bf1. As said above one has a ”high degree” of lakes fractalization.

The bifurcation b = bf2 changes the simply connected basin D(O) into a multiply
connected one.

For b = bf3 ' 2.07, the point E of ∂eD belongs to the critical segment L. A contact
bifurcation between L and the boundary ∂eD occurs near the point E (Figure 7). This
situation is an existence limit for the bay H0. When b > bf3 the point E belongs to Z3



About a route to fractalization of basins generated by noninvertible plane maps 307

Figure 5: a = −0.75, c = −0.5, d = 0.25, b = 2.022. The grey region is the basin
D(O) of the stable fixed point O. This basin is now multiply connected, with creation of
a bay H0 and lakes T−n(H0), n = 1, 2, 3, ...., the limit set of which is the strange repeller
appearing in Figure 4. The white part is the domain of diverging orbits.

(Figs. 8, 9, respectively for b = 2.09, b = 2.2). Then the sea ”penetrates” the lakes,and
D(O) becomes non connected.

The bifurcation b = bf3 changes the multiply connected basin D(O) into a non con-
nected one.

5 Conclusion

Numerical simulations are used for obtaining the paper results, in particular for the
basins drawing, and to discuss their bifurcations. Such a method is based on finite
precision of calculus. It can give only a ”macroscopic” view of the map behavior, and
thus implies a critical analysis of results ([Mira C., 2000]). For a ”microscopic” point
of view, we note that a Newhouse’s theorem states that in any neighborhood of a C r-
smooth (r ≥ 2) dynamical system, there exist regions of the space of dynamical sys-
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Figure 6: a = −0.75, c = −0.5, d = 0.25, b = 2.05. The grey region is the basin D(O)
of the stable fixed point O. The multiply connected basin is such that the surface of lakes
is increasing. The white part is the domain of diverging orbits.

tems (or a parameter space) for which systems with homoclinic tangencies (then with
structurally unstable, or nonrough homoclinic orbits) are dense. Domains having this
property are called Newhouse regions. This result was completed by V.S. Gonchenko,
D.V. Turaev & L.P. Shilnikov ([Gonchenko et al. 1993]) who asserts that systems with
infinitely many homoclinic orbits of any order of tangency, and with infinitely many
arbitrarily degenerate periodic orbits, are dense in the Newhouse regions of the space
of dynamical systems. This fact has an important consequence: systems belonging to a
Newhouse region are such that a complete study of their dynamics and bifurcations is
impossible ([Shilnikov, 1997]). Indeed in many smooth cases, due to the finite time of
a simulation, what appears numerically as a chaotic (strange) attractor may contain a
”large” hyperbolic subset in presence of a finite or an infinite number of stable periodic
solutions. Generally such stable solutions have large periods, and narrow ”oscillating”
tangled basins, which are impossible to exhibit numerically due to the finite time of
observation, and unavoidable numerical errors. So it is only possible to consider some
of the characteristic properties of the system, their interest depending on the problem
nature. Such complex behaviors occur for p-dimensional flows, p > 2, and thus for p ≥ 2
invertible and noninvertible maps.

From a ”macroscopic point” of view (the one considered in this paper) the union of
the numerous, and even infinitely many stable solutions, which are stable cycles for a
map, forms an attracting set. By definition a numerical simulation is made from a limited
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Figure 7: a = −0.75, c = −0.5, d = 0.25, b = 2.07. For b = bf3 ' 2.07, the point E of
∂eD belongs to the critical segment L. A contact bifurcation between L and the boundary
∂eD occurs near the point E. This situation is an existence limit for the bay H0. The
grey region is the basin D(O) of the stable fixed point O. The white part is the domain
of diverging orbits.

number of iterations. Consider the case of a noninvertible map which numerically shows
a chaotic attractor, after elimination of a transient, made up of a sufficiently large set of
”first” iterations. Then either the numerical simulation ”reproduces” points of a chaotic
area, related to a ”strict” strange attractor in the mathematical sense, or represents
a very long transient toward an attracting set including stable cycles of large period
in the above conditions. The first case for example is that of some piecewise smooth
maps (i.e. with isolated points of nonsmoothness), not permitting stable cycles (i.e.
the Jacobian determinant cannot be sufficiently small). In the second case, supposing
iterations without error (which numerically has no sense), the transient would be the one
toward a stable cycle having a period larger than the number of iterations, this transient
occurring inside a very narrow basin, tangled with similar basins of the other stable cycles
of large period. In presence of unavoidable numerical errors, the iterate points cannot
remain inside the same narrow basin. They sweep across the narrow tangled basins of
cycles of the attracting set. Then they reproduce a chaotic area bounded by segments
of critical curves, ([Mira C., 2000]). This means that the chaotic area (as bounded by
critical segments) is that observed numerically, but is not a true strange attractor from
a ”microscopic” point of view. So in this smooth case the numerical simulation may
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Figure 8: a = −0.75, c = −0.5, d = 0.25, b = 2.09. The point E belongs to Z3 Then
the domain of divergent trajectories (white part) ”penetrates” the lakes, and D(O) (grey
colored) becomes non connected. D(O) is made up of an immediate basin containing O,
and of infinitely many non connected parts (islands) the limit set of which is the strange
repeller appearing in Figure 4.

be a transient toward an attracting set located inside the chaotic area, with successive
jumps in different very narrow basins due to numerical errors. Just after the bifurcation
destroying the chaotic area these very small basins persist, but numerically they cannot
appear in presence of ”dominant” basins. Then the resulting strange repeller may coexist
with such ”microscopic” basins. In the nonsmooth case the chaotic area is a true strange
attractor when stable cycles cannot exist.

The macroscopic point of view concerns all the mathematical models which have
a ”physical sense”, i.e. which imply a finite precision. In this framework the related
notion of chaotic area (cf. [Mira et al., 1996]) constitutes an important characteristic
of the system dynamics, even if in the smooth case it is impossible to discriminate
numerically a situation of a strange attractor in the mathematical sense, from that of
an attracting set made up of stable cycles with very large period. Indeed in some way
this notion permits to ”free ourselves” from the impossiblity of a complete dynamics
study, noted by L. P. Shilnikov, by adoption of a ”physical” point of view in the case of
noninvertible maps. The ”macroscopic” study of the paper describes one of the possible
route leading to a basin fractalization. It corresponds to a contact of the basin boundary
with the map critical set. Inside the closure of the simply connected basin obtained
before the bifurcation, this supposes the existence of a strange repeller, coming from the
destabilization of a chaotic area. The publication [Mira et al., 1996] has shown that two-
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Figure 9: a = −0.75, c = −0.5, d = 0.25, b = 2.2. The same as for Figure 3, but the
domain of divergent trajectories (white part) has increased with respect to Figure 8.

dimensional noninvertible maps can generate such attractors (and so the corresponding
strange repellers) with a lot of different fractal structures. So, in the general case, the
fractal structures of basins can present a large variety of situations. Due to the creation
of new singularities, this variety is increased when the functions defining the map have
a denominator which can vanish on some set of points (cf. [Bischi et al., 1999] and
[Bischi et al., 2003] ).
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