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Border collision and fold bifurcations in a family of one-dimensional
discontinuous piecewise smooth maps: unbounded chaotic sets
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aFaculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran; bDESP University of
Urbino Carlo Bo, Urbino, Italy
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In this work we consider a class of generalized piecewise smooth maps, proposed in the
study of engineering models. It is a class of one-dimensional discontinuous maps, with
a linear branch and a nonlinear one, characterized by a power function with a term x2g

and a vertical asymptote. The bifurcation structures occurring in the family of maps are
classified according to the invertibility or non-invertibility of the map, depending on
the parameters characterizing the two branches. When the map is non-invertible we
prove the persistence of chaos. In particular, the existence of robust unbounded chaotic
attractors. The parameter space is characterized by intermingled regions of attracting
cycles born by smooth fold bifurcations, issuing from codimension-two bifurcation
points. The main result is related to the description of the relationship between two
types of bifurcations, smooth fold bifurcations and border collision bifurcations
(BCBs). We describe the particular role of codimension-two bifurcation points
associated with these bifurcations related to cycles with the same symbolic sequences.
We show that they exist related to the border collision of any admissible cycle.
We prove that each BCB, each fold bifurcation and each homoclinic bifurcation is a
limit set of infinite families of other BCBs. We prove that in the considered range all
the unstable cycles are always homoclinic, and that an unbounded chaotic set always
exists, either in an invariant set of zero measure or of full measure.

Keywords: piecewise smooth maps; border collision bifurcations; codimension-two
bifurcation points; unbounded chaotic attractors

1. Introduction

The study of piecewise smooth (PWS) systems had a wide expansion in the last decade.

This is due to the large number of physical and engineering systems with non-smooth

vector fields, a recent survey can be found in [33]. Many applications come from power

electronic circuits in electrical engineering, which gave a wide impulse to the study of

piecewise defined systems, both continuous and discontinuous (see, e.g. the cases

presented in [11,14]). Several kinds of bifurcations of non-smooth systems also appear in

forced impact oscillators [46,59], in mechanical engineering [42,43], in economics and

social sciences [13,47,48,57,58].

Sometimes, simplifying assumptions on systems lead to piecewise linear (PWL)

models, and since many years particular studies have been devoted to PWL systems, both

continuous and discontinuous (see, e.g. [2,10,11,14,23]).

However, many applications in engineering may include specific nonlinearities in the

map, as power functions. In particular, much attention has been devoted to the square-root
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singularities in impact oscillators, following the works of Nordmark [42,43]. The PWS

system already considered by many authors is given by

x 7! f mðxÞ ¼
f LðxÞ ¼ axþ m if x # 0

f RðxÞ ¼ bxz þ m if x . 0;

(
ð1Þ

where a, b, z and m are real parameters. In particular, the PWL case z ¼ 1 leads to the

continuous skew-tent map, whose dynamics are now well known (see, e.g. [30–32,54]).

The case z ¼ 1=2 is related to the square-root nonlinearity typical in Nordmark systems

and grazing bifurcations. Also the power z ¼ 3=2 was considered in [19] in analysing the

stick-slip motion with dry friction. In [17] the normal-form mapping of sliding

bifurcations is derived, leading to map (1) with power z ¼ 3=2, z ¼ 2 and z ¼ 3, related to

different cases of sliding bifurcations. Other examples of grazing and sliding bifurcations

with nonlinear leading-order terms occur in power converters and in non-smooth sliding-

mode controls [1,15,16].

System (1) with z ¼ 2 is a particular case of the linear-logistic map considered in

[52,53]. A generalization of system (1) in the case z . 0 is also considered in [8], by using

the smooth function f RðxÞ ¼ bxz þ cxþ m on the right side, which introduces a second

critical point in the map. While system (1) in the case z ¼ 1=2 but with different offsets

(and thus a discontinuous system) was considered in [20].

The characteristic feature of PWS maps which recently attracted the interest of many

scholars is the occurrence of border collision bifurcations (BCBs). This term was

introduced by Nusse and Yorke [44,45], and since then it is generally used to denote a

bifurcation caused by a fixed point or periodic point of a cycle colliding (or merging) with

a kink point or a border point of a map, crossing which the system changes its definition.

This kind of bifurcation leads to dynamic behaviours which may be completely different

from those occurring in smooth systems. In PWSsystems it is often very difficult to predict

the dynamic behaviour occurring after a collision, which is one of the main goals in the

analysis of applied systems. In one-dimensional PWS continuous maps, the linear case

(skew-tent map) may be used as a normal form to predict the effect of a BCB, at least in

generic cases (codimension-one cases), some applications can be found in [22,55].

Codimension-two cases are considered in [18].

The classification of the possible different results of a border collision in discontinuous

one-dimensional maps is still to be investigated. In the references cited above, particular

cases have already been studied in detail, by using the discontinuous PWL map in normal

form. However, its possible use as a normal form is still to be clarified. The main point is

that in PWL discontinuous maps the only possible bifurcations are related to border

collision, while in PWS systems also standard bifurcations peculiar of smooth systems are

involved. Thus, it is necessary to investigate the interactions between these two kinds of

bifurcations (smooth bifurcations and BCBs) in order to understand the dynamical

behaviours of PWS systems, as remarked in [8]. Among other properties and results, it is

exactly this particular inter-connection which attracted our interest in the present work.

System (1) was investigated also in [49] where, besides the cases z . 0 mentioned

above, the authors extend the analysis to the discontinuous case with z , 0. This leads to

particular maps in which the discontinuity point is also a vertical asymptote for the

function f RðxÞ defined on the right branch. The particular case with z ¼ 21=2 is also

considered in [50]. The existence of a vertical asymptote is not new in the engineering

applications, an interesting application can be found in [29] and for experimental

R. Makrooni et al.2
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occurrence we refer to [51]. A peculiarity of such systems is that unbounded chaotic

attractors can exist (see [12]), and in this work we prove their occurrence.

Differently from PWL systems, where cycles may appear/disappear via BCB [14,23]

and attracting cycles may be organized in the period incrementing structures or in the

period adding structure (infinitely many non-overlapping periodicity regions exist, and the

rotation numbers of the related cycles follow a Farey summation rule [2,4,6,25]), in PWS

systems, both continuous and discontinuous, the appearance of cycles may occur via a

smooth bifurcation, and the existing cycles may persist (also changing the local stability/

instability) or may disappear by BCB [8,26,28,49,56].

The system considered in [49] is a discontinuous one, and the occurrence of BCBs and

smooth fold bifurcations associated with basic cycles was shown. However, the complex

bifurcation structure occurring in the system is left to study. A detailed analysis, although

still far from complete, of that system is the goal of a series of works recalled below. Let us

set z ¼ 2g in map (1), and we consider positive values of g. Moreover, we restrict our

investigation to the system in which the right function f RðxÞ is increasing, considering the

case b , 0, so that the parameter space of interest is as follows:

a [ R; b , 0; g . 0: ð2Þ
Preliminary results are reported in [34], where it is shown that for the study of the

dynamic behaviours of the system it is sufficient to consider only the three values m ¼ 0,

m ¼ þ1 and m ¼ 21. In this work we are interested in the dynamics of the map with

m . 0 as in this case the system is relevant for applications to engineering [49], and for

any m . 0 the transformation ðx; a; b;mÞ! ðx=m; a; bm2g21; 1Þ leads from (1) to the map

x 7! f ðxÞ ¼
f LðxÞ ¼ axþ 1 if x # 0

f RðxÞ ¼ b
x g þ 1 if x . 0

8<
: ð3Þ

and the other parameters are as defined in (2).

For this PWS system, the change of definition occurs at the discontinuity point x ¼ 0

that is also a vertical asymptote for the function on the right side. As it is often used in

PWS, the dynamical properties are studied making use of the symbolic notation based on

the letters L and R corresponding to the two disjoint partitions

IL ¼ ð21; 0�; IR ¼ ð0þ1Þ: ð4Þ
To each trajectory we associate its itinerary by using the letter L when a point belongs

to IL and R when a point belongs to IR. A cycle is represented by its finite symbolic

sequence. For example, a cycle with symbolic sequence RLn (corresponding to a basic

cycle) has one periodic point on the right partition and n on the left one.

A graphical representation suggests the richness of the dynamics of the system (3).

Figure 1 shows the two-dimensional bifurcation diagram in the parameter space ða; SðbÞÞ at
the fixed value g ¼ 0:5. In order to consider the complete range for the parameter b, which

means 21 , b , 0, following [4] we consider the nonlinear transformation SðyÞ ¼
arctan ðyÞ for the parameter b, so that SðbÞ [ ð2ðp=2Þ; 0Þ: In particular, in the case

b ¼ 21 we have Sð21Þ ¼ 2ðp=4Þ which is evidenced in Figure 1. The coloured regions

represent sets of values of the parameters in which the map has an attracting cycle,

different colours are associated with different periods. White points represent parameter

sets at which there exists an unbounded chaotic attractor. As it is visible, infinitely many
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periodicity regions are issuing from particular points (which are codimension-two

bifurcation points). Grey regions existing for a . 1 represent parameter sets at which the

system has divergent trajectories (which may or may not coexist with an attracting cycle).

Depending on the sign of the parameters, the qualitative shape of the map changes, and

correspondingly changes the dynamic properties. The range related to a , 0 is associated

with an invertible discontinuous map. In that case, a peculiar periodic incrementing

structure has been proved to exist and, as shown in [36], related to different border

collision and flip bifurcations, depending on 0 , g , 1, g ¼ 1 and g . 1, both in the

range21 , b # 21 and21 , b , 0 marked by AIII and BIII in Figure 1, respectively.

Also the particular case related to a ¼ 0 is considered in that paper.

In the range a . 0 the map is non-invertible. This leads to peculiar dynamic properties

for 0 , a # 1 and 21 , b # 21 (region AI in Figure 1), which are the object of this

work. The other ranges a . 1 and 21 , b # 21 (marked as region AII in Figure 1), as

well as 0 , a # 1 and 21 , b , 0 (region BI) and a . 1 and 21 , b , 0 (region BII),

are considered in a companion paper [35]. In this work and in [35] several properties are

shown and proved. However, there are still open problems, which deserve further

investigations.

In this work, rigorous proofs are given in several cases. To prove the existence of

chaotic sets we make use of homoclinic orbits. It is well known that in one-dimensional

non-invertible maps, homoclinic orbits of a repelling k–cycle, k $ 1 (k ¼ 1 corresponds

to a fixed point), exist when it is a snap-back repellor (SBR), following the definition given

by Marotto in [38,39]. Recall that a repelling cycle may become a SBR via a critical

homoclinic orbit, associated with critical homoclinic explosions, or V-explosions, as

shown in [21] for smooth continuous systems, and in [27] for generic PWL and PWS

systems, continuous and discontinuous. Moreover, besides invariant unbounded chaotic

repellors, which always exist in the range here considered, we show the occurrence of

unbounded chaotic attractors, by using the results in [37], which are also robust according

to the definition given in [9].

In the parameter space, particular codimension-two bifurcation points, called

organizing centres or big bang bifurcation points (following the definition used in [4]), are

clearly visible in Figure 1, which are issuing points of infinite families of bifurcation

curves. These are codimension-two points related to fold bifurcations and BCBs of cycles

Figure 1. Two-dimensional bifurcation diagram in the parameter space (a; S(b)) where S(b)
¼ arctan (b) for a [ ð22; 2Þ; SðbÞ ¼ ð2ðp=2Þ; 0Þ; at the fixed value g ¼ 0:5. In the vertical axis
2ðp=4Þ corresponds to b ¼ 21.

R. Makrooni et al.4
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with different symbolic sequences, and the structure of the bifurcation curves issuing from

those points is still to be understood. We shall see that it is much richer than the period

adding bifurcation structure (which is included as a subset) and also not related to the U-

sequence [40] well known in continuous 1D maps.

Codimension-two points related to fold bifurcations and BCBs of cycles with the same

symbolic sequence do not behave as organizing centres. However, we shall prove that they

are limit sets of infinite families of BCBs of other cycles. Starting from the properties of

basic cycles, we generalize the properties to the BCB curve of any admissible cycle.

The plan of the work is as follows. In Section 2 we introduce the bifurcations of basic

cycles, both BCB and fold bifurcations, their codimension-two points and their role in the

bifurcation sequences. To prove the dynamic properties related to these bifurcations, as

well as the properties related to all the admissible cycles, we make use of the first return

map, defined in Section 3. In Section 4 we prove that in our system all the unstable cycles

are always homoclinic, and that unbounded chaotic set always exists. Moreover, in several

full measure regions of the parameter space the existing attractor is robust, full measure

and unbounded (the interval (21; 1]). In Section 5 we generalize the properties of basic

cycles to any admissible cycle, showing that the BCB curves may be in pair with fold

bifurcation curves, and that a codimension-two point exists on each BCB curve. The

dynamic properties on their crossing are the same as for basic cycles. In Section 6 we

illustrate the possible sequences of bifurcations existing between two consecutive BCBs of

basic cycles, making use of two examples, one related to fold bifurcation curves and the

other to the chaotic range. We shall see that by crossing periodicity regions of attracting

cycles the adding structure may be observed but only as a strict subset. The full bifurcation

structure is much more rich. In Section 7 we show that each BCB curve is a limit set of

infinite families of other BCB curves. The same property holds for all the homoclinic

bifurcation curves as well as for the fold bifurcation curves (from one side only). Section 8

concludes, evidencing that many open problems on the dynamics of our system are still to

be investigated.

2. Codimension-two points on BCB curves of basic cycles

As stated in the Introduction, we are here interested in the dynamic properties of the

system (3) for parameters in region AI shown in Figure 1:

0 , a # 1; 21 , b # 21; g . 0: ð5Þ
In the Introduction we have mentioned that for a , 0 the map is invertible, thus no

chaotic set can exist. Differently, for a . 0 the map is non-invertible, and chaos may exist.

What is peculiar here is that unbounded chaotic sets necessarily exist. What may change is

the measure of the chaotic set, which, as we shall see, can be of zero measure or of full

measure.

In the range we are interested in the map is without fixed points. In fact, the left branch

f LðxÞ is increasing and without fixed points for 0 , a # 1, while the right one, f RðxÞ, is
such that any point x . 1 is mapped in one iteration to a point smaller than 1, it has

horizontal asymptote in 1, and since

f 0RðxÞ ¼
2bg

xgþ1
. 0; f 00RðxÞ ¼

bgðgþ 1Þ
xgþ2

, 0 ð6Þ

Journal of Difference Equations and Applications 5
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f RðxÞ is increasing and concave. From f Rð1Þ ¼ 1þ b # 0 in the considered range, we

have that no fixed point can exist (indeed, a fold bifurcation of f RðxÞ occurs for

21 , b , 0). Moreover, f RðxÞ intersects the x-axis in the point

x ¼ ð2bÞ1=g ¼: O21
R $ 1 ð7Þ

from which we can immediately see that b ¼ 21 is the equation in the parameter space of

the BCB curve of a 2–cycle, as f Lð0Þ ¼ 1 and f Rð1Þ ¼ 0 holds, independently of the values

of the other parameters a and g.
We recall that any cycle of map f may undergo a BCB: this happens when a periodic

point of the cycle collides with x ¼ 0 from the left side and thus its image is a periodic

point on the right side ð0; 1� colliding with x ¼ 1. As described above, when b ¼ 21 a

cycle of period two undergoes a border collision as

f RW f Lð0Þ ¼ bþ 1 ¼ 0: ð8Þ
However, we still have not clarified if this cycle exists for values of b smaller or larger

than 21, and if the 2–cycle undergoing the border collision is the unique 2–cycle or not,

attracting or repelling. We shall clarify these properties in the next sections, describing the

dynamics in this range.

From the properties of the functions f LðxÞ and f RðxÞ described above, we can consider

the interval ð21; 1� (range of the map f ). Moreover, for b , 21 any point of ð0; 1� is
mapped into IL in one iteration. That is, in the itinerary of any trajectory the symbol R is

necessarily followed by L (at least one L). Thus the only possible basic cycles are those

with the symbolic sequence RLn, and they all exist for any n $ 1, in suitable parameter

regions. Indeed, let 0 , x0 , 1 be a point of IR, then when b is very small it is f Rðx0Þp 0,

and it takes many iterations by f L for the trajectory in order to reach the right side IR again.

At b ¼ 21 a 2–cycle RL exists, and as b tends to 21 the cycles RLn must exist as well,

for any n $ 1.

A first property is immediate:

Property 1. The appearance/disappearance of cycles of map f in the considered range is

either due to a BCB or to a smooth bifurcation related to the eigenvalue þ1.

Proof. Since f consists of two disjoint increasing branches, the eigenvalue of any cycle is

necessarily positive, and since f LðxÞ is affine and f RðxÞ concave, a bifurcation with

eigenvalue þ1 can only be related to a fold type. A

In order to detect the bifurcation curves associated with a cycle having symbolic

sequence RLn for n . 1, let us recall that for the repeated application of the linear part we

can take advantage of the following formula:

f nLðxÞ ¼ anxþ an21 þ an22 þ · · ·þ 1 ¼ anxþ 12 an

12 a
ð9Þ

(in the case a ¼ 1 the indetermined ratio ð12 anÞ=ð12 aÞ is obviously to be

substituted by nÞ, and considering 0 , x0 # 1 a cycle with symbolic sequence RLn can be

detected as a fixed point of the composite function

FRLn ðxÞ :¼ f nLW f RðxÞ ¼ anb

xg
þ 12 anþ1

12 a
ð10Þ

R. Makrooni et al.6
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so that the equation related to the fixed points becomes

anb

xg
þ 12 anþ1

12 a
¼ x: ð11Þ

It is worth to note that this equation gives the fixed points of the smooth function

FRLnðxÞ but such points define true cycles of map f in (3) only when the solutions belong to

the interval ð0; 1�:
In general, the Equation (11) cannot be solved in explicit form, and it may also have

two admissible solutions. Indeed, when this happens it is associated with a smooth fold

bifurcation. The eigenvalue of a basic cycle RLn is given by

F0
RL n ðx0Þ ¼ 2bg

x
gþ1
0

an; ð12Þ

where x0 is the periodic point on the right side, and taking into account that at a fold

bifurcation two fixed points are merging in one point, say x*

RL n ; and that F0
RL n ðx*

RL nÞ ¼ 1,

from (12) we obtain the condition

x
*

RL n ¼ ð2bganÞ1=ðgþ1Þ: ð13Þ
By substituting this expression into (11), the equation of the fold bifurcation of the

function FRLn (a curve in the parameter plane ða; bÞ) is obtained, given by

FRL n : b ¼ 2
1

gan

12 anþ1

12 a

g

gþ 1

� �gþ1

ð14Þ

which is a true fold bifurcation for a cycle of f only when x
*

RL n in (13) belongs to the

interval ð0; 1�; that is, only for

b $ 2
1

gan
: ð15Þ

For any g . 0 the curveFRL n in (14) is increasing and concave, as well as the curve of

equation b ¼ 21=gan related to (15). The two curves are intersecting in a particular point,

say ð�an; �bnÞ, where �an is the solution of the equation

12 anþ1

12 a
¼ 1þ 1

g
ð16Þ

or, equivalently,

a
12 an

12 a
¼ 1

g
ð17Þ

and

�bn ¼ 2
1

g�an
: ð18Þ

Journal of Difference Equations and Applications 7
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It follows that the curve FRL n in (14) is related to a fold bifurcation of our map f only

for a # �an (as for a . �an the fold bifurcation does not take place, as used in PWS systems

we can say that it is virtual).

A cycle with symbolic sequence RLn can undergo a border collision when the periodic

point on the right side (which must satisfy Equation (11)) collides with x ¼ 1.

By substituting x ¼ 1 into (11), the equation of the bifurcation f nLWf Rð1Þ ¼ 1 leads, for any

n $ 1; to the explicit expression for the BCB curve BRLn as follows3:

BRLn : b ¼ 2
12 an

an21ð12 aÞ : ð19Þ

We can notice that the two curves of equation FRL n in (14) (only for a # �anÞ and the

BCB curve BRLn in (19) have a common point in ð�an; �bnÞ. In fact, it is easy to see that the

curve of equation b ¼ 21=gan intersects BRLn in (19) when the condition in (17) holds.

It follows that the point ð�an; �bnÞ is a codimension-two point at which a cycle RLn

undergoes simultaneously a fold bifurcation and a BCB bifurcation, and the merging fixed

points and colliding point satisfy x
*

RL n ¼ ð2bganÞ1=ðgþ1Þ ¼ 1 in which F0
RL n ð1Þ ¼ 1 holds.

We can so prove that for a , �an a fold bifurcation curve is always ‘below’ the related

BCB curve, when the parameters ða; bÞ belong to the BCB curve BRLn then a periodic point

is merging with x ¼ 1, and it is F0
RL n ð1Þ ¼ 2bgan ¼ gað12 anÞ=ð12 aÞ. As shown

above at a ¼ �an it holds F
0
RL nð1Þ ¼ 1, while:

(i.1) for 0 , a , �an it is F
0
RL n ð1Þ , 1, which means that the colliding cycle is attracting

(and, as we shall see, the fold bifurcation curve FRL n at the same value of a must have

been occurred before, at a smaller value of b);

(i.2) for �an , a # 1 it is F0
RL nð1Þ . 1; which means that the colliding cycle is repelling

(the cycle does not exist at smaller values of b as for a . �an the fold bifurcation does

not occur, it is virtual).

Some more properties on the codimension-two points can be obtained from the

equation in (17) considering 12 an=12 a ¼ an21 þ · · ·þ aþ 1 that leads to the

equation

an þ an21 þ · · ·þ a2
1

g
¼ 0 ð20Þ

from which it follows that increasing n the solutions are decreasing values (i.e. �anþ1 , �anÞ.
While from (17) considering a2 anþ1 ¼ ð12 aÞ=g we have the equation

anþ1 2 a 1þ 1

g

� �
þ 1

g
¼ 0 ð21Þ

from which it follows that increasing n the decreasing solutions have as limit value a

constant a1 which can be obtained from (21) as n!1; leading to

a1 ¼ 1

gþ 1
: ð22Þ

We have so proved the following.
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Proposition 1 (codimension-two point). Let b # 21, g . 0. For any n $ 1 the BCB

curve BRLn in (19) and the fold bifurcation curve FRL n in (14) have a (codimension-two)

contact point in ð�an; �bnÞ where �bn ¼ 21=g�an and �an satisfies the equation in (17). For any

n . 1, the inequalities

a1 ¼ 1

gþ 1
, �anþ1 , �an , �a1 ¼ 1

g
ð23Þ

hold. For a . �an the fold bifurcation in (14) does not occur.

For the BCB curve of the 2–cycle RL ðn ¼ 1Þ, at b ¼ 21, the condition in (17) leads to

the codimension-two point at

�a1 ¼ 1

g
; �b1 ¼ 21 ð24Þ

while for n ¼ 2, related to the BCB curve of the 3–cycle RL2, from (17) we obtain

�a2 ¼ 1

2
21þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ 4

g

s !
; �b2 ¼ 2

1

g�a2
:

In the particular case g ¼ 0:5, which we use in many figures, this leads to �a2 ¼ 1 and
�b2 ¼ 22.

In [50], for g ¼ 0:5, the contact point ð�an; �bnÞ is called ‘cross point’, but the two curves
FRL n and BRLn are not crossing (we have numerical evidence that they are tangent in the

codimension-two point ð�an; �bnÞÞ; in any case the fold bifurcation FRL n does not occur for

a . �an. In the following sections we shall clarify the role of such a particular point in

terms of the dynamics. Moreover, we shall generalize a similar property occurring for the

BCB curve of any admissible cycle of f .

We can see that the equations of the BCB curves BRLn do not depend on the parameter

g, differently from the fold bifurcation curves FRL n . It is shown in Figure 2 that for small

values of g there are many periodicity regions of attracting cycles, see also Figure 3(a), at a

smaller value of g ðg ¼ 0:1Þ. While only a few are visible for large values of g, see
Figure 3(c). The BCB curves BRLn (in black) are reported on the right side and are

unchanged in Figure 3(b),(c), while the fold bifurcation curves FRL n (in red) change very

much, and the limit value a1 given in (22) of the codimension-two points decreases as g
increases. The fold bifurcation curvesFRL j for j ¼ 1; . . . ; 10 shown in Figure 3(a) all have
the codimension-two points which are in the region a . 1, while for FRL 11 it occurs for

a , 1. Differently, for g . 1 it is �a1 ¼ 1=g , 1 so that all the codimension-two points �an
belong to the range 0 , a , 1.

We can state the following.

Proposition 2 (crossing the BCB curves of basic cycles). Let g . 0. At a fixed value

of a [ ð0; 1�, as b increases from21 to21, all the bifurcation curves of basic cycles RLn

are crossed for decreasing values of n as follows:

If 0 , a # a1 ¼ 1=ðgþ 1Þ, then for any n $ 1 a fold bifurcation curve FRL n is

crossed first, leading to a pair of basic cycles RLn, followed by a BCB curve BRLn crossing

which the attracting cycle RLn disappears while the repelling one persists.

If a1 ¼ 1=gþ 1 , a , �a1 ¼ 1=g, then a suitable integer m $ 1 exists such that for

any n , m the basic cycles RLn appear repelling crossing a BCB BRLn , while for m #

Journal of Difference Equations and Applications 9
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Figure 2. Two-dimensional bifurcation diagram in the ða; bÞ parameter plane at g ¼ 0:5. The
periodicity regions of the basic cycles RLn are evidenced. The lower boundary (in red) is a fold
bifurcation curve FRL n while the upper boundary (in black) is a BCB curve BRL n . In (b) only the
bifurcation curves FRL n and BRL n are drawn by using the equations given in (14) and (19),
respectively. The codimension-two points ð�an; �bnÞ are marked with black circles,
�a1 ¼ 2; �a2 ¼ 1; . . . ; a1 ¼ 2=3. The region evidenced in (a) with a rectangle will be investigated
below, as well as the segment evidenced by the blue arrow at a ¼ 0.9.

Figure 3. Two-dimensional bifurcation diagram in the (a, b) parameter plane at g ¼ 0:1 in (a) and
(b), �a1 ¼ 10 and a1 ¼ 0:9: At g ¼ 1:5 in (c) and (d), �a1 ¼ 0:�6 and a1 ¼ 0:4: In red are the fold
bifurcation curves FRL n while in black are the BCB curves BRL n .
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n # 1 a fold bifurcation curve FRL n is crossed first, leading to a pair of basic cycles RLn,

followed by a BCB BRLn crossing which the attracting cycle RLn disappears. Once

created, all the repelling basic cycles persist.

If a . �a1 ¼ 1=g, then for any n $ 1 the basic cycles RLn appear repelling crossing a

BCB BRLn and persist.

Proof. From the equations of the BCB curves of basic cycles BRLn in (19) it follows that at

a fixed value of a [ ð0; 1�, as b increases from 21 to 21 all the BCB curves BRLn are

necessarily crossed, while for the fold bifurcation curves FRL n we have to take into

account the codimension-two point ð�an; �bnÞ: From Proposition 1 we have that the values �an
belong to a decreasing sequence with limit value a1, so that at fixed value of a, as b

increases from 21 to 21, different cases may occur. When a , �an the fold bifurcation

curve FRL n is crossed and since F0
RL n ð1Þ , 1 (from point (i.1) above) then the BCB

occurring crossing BRLn involves an attracting cycle. When a . �an the fold bifurcation

curve FRL n is not crossed and since F0
RL n ð1Þ . 1 (from point (i.2) above) then the BCB

occurring crossing BRLn involves a repelling cycle. The proof of this proposition, showing

the order in which the bifurcations occur increasing b and the persistence with b, will be

completed in Section 3 (see Properties 7 and 8). A

To end the proof of Proposition 2, as well as to prove other properties related to the

codimension-two point on the BCB of any cycle, we make use of the first return map of f

in a suitable interval, often useful in PWS systems [24], whose existence and construction

are given in the next section.

3. First return map

From the properties of map f described in the previous section we can prove the following.

Proposition 3 (map FrðxÞ). Let 0 , a # 1; b , 21; g . 0: The dynamics of map f in (3)
can be described by using the first return map FrðxÞ in the interval I ¼ ½0; 1�. FrðxÞ is a
discontinuous map with infinitely many branches defined as follows:

FrðxÞ :¼

FRL �n ðxÞ ¼ f nLWf RðxÞ if j�nþ1 # x # 1

FRL �nþ1ðxÞ ¼ f �nþ1
L Wf RðxÞ if j�nþ2 # x , j�nþ1

..

. ..
.

FRL �nþjðxÞ ¼ f
�nþj
L Wf RðxÞ if j�nþjþ1 # x , j�nþj;

..

. ..
.

8>>>>>>>>>><
>>>>>>>>>>:

ð25Þ

where �n $ 0 is the smallest integer for which

f �nLWf Rð1Þ [ ½0; 1Þ ð26Þ

with

FRLmðxÞ ¼ amb

xg
þ 12 amþ1

12 a
ð27Þ
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and the discontinuity points are preimages of the origin given by

jmþ1 ¼ f21
R W f2m

L ð0Þ ¼ 2b

ðam 2 1=amða2 1ÞÞ þ 1

� �1=g

ð28Þ

which have as limit value, for m!1; the point x ¼ 0. For any m $ �nþ 1; FRLm ðjmþ1Þ ¼
0 and FRLm ðjmÞ ¼ 1 hold, while the rightmost branch satisfies FRL �n ðj�nþ1Þ ¼ 0: The case

f �nL W f Rð1Þ ¼ 0 ð29Þ
corresponds to the BCB of a basic cycle with symbolic sequence RL �nþ1.

Proof. Since for b , 21 it is f Rð1Þ ¼ 1þ b , 0, it follows that a point x [ ð0; 1� on the

right side is mapped by f R in the left side, and in a finite number of iterations by f L the

trajectory is mapped into the right side again. Thus, it is possible to define the first return

map of f ðxÞ in the interval ½0; 1�. Recall that the first return map FrðxÞ is defined as the

function which associates with any point x . 0 associates the first non-negative value of

the trajectory of x, that is, the first value satisfying f nðxÞ $ 0;which in our case necessarily
satisfies f nðxÞ [ ½0; 1Þ: We also notice that when a point j satisfies f nðjÞ ¼ 0; then it is

also f LW f nðjÞ ¼ 1: So, given a value of b , 21, let �n $ 0 be the smallest integer for

which (26) holds.

In the generic case at which f �nLW f Rð1Þ [ ð0; 1Þ; since the function f �nL W f RðxÞ is

increasing we have that decreasing x from 1 the value of f �nL W f RðxÞ decreases as well, so
that the first return map must be defined as FrðxÞ ¼ f �nLW f RðxÞ for all the points of the

interval ½j�nþ1; 1� where the point j�nþ1 is such that

f �nL W f Rðj�nþ1Þ ¼ 0 ð30Þ
that is, j�nþ1 is a preimage of the origin of rank ð�nþ 1Þ; as taking the inverses in (30) we

have j�nþ1 ¼ f21
R Wf2�n

L ð0Þ. By applying f L on both sides in (30), we also have that

f �nþ1
L W f Rðj�nþ1Þ ¼ 1: ð31Þ

It follows that in a left neighbourhood of the point j�nþ1 the first return map must be

defined as FrðxÞ ¼ f �nþ1
L Wf RðxÞ; up to a point j�nþ2 in which it holds f �nþ1

L Wf Rðj�nþ2Þ ¼ 0; and
so on. We can state that, for any j $ 0, the first return map is defined by branches of this

kind:

FRL �nþjðxÞ ¼ f
�nþj
L W f RðxÞ ð32Þ

separated by discontinuity points (preimages of the origin).

The number of branches is necessarily infinite. In fact, as described above, we have to

consider the preimages of the origin obtained, for any j $ 0, as follows:

j�nþjþ1 ¼ f21
R W f

2ð�nþjÞ
L ð0Þ: ð33Þ

Considering the inverse functions

f21
R ðyÞ ¼ b

y2 1

� �1=g

; f21
L ðyÞ ¼ y2 1

a
ð34Þ
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the iterative application of the inverse on the left side leads to

f2k
L ðyÞ ¼ y

ak
2

ak 2 1

akða2 1Þ ð35Þ

so that from (33), by using (34), we have explicitly

j�nþjþ1 ¼ 2b

ða �nþj 2 1Þ=ða �nþjða2 1ÞÞ þ 1

� �1=g

: ð36Þ

The points f
2ð�nþjÞ
L ð0Þ exist on the left side for any j $ 0. This is because the affine

function f L is increasing with slope a # 1, so that as j!1 the points f
2ð�nþjÞ
L ð0Þ tend to

21 and thus f21
R W f

2ð�nþjÞ
L ð0Þ exist for any j $ 0 and tend to 0.

The first return map is thus defined by infinitely many branches separated by

discontinuity points, preimages of the origin of rank ð�nþ jÞ; denoted by j�nþj. Namely by

FrðxÞ ¼ FRL �n ðxÞ ¼ f �nLWf RðxÞ for j�nþ1 # x # 1, and Frðj�nþ1Þ ¼ 0; by FrðxÞ ¼ FRL �nþ1 ðxÞ ¼
f �nþ1
L Wf RðxÞ for j�nþ2 # x , j�nþ1 which is a continuous increasing branch from 0 to 1, as

Frðj�nþ2Þ ¼ f �nþ1
L Wf Rðj�nþ2Þ ¼ 0 and Frðj�nþ1Þ ¼ f �nþ1

L Wf Rðj�nþ1Þ ¼ 1; and so on. This holds

for any integer. That is, for any j;FrðxÞ ¼ FRL �nþj ðxÞ ¼ f
�nþj
L Wf RðxÞ is a continuous increasing

branch for j�nþjþ1 # x , j�nþj; taking values from 0 to 1, as Frðj�nþjþ1Þ ¼
f
�nþj
L Wf Rðj�nþjþ1Þ ¼ 0 and Frðj�nþjÞ ¼ f

�nþj
L Wf Rðj�nþjÞ ¼ 1:

In the particular case in which the condition in (26) occurs as f �nLWf Rð1Þ ¼ 0, we also

have

FRL �nþ1ðxÞ ¼ f �nþ1
L W f Rð1Þ ¼ 1 ð37Þ

and thus it corresponds to the BCB of a cycle of period ð�nþ 2Þ with symbolic sequence

RL �nþ1: We define Frð1Þ ¼ f �nL W f Rð1Þ ¼ 0 in the single point j�nþ1 ¼ 1 and then FrðxÞ ¼
f �nþ1
L Wf RðxÞ in ½j�nþ2; j�nþ1Þ: Notice that in this case the range of FRL �nþ1ðxÞ ¼ f �nþ1

L Wf RðxÞ in
½j�nþ2; 1� is exactly ½0; 1�, and similarly, in all the other branches of FrðxÞ which are defined
as above. A

An example is shown in Figure 4. For x ¼ 1 we have f 4L W f Rð1Þ . 0 so that �n ¼ 4. The

preimages of the origin on the left side are infinitely many and a few of the infinitely many

branches of FrðxÞ can be seen in the enlargement.

In terms of the preimages of the origin the condition in (29) also corresponds to

1 ¼ f21
R W f2�n

L ð0Þ ð38Þ

that is, by using the definition in (33) with j ¼ 0,

j�nþ1 ¼ 1: ð39Þ
Obviously, the equation of the border collision j�nþ1 ¼ 1 from (36) with j ¼ 0

coincides with the BCB curve detected in (19) for n ¼ �nþ 1. In fact, considering n ¼
�nþ 1 in (36) we have

1 ¼ 2b

ðan 2 1Þ=ðanða2 1ÞÞ þ 1

� �1=g
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and we can see that the dependence on the parameter g can be ignored, as it is equivalent to

2b ¼ an 2 1

anða2 1Þ þ 1

and rearranging we obtain the equation in (19).

For the example shown in Figure 4 the BCB related to FRL 4ð1Þ ¼ f 4L W f Rð1Þ ¼ 0 (BCB

of the cycle with symbolic sequence RL5) occurs at a smaller value of b, and it is shown in

Figure 5(a) (from (19) with a ¼ 0:9 and n ¼ 5 we obtain b ¼ 26:24Þ. It can be seen that

j5 ¼ 1 and increasing b; j5, decreases and one more branch appears in the definition of the

first return map FrðxÞ; given by the function FRL 4ðxÞ ¼ f 4L W f RðxÞ (as shown in Figure 4

(b)). As b is further increased the value FRL 4ð1Þ ¼ f 4L W f R 1ð Þ of the rightmost branch of Fr

increases, and when FRL 4ð1Þ ¼ f 4LWf Rð1Þ ¼ 1; from (37) the BCB of the cycle with

symbolic sequence RL4 occurs, as shown in Figure 5(b) (from (19) with a ¼ 0:9 and n ¼ 4

the bifurcation value b ¼ 24:72 is obtained).

From the definition of the first return map we can have immediately some properties:

Property 2. The itinerary of any point for the map f consists of sequences associated with

the symbols RLj for j $ �n:

Figure 5. First return map FrðxÞ at g ¼ 0:5; a ¼ 0:9: In (a) b ¼ 26:24;BCB of the basic cycle RL 5:
In (b) b ¼ 24:72 BCB of the basic cycle RL 4:

Figure 4. Map f at g ¼ 0:5; a ¼ 0.9, b ¼ 25:5; for which it is �n ¼ 4: In the enlargement its first
return map FrðxÞ:
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Proof. This is because the trajectories of f are related one-to-one to those of the first return

map FrðxÞ; and thus to the symbolic sequences RLj related to the branches FRL j for j $ �n

defining FrðxÞ: A

Property 3. At a fixed value of a; the number of discontinuity points of the first return map
Fr; preimages jj of the origin in the interval ð0; 1�; increases as b increases from 21
to 21:

Proof. This is because the smallest integer �n from its definition decreases as b

increases. A

Property 4. Each component of the first return map Fr; FRLn ðxÞ, is continuous in the

proper domain, increasing and concave.

Proof. In fact, for x . 0 it is F0
RL nðxÞ . 0 and F00

RL nðxÞ , 0; which follows immediately

from the explicit expressions:

F0
RL n ðxÞ ¼ anf 0RðxÞ ¼

2bg

xgþ1
an . 0; F00

RL n ðxÞ ¼ bgðgþ 1Þ
xgþ1

an , 0

and the same properties hold for any composition of the functions FRLnðxÞ: A

Property 5. All the branches FRLn ðxÞ have range from 0 to 1, except at most the first

branch to the right side (called rightmost branch), for which FRL �n ð1Þ increases with b.

Proof. This follows by construction of the first return map FrðxÞ; the range of FRLnðxÞ for
any n . �n extends from 0 to 1; while from FRL �n ð1Þ ¼ f �nLWf Rð1Þ ¼ a �nbþ ð12 a �nþ1Þ=ð12
aÞ we have that the endpoint FRL �n ð1Þ increases with b: A

Property 6. Infinitely many repelling basic cycles of f necessarily exist.

Proof. In fact, for any j . �n all the branches FRL jðxÞ have repelling fixed points xRL j . The

fact that each fixed point must be repelling comes from Properties 4 and 5 above. A

While in the rightmost branch different cases may occur. That is, for 0 , FRL �nð1Þ , 1

either no fixed point exists, or a fold bifurcation with two merging fixed points, or a pair of

fixed points exists, one attracting and one repelling.

In the example given in Figure 4, where �n ¼ 4; the rightmost branch of Fr is defined by

FRL 4ðxÞ ¼ f 4LWf RðxÞ. All the branches defined by FRL 4þk ¼ f 4þk
L Wf RðxÞ exist for any k $ 1

and intersect the diagonal, leading to the existence of repelling fixed points, which are

cycles of f of periods ð5þ kÞ for any k $ 1; and there are no other fixed points (i.e. no

other basic cycles).

Property 7. Once a repelling cycle of the first return map FrðxÞ exists, it persists for any
larger value of b.

Proof. In fact, the discontinuity points jj of the first return map Fr increasing b all persist,

approaching x ¼ 0, and thus also the branches all persist (and new ones may enter),

leading to persistence of all the repelling fixed points of Fr. The same property holds also

for any repelling k–cycle (k . 1) of the first return map Fr; as we can reason similarly for

the k2th iterate Fk
r ðxÞ: A

Property 8. As b increases from 21 to21 the BCB curves are crossed with decreasing

order in the period of the basic cycles, and if a fold bifurcation FRL n occurs it must be

crossed before the BCB curve BRLn .
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Proof. This is because (by construction) the smallest integer �n decreases as b increases,

thus the period of the smallest repelling fixed point of the first return map Fr decreases.

Moreover, when a , �an then increasing b the BCB BRLn (occuring when FRLn ð1Þ ¼ 1

holds) is crossed at the left side of the codimension-two point, and involves an attracting

cycle (since F0
RL nð1Þ , 1Þ; which means that the fold bifurcation curve FRL n must be

crossed at a smaller value of b: While when a . �an the BCB curve is crossed (when

FRLnð1Þ ¼ 1 holds) at the right side of the codimension-two point so that the fold

bifurcation curveFRL n is not crossed, and since F0
RL nð1Þ . 1 the BCB involves a repelling

cycle. A

The Properties 7 and 8 lead to a complete proof of Proposition 2 given in the previous

section.

We have already stated that the codimension-two point ð�an; �bnÞ on a BCB curve BRLn

of a basic cycle (occuring when f nLWf Rð1Þ ¼ 1) leads to a difference in the dynamic

behaviour, and this also follows from the properties listed above, in particular Propery 8.

Let us illustrate this difference in detail, by using the first return map.

Case a $ �an: Considering the crossing of a BCB curve BRLn at a point ða; bÞ at the right
side of the codimension-two point ð�an; �bnÞ; or at the point itself, that is for a . �an or a ¼ �an
and the value of b given in (19), we have that the slope of the branch FRLn ðxÞ ¼ f nL W f RðxÞ
of FrðxÞ in the point x ¼ 1 at the bifurcation value is larger than 1;F0

RL n ð1Þ . 1; or
F0
RL nð1Þ ¼ 1; which means that before the bifurcation (at a smaller value of b) we have the

rightmost branch FrðxÞ ¼ FRLn ðxÞ which satisfies F0
RL n ð1Þ . 1. Increasing b this branch is

approaching the diagonal from below and at the bifurcation the fixed point of FRLn ðxÞ
appears, which did not exist before (repelling on its left side). The fixed point xRL n of the

branch FrðxÞ ¼ FRLnðxÞ for jnþ1 # x , jn persists, repelling, after the BCB (and for any

larger value of b), while the rightmost branch is given by FRLn21ðxÞ ¼ f n21
L Wf RðxÞ for

jn # x # 1 and is not intersecting the diagonal, for values of b close to the BCB value.

The case associated with the example in Figure 5(a), related to the crossing of the

curve BRL 5 ; is shown in Figure 6. In Figure 6(a)–(c) we can see the shape of the rightmost

branch of FrðxÞ before, at (when FRL 5ðxÞ ¼ f 5L W f Rð1Þ ¼ 1; Frð1Þ ¼ f 4LWf Rð1Þ ¼ 0) and

after the bifurcation value.

In the particular case in which a BCB is crossed at its codimension-two point, say

a ¼ �an, from (23) we can state that increasing b from �bn; each BCB curve BRL j for

n , j , 1 is crossed on the left of the codimension-two point (and thus crossing also the

fold bifurcation curve FRL j ), while decreasing b from �bn; each BCB curve BRL j for any

Figure 6. First return map FrðxÞ at g ¼ 0:5; a ¼ 0:9: In (a) b ¼ 26:4; before the BCB BRL 5 . In (b)
b ¼ 26:24; BCB of the basic cycle RL 5: In (c) b ¼ 26 after the BCB. In green are evidenced some
homoclinic orbits.
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j , n is crossed on the right of the related codimension-two point (and thus the fold

bifurcation curve FRL j is not crossed).

Case a , �an: When a BCB curve BRLn is crossed on the left of its codimension-two

point ð�an; �bnÞ; that is for a , �an and the value of b given in (19), it must be considered in

pair with a smooth fold bifurcation curveFRL n : In fact, in such a case at the bifurcation we
have that the slope of the branch FRLnðxÞ ¼ f nLWf RðxÞ of FrðxÞ in the point x ¼ 1 satisfies

F0
RL nð1Þ , 1, which means that the colliding cycle is attracting. Before the bifurcation (at a

smaller value of b) by continuity an attracting fixed point xsRL n must exist, and necessarily

also a repelling one xRL n , xsRL n , in the rightmost branch FrðxÞ ¼ FRLnðxÞ, which satisfies

F0
RL nð1Þ , 1. Increasing b the attracting cycle approaches x ¼ 1, merging with it at the

bifurcation value. After the bifurcation the attracting cycle no longer exists, while the

repelling fixed point xRL n persists for any larger value of b. This proves that a smooth fold

bifurcation of the increasing and concave rightmost branch FrðxÞ ¼ FRLn ðxÞ for jnþ1 #
x # 1 must occur at a smaller value of b (before the BCB), leading to the appearance of the

two fixed points in the rightmost branch of FrðxÞ:
An example associated with the crossing of the curve FRL 5 at a ¼ 0:6 is shown for

increasing b in Figure 7 and in Figure 8 the crossing of the BCB curve BRL 5 (at the same

value a ¼ 0:6Þ. In Figure 8(a)–(c), are shown the cases before, at and after the BCB,

respectively.

One more example in Figure 9 shows the crossing of the BCB curve BRL 3 at a ¼ 0:3.
We can see that increasing b the periodic point xs

RL 3 of the attracting cycle RL
3 approaches

Figure 7. First return map FrðxÞ at g ¼ 0:5; a ¼ 0:6: In (a) b ¼ 219; before the fold bifurcation
FRL 5 . In (b) b ¼ 218:21; fold bifurcation of the basic cycle RL 5: A homoclinic orbit is shown in
green. In (c) b ¼ 218:1 after the fold bifurcation and two cycle RL 5 exist.

Figure 8. First return map FrðxÞ at g ¼ 0:5; a ¼ 0:6: In (a) b ¼ 218; before the BCB BRL 5 . In (b)
b ¼ 217:79; at the BCB. In (c) b ¼ 217 after the BCB BRL 5 :
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1 and disappears, while the repelling fixed point xRL 3 persists for any larger value of b, and

even if it is difficult to see, the infinitely many branches of Fr in Figure 9 all exist (FRL jðxÞ;
j $ 3) leading to the existence of all the repelling cycles xRL j with symbolic sequence RLj

for any j $ 3.

4. Homoclinc orbits, unbounded chaotic repellors and unbounded chaotic

attractors, related to basic cycles

In this section we prove that map f is always chaotic in the range here considered, and that

robust unbounded chaotic attractors may exist. Let us first prove the following.

Proposition 4 (unbounded chaotic sets).

(a) All the repelling fixed points of the first return map FrðxÞ are homoclinic, and f has

always an unbounded chaotic set in the interval ð21; 1�:
(b) Let FRLnðxÞ be the rightmost branch of the first return map. If F0

RL n ð1Þ ¼ 2bgan $
1 then f has ð21; 1� as unbounded chaotic attractor.

Proof. The proof is different depending on a generic case, in which the rightmost branch of

the first return map FrðxÞ; FRLnðxÞ; satisfies FRLnð1Þ [ ð0; 1Þ, or the bifurcation case at

which FRLn ð1Þ ¼ 1 holds.

Let us consider first a generic case, so that the parameters are not at the BCB of a basic

cycle (case that is considered below). As already remarked (Property 6), independently of

the shape of the rightmost branch FRLn ðxÞ; we have that for any j . n the functions FRL jðxÞ
intersect the diagonal, leading to repelling fixed points xRL j , corresponding to repelling

basic cycles of f having the symbolic sequence RLj, of which xRL j is the periodic point

belonging to the right side. From the construction of the first return map Fr we know that

between any pair of consecutive fixed points xRL jþ1 and xRL j there exists a discontinuity

point jjþ1 (at which FRL j ðjjþ1Þ ¼ 0 and FRL jþ1ðjjþ1Þ ¼ 1Þ: Let us consider separately the

fixed points xRL j for j . n and j ¼ n:
For any j . n; the fixed points xRL j are all homoclinic (i.e. are SBR), on both sides.

In fact, from any fixed point xRL j a homoclinic orbit on the left side can be immediately

obtained considering one preimage on its left side followed by infinitely many preimages

on the right side (as shown in Figure 6(a)). That is,

F2k
RL j W F21

RL jþ1 ðxRL j Þ; k $ 1

Figure 9. First return map FrðxÞ at g ¼ 0:5; a ¼ 0:3: In (a) b ¼ 217; before the BCB BRL 3 . In (b)
b ¼ 215:4; at the BCB. In (c) b ¼ 214 after the BCB BRL 3 :
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is a homoclinic orbit of xRL j with homoclinic points on its left side. A similar reasoning

applies also on the right sides of the fixed points xRL jþ1 for any j . n, considering that

F2k
RL jþ1 W F21

RL jðxRL jþ1 Þ; k $ 1

is a homoclinic orbit of xRL jþ1 with homoclinic points on its right side. While regarding the

fixed point xRL nþ1 of the branch FRLnþ1ðxÞ, we can consider m large enough such that

F21
RLmðxRL nþ1 Þ belongs to the range of FRLnðxÞ; defined for jnþ1 # x # 1, so that

F2k
RL nþ1 W F21

RL nWF
21
RLm ðxRL nþ1Þ; k $ 1;

is a homoclinic orbit of xRL nþ1 with homoclinic points on its right side (as shown in

Figure 6(c)).

The existence of infinitely many SBR cycles proved so far shows that at least a chaotic

set L0 , ½0; 1� always exists. Moreover, as the homoclinic fixed points xRL j have x ¼ 0 as

limit point, homoclinic points exist which are as close as we want to the right side of the

discontinuity point of f , x ¼ 0; i.e. the origin is a limit point of homoclinic points. In terms

of the map f this corresponds to an unbounded chaotic set L in the interval ð21; 1�:
For j ¼ n we have to consider the rightmost branch FRLn ðxÞ; and (to show that all the

repelling fixed points are homoclinic) the comments now differ depending on the possible

cases for FRLnðxÞ.
(i) If F0

RL n ð1Þ ¼ 2bgan $ 1 then as x decreases from 1 in the interval jnþ1 # x # 1;
the first derivative F0

RL n ðxÞ ¼ 2bgan=xgþ1 increases, so that the slope is larger than 1 in

all the points jnþ1 # x , 1, and the rightmost branch FRLnðxÞ does not intersect the
diagonal. In this case the map FrðxÞ is chaotic in the interval ½0; 1�, as proved in [37],

and f is chaotic in the unbounded interval ð21; 1�, which is a chaotic attractor.

We notice that the first return map FrðxÞ (and thus f ) has all repelling cycles, which are
SBR and homoclinic on both sides. The preimages of the fixed points xRL j ; for any
j . n; as well as of any repelling cycle, are dense in the interval ½0; 1�. An example is

shown in Figure 5(a).

(ii) If F0
RL n ð1Þ ¼ 2bgan , 1 then as x decreases from 1 in the interval jnþ1 # x # 1;

the first derivative F0
RL nðxÞ ¼ 2bgan=xgþ1 increases, so that it is possible to have

points with slope 1. In this case, the rightmost branch FRLn ðxÞ may be below the

diagonal, tangent to it or crossing it in two more fixed points xRL n and xsRL n ; with
jnþ1 , xRL n , xsRL n , 1. An example is shown in Figure 7. We consider the different

cases separately:

(ii.1) When the branch is below the diagonal there are no further fixed points (and the

existing ones are homoclinic).

(ii.2) When the branch is tangent to the diagonal, two fixed points are merging in one

point, x
*

RL n , which is locally attracting on the right side, while repelling and already

SBR on its left side. In fact, for example

F2k
RL n W F21

RL nþ1 ðx*

RL nÞ; k $ 1

is a homoclinic orbit of x*

RL n with homoclinic points on its left side (an example is shown in

Figure 7(b)). Moreover, the interval ½x*

RL n ; 1� is the immediate stable set of the fixed point

x*

RL n which is a Milnor attractor (or attractor in Milnor sense) [41]. That is, although not

attracting all the points in a neighbourhood U of x
*

RL n , the stable set S of x
*

RL n ; set of initial
conditions whose trajectories converge to x

*

RL n ; given by all the preimages of any rank of
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the immediate stable set:

S ¼ <
1
k¼0

F2k
r ð½x*

RL n ; 1�Þ

has positive measure, and consists of intervals forming a fractal structure dense in ½0; 1�.
Its frontier ›S (an invariant set) is the chaotic repellor L0 , ½0; x*

RL n�:
(ii.3) When the branch crosses the diagonal, two further fixed points exist in the

rightmost branch of FrðxÞ ¼ FRLnðxÞ for jnþ1 # x # 1, xRL n and xsRL n ; with jnþ1 ,
xRL n , xsRL n , 1: Then the repelling fixed point xRL n is SBR on its left side, as for

example

F2k
RL n WF21

RL nþ1 ðxRL nÞ; k $ 1;

is a homoclinic orbit of xRL n with homoclinic points on its left side, while the interval

ðxRL n ; 1� is the immediate basin of the attracting fixed point xsRL n . In this case the

parameters belong to the periodicity region of an attracting basic cycle (as in the examples

shown in Figure 8 and in Figure 9). Similarly to the previous case, the total basin B is given

by all the preimages of any rank of the immediate basin

B ¼ <
1

k¼0
F2k
r ððxRL n ; 1�Þ ð40Þ

so that almost all the initial conditions have a trajectory which is converging to the

attracting cycle, but due to the existence of infinitely many SBR cycles, the basin B

consists of intervals forming a fractal structure dense in ½0; 1�. The frontier ›B of B

includes all the repelling cycles of Fr in ½0; 1�, and their limit points, that is, the invariant

set ›B is the chaotic repellor L0 , ½0; xRL n�.
Besides the generic case considered so far, let us now assume that FRLnð1Þ ¼ 1.

We know that the BCB of a cycle RLn occurs, and we have already shown that if

F0
RL nð1Þ $ 1 then the colliding cycle is repelling and homoclinic on its left side, and we

can argue as in case (i) above (the first return map FrðxÞ consists of infinitely many

branches, from 0 to 1, and all expanding, thus it is a full shift with infinitely many branches

chaotic in ½0; 1�). While if F0
RL n ð1Þ , 1 then the colliding cycle is attracting on its left side,

and we can argue as in case (ii.3) above. A

Notice that in the case (ii.1) considered in the proof of Proposition 4, the dynamics may

be further investigated, and it is possible that f is chaotic in the unbounded interval

ð21; 1�; or a cycle may exist, attracting almost all the points, and thus f has an unbounded

chaotic set L of zero measure in the interval ð21; 1�.
From Proposition 4 we have, in particular, the dynamic behaviour of the map at the

BCB of a basic cycle RLn; which differs depending on the point on the bifurcation curve.

In fact, let us assume that FRLn ð1Þ ¼ 1 and let a parameter point ða; bÞ be fixed, and

b ¼ bðBRLn Þ at the bifurcation value given in (19). Then the interval ð21; 1� is an

unbounded chaotic attractor for any a $ �an and any b # bðBRLn Þ, so that the unbounded

chaotic attractor is strongly persistent, i.e. robust (examples are shown in Figure 5(a),(b)).

While for a , �an the attracting fixed point xsRL n is merging with x ¼ 1, disappearing for

larger values of b (examples are shown in Figures 8(b) and 9(b)).
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5. BCB and homoclinic bifurcations of a generic cycle of f (not basic)

The properties commented up to now for the basic cycles of f , which are fixed points of the

first return map Fr; may be extended to other cycles of f , which clearly are also related to

cycles of the first return map Fr:
A BCB of some cycle of f occurs whenever a preimage of the origin merges with the

point x ¼ 1, or, equivalently, when an iterate of the point x ¼ 1 merges with the origin.

In terms of the first return map, recall that the discontinuity points jj of Fr are preimages of

the origin. Thus, considering the rightmost branch of the first return map, say FrðxÞ ¼
FRLmðxÞ for x [ ½jmþ1; 1�; a BCB corresponds to the value in x ¼ 1, Frð1Þ ¼ FRLm ð1Þ;
which merges with jj or with a preimage of some rank of jj; for j $ ðmþ 1Þ. So we can

prove the following.

Proposition 5 (BCB of not basic cycles). Any BCB involving a not basic cycle of f is

represented by the condition

Frð1Þ ¼ j2k
j ; ð41Þ

where j2k
j is a preimage of some rank k $ 0 of one discontinuity point of FrðxÞ (for k ¼ 0 it

is j2k
j ¼ jj).
Let D be the first derivative of the function FRL jWFkþ1

r ðxÞ in the point x ¼ 1. Then the

BCB leads to the appearance of a repelling cycle or to the disappearance of an attracting

cycle depending on D $ 1 or D , 1, respectively. The case D ¼ 1 corresponds to the

codimension-two point at which the BCB occurs simultaneously with a fold bifurcation of

cycles having the same symbolic sequence.

Proof. As recalled above, by definition of Fr it must hold Frð1Þ ¼ FRLm ð1Þ for some integer

m $ 1, and thus j $ ðmþ 1Þ. Then let us consider separately the cases k ¼ 0 and k . 0 in

(41).

If k ¼ 0 in (41) we have

FRLm ð1Þ ¼ jj

and thus, by applying FRL j on both sides (being FRL jðjjÞ ¼ 1Þ; we have

FRL jWFRLm ð1Þ ¼ 1

representing the BCB of a 2–cycle of the first return map Fr, and thus a cycle of f with

symbolic sequence RLmRLj. For example, the value of the parameters used in Figure 4(a)

is such that Frð1Þ ¼ FRL 4 ð1Þ ¼ j6; thus the parameters belong to the BCB of equation

FRL 6WFRL 4 ð1Þ ¼ 1, representing the BCB of the 2–cycle of Fr between the two branches

given by FRL 6 and FRL 4 ; and a cycle of f with symbolic sequence RL4RL6:
If k $ 1 in (41) let

j2k
j ¼ F2k

r ðjjÞ ¼ F21
RL nk W · · ·WF21

RL n1 ðjjÞ;

where F21
RL ni represent the involved branches of the first return map, with ni $ mþ 1ð Þ for

i ¼ 1; . . . ; k: From

FRLm ð1Þ ¼ F2k
r ðjjÞ ¼ F21

RL nk W· · · W F21
RL n1 ðjjÞ
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we can write

FRLn1 W · · ·WFRLnk WFRLm ð1Þ ¼ jj

and thus, by applying FRL j on both sides, we have

FRL jWFRLn1 W · · ·WFRLnk WFRLm ð1Þ ¼ 1

representing the BCB of a cycle of the first return map Fr (of period ðk þ 2Þ), and a cycle of
f with symbolic sequence

RLmRLnk . . .RLn1RLj: ð42Þ
We remark that for the first return map the BCB in (41) also corresponds to

Fkþ1
r ð1Þ ¼ jj

(that is, the trajectory of x ¼ 1 for the first return map Fr is mapped to a discontinuity point

of Fr), so that by using FRL j21 ðjjÞ ¼ 0 and FRL j ðjjÞ ¼ 1, it can also be written as

FRL j21 W Fkþ1
r ð1Þ ¼ 0 ð43Þ

or equivalently

FRL j W Fkþ1
r ð1Þ ¼ 1: ð44Þ

Moreover, from the above condition (43) or (44), we can notice that at each BCB the

properties of the iterate of order k þ 2ð Þ of the first return map are similar (with obvious

changes) to those commented in the previous sections for the BCB of a basic cycle of f , i.e.

of a fixed point of Fr. That is, a suitable iterate of the first return map, Fkþ2
r xð Þ, has the

rightmost branch which is increasing from 0 to 1. Then what matters is the first derivative

of that rightmost branch of the function Fkþ2
r in the point x ¼ 1. We recall that all the

composite functions consist of branches which are monotone increasing and concave, so

that the first derivative exists and is necessarily positive and decreasing. So, considering

the first derivative D of the function FRL j W FRLn1 W · · · W FRLnk W FRLm ðxÞ in the point

x ¼ 1 :

D ¼ d

dx
ðFRL jWFRLn1 W· · ·WFRLnk WFRLmÞðxÞjx¼1; ð45Þ

we can state that increasing b the BCB curve is crossed on the right side, at or on the left

side of its codimension-two point depending on D . 1; D ¼ 1 and D , 1, respectively,

and:

(i1) if D $ 1 then it leads to the appearance of a repelling cycle (having the symbolic

sequence given in (42));

(i2) if D , 1 then it leads to the disappearance of an attracting cycle (having the

symbolic sequence given in (42)), leaving a repelling cycle with the same symbolic

sequence, which exists for larger values of b, and this also means that at smaller values

of b a fold bifurcation of cycles with this symbolic sequence must occur, leading to

their existence. A
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In the example shown in Figure 4(a) the parameters belong to the BCB of equation

FRL 6WFRL 4 ð1Þ ¼ 1, it is F0
RL 4ð1Þ . 1 and F0

RL 6ðj6Þ . 1; thus D ¼ F0
RL 6ðj6ÞF0

RL 4ð1Þ . 1; so
that a repelling cycle with symbolic sequence RL4RL6 appears as b increases. In this

example we have F0
rðxÞ . 1 in all the points different from the discontinuity points, thus

the first return map FrðxÞ is chaotic in the whole interval ½0; 1� and the dynamics of f is

chaotic in ð21; 1�, as proved in [37].

Differently, when D , 1, we can argue as in Propostion 4 for the basic cycles: the

suitable iterate Fkþ2
r ðxÞ of the first return map has the point x ¼ 1 which is attracting from

its left side, with immediate basin ðxs; 1� where s ¼ RLmRLnk . . .RLn1RLj; and xs is

homoclinic on its left side, while all the other repelling cycles are homoclinic on both

sides. Thus, almost all the points are converging to 1, all the points except for those of a

chaotic repellor in ½0; xs� for the first return map Fr, or in ð21; xs� for map f .

From Proposition 5 we have that whenever the iterate of the point x ¼ 1 in the first

return map Fr merges with a preimage of a discontinuity point jj then a BCB occurs.

Similarly, let us now prove that whenever the iterate of the point x ¼ 1 in the first return

map Fr merges with a repelling periodic point, say x*; then another homoclinic bifurcation

(also called V2explosion) of that cycle occurs, as stated in the following.

Proposition 6. Whenever

Fk
r ð1Þ ¼ x* ð46Þ

for some k $ 1; where x* is a repelling periodic point of Fr, then another homoclinic

bifurcation of that cycle occurs.

Proof. Since 1 ¼ f Lð0Þ is a critical point of f (and also a critical point of Fr being the left

value in all the discontinuity points of Fr)
4, whenever the point Frð1Þ is mapped into the

periodic point of a repelling cycle, a homoclinic bifurcation of that cycle may occur (see

[21,27]). However, due to the property of our system, that all the branches are monotone

increasing and concave, it is necessarily true, that is a homoclinic bifurcation must

necessarily occur. In fact, let us consider the value b ¼ b* at which (46) holds. Thus at

b , b* (close to b*), it is Fk
r ð1Þ , x* and we are before the bifurcation, while at b . b*

(close to b*), it is Fk
r ð1Þ . x* so that we are after the bifurcation, and in this case new

preimages of x * appear (which did not exist before) considering F2k
r ðx*Þ, leading to an

explosion of new homoclinic orbits of the same cycle, which did not exist before (for

Fk
r ð1Þ , x*Þ: A

6. Bifurcations between two BCBs

As we have already remarked (Proposition 2), for any fixed value of a, 0 , a # 1 (and

g . 0), as b increases from 21 to 21 all the BCB curves of the basic cycles RLn are

crossed. Thus, let us consider two consecutive BCB values of b, associated with two

consecutive basic cycles, say bðBRLnÞ and bðBRLnþ1Þ; showing that for any b in between,

bðBRLnþ1 Þ , b , bðBRLn Þ; infinitely many other BCB values exist, and this is always true

independently of the stability or instability of the colliding cycles. Depending on the value

of the parameters, the BCB curves of not basic cycles may be associated with attracting or

repelling cycles, depending on the value of the derivative D as defined above in (45)

(Proposition 5).

Indeed, from the periodicity regions reported in Figures 2 and 3, it can be seen that not

only the basic cycles with symbolic sequence RLn have a stability region, but also many
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other regions exist, associated with attracting cycles with different symbolic sequence,

especially at small values of g:
In the next two sections we shall describe two different sequences, one between two

consecutive BCB values associated with attracting basic cycles, and the other between two

consecutive BCB values associated with repelling basic cycles.

6.1 BCBs of attracting basic cycles

Let us consider a value a , �an and bðBRLnþ1 Þ , b , bðBRLnÞ: Other attracting cycles (not

basic) may exist for values of b in this interval, and the attracting cycle can only be created

in pair with a companion repelling one having the same symbolic sequence, by a fold

bifurcation of cycles of the first return map. Clearly, such a bifurcation may be also

associated with fixed points of a suitable iterate Fm
r of the first return map, where m . 1 is

the period of the cycle of Fr. When a pair of cycles appears by fold bifurcation, then the

BCB curve of the related cycle, which necessarily occurs by increasing b, is associated

with the merging of the rightmost periodic point of the attracting cycle with x ¼ 1, leaving

only the repelling cycle after the crossing.

As already remarked in the previous section, the crossing of a BCB related to a cycle of

any symbolic sequence leads to different dynamical properties depending on where it

occurs, on the left side, at, or on the right side of the related codimension-two point, which

can be deduced from the value of the related derivative D in (45), D , 1, D ¼ 1 or D . 1,

respectively. Crossing a BCB curve at which D $ 1 occurs, a repelling cycle is created

which persists for any larger value of b, while crossing a BCB curve with D , 1 an

attracting cycle (born by fold bifurcation at a smaller value of b) disappears, leaving the

repelling one (with the same symbolic sequence) for any larger value of b:
In order to show the existence of infinitely many BCBs let us consider, for clarity of

exposition, the parameter b which varies from the BCB value on BRL 3 to the BCB value on

BRL 2 ; on the vertical segment at a ¼ 0:3 shown in Figure 10, enlarged part of the rectangle
shown in Figure 2(a), that is for 215:4 ¼ bðBRL 3 Þ , b , bðBRL 2Þ ¼ 24:3:

At b ¼ bðBRL 3 Þ ¼ 215:4 the BCB curve BRL 3 is crossed, leading to the disappearance

of the attracting 4–cycle RL3, so that increasing b the attracting 4–cycle RL3 no longer

exists, while the repelling one, xRL 3 ; persists increasing b. The new branch FRL 2 is now in

Figure 10. Enlarged part of the rectangle shown in Figure 2(a) and a segment at a ¼ 0.3 is marked.
The lower boundary of each coloured periodicity region is a fold bifurcation curve Fs while the
upper boundary is a BCB curve Bs.
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the first return map Fr on the right side of the discontinuity point j3 (and we know that all

the other preimages jj; j . 3, also exist). As b increases from bðBRL 3 Þ to bðBRL 2Þ the value
of the rightmost branch of the first return map in x ¼ 1, Frð1Þ ¼ FRL 2ð1Þ; increases from
0 to 1: In this interval, infinitely many BCB curves are crossed, each one leading to the

disappearance of an attracting cycle (previously born by a fold bifurcation) leaving the

repelling one, or leading to the appearance of a repelling cycle. From Proposition 5, a BCB

of some cycle of f occurs whenever the point x ¼ 1; Frð1Þ, is mapped into a preimage of

the origin, or, equivalently Frð1Þ ¼ FRL 2 ð1Þ merges with a preimage of some rank of a

discontinuity point jj; j $ 3.

The first return map FrðxÞ shown in Figure 11 has infinitely many branches FRLn , for

any n . 2, and thus all the repelling fixed points xRL n for any n . 2 exist and all are

homoclinic.

Let us consider the value of b at which

FRL 2 ð1Þ ¼ xRL 3

occurs, that is a homoclinic bifurcation of the repelling fixed point xRL 3 of Fr, as shown in

Figure 11(a), at b ¼ bðxRL 3 Þ ¼ 214:45: To clarify the term V2explosion, consider a

slight increase of the value of b; i.e. after this homoclinic bifurcation, so that it is

FRL 2ð1Þ . xRL 3 and infinitely many new homoclinic orbits of xRL 3 can be found (which did

not exist before) considering the newly appeared preimage on the right side F21
RL 2ðxRL 3 Þ:

Moreover, let us show via this example that a homoclinic bifurcation is a limit set of

infinitely many BCB curves (the generic results are given in the next section). Consider,

for example, that the fixed point xRL 3 is the limit point of preimages F2k
RL 3ðj3Þ for any k $ 0

(see Figure 11(a)), and as b increases also Frð1Þ ¼ FRL 2ð1Þ increases, so that all such

values F2k
RL 3ðj3Þ are reached and crossed by FRL 2ð1Þ, say at values bk, which means that all

the BCB curves due to

FRL 2ð1Þ ¼ F2k
RL 3ðj3Þ

are crossed.

As noticed above, from

Fk
RL 3 W FRL 2 ð1Þ ¼ j3

Figure 11. First return map FrðxÞ at g ¼ 0:5; a ¼ 0:3: In (a) b ¼ 214:45: In (b) b ¼ 212:87: In (c)
b ¼ 210:385:
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considering that

FRL 3ðj3Þ ¼ 1

we can state that there must exist values of b; say bk for any k $ 0; such that at b ¼ bk the

BCB curves having the following equations are crossed:

Fkþ1
RL 3 WFRL 2ð1Þ ¼ 1; k $ 0 ð47Þ

which are the BCB curves of cycles of f having symbolic sequence RL2ðRL3Þkþ1 for any

k $ 0: Since for k!1 the values bk tend to bðxRL 3Þ these border collisions have as limit

set the homoclinic bifurcation value. The BCB corresponding to the case k ¼ 1 ðb1 ¼
212:87Þ is shown in Figure 11(b) and the case k ¼ 0 ðb0 ¼ 210:385Þ; i.e. merging with

j3, is shown in Figure 11(c).

It is not easy to evaluate the first derivative of the function Fkþ1
RL 3 WFRL 2ðxÞ in the point

x ¼ 1. However, from Figure 10 we have that the BCB of the 11–cycle RL2ðRL3Þ2 and
that of the 7–cycle RL2RL3 both occur after a fold bifurcation as they are the BCBs of an

attracting cycle (as attracting cycles with these symbolic sequences are numerically

detected, leading to the coloured periodicity regions).

Notice that we can find infinitely many families of BCB curves which occur in the

interval of values of b considered up to now, bðBRL 3Þ , b , b0. For example, for any

j . 3 we can consider also the preimages F2k
RL j ðj3Þ for any k $ 1 which have as limit sets

the repelling fixed points xRL j and thus there must exist values of b such that

FRL 2ð1Þ ¼ F2k
RL j WF

21
RL 3 ð1Þ

that is

FRL 3 W Fk
RL j W FRL 2 ð1Þ ¼ 1; k $ 1; j . 3 ð48Þ

are BCB curves which must have been crossed at suitable b values, related to cycles

having symbolic sequence RL2ðRLjÞk RL3 for any k $ 1 and any j . 3:
Also we can consider that in the interval 215:4 ¼ bðBRL 3 Þ , b , bðxRL 3 Þ ¼ 214:45

the value Frð1Þ ¼ FRL 2 ð1Þ is increasing from 0 and thus there must exist the homoclinic

bifurcation values bðxRL jÞ for any j . 3 in which Frð1Þ is mapped into the repelling fixed

point xRL j for any j . 3;

FRL 2ð1Þ ¼ xRL j ; j . 3

and must satisfy

bðBRL 3Þ , · · · , bðxRL jþ1Þ , bðxRL j Þ , · · · , bðxRL 3Þ:
For each homoclinic bifurcation at bðxRL jÞ we can reason as above considering the

preimages of discontinuity points jm for any m $ 3 placed on the right side of xRL j ; for
j $ 4. For example, let j ¼ 4 which is observable in Figure 11, then F2k

RL 4ðj4Þ for any k $ 0

exist, as well as F2k
RL 4 ðj3Þ for any k $ 0, and both sequences have as limit set the repelling

fixed point xRL 4 : For j ¼ 5 then also F2k
RL 5ðj5Þ; F2k

RL 5ðj4Þ; F2k
RL 5 ðj3Þ for any k $ 0 exist which

have as limit sets the repelling fixed point xRL 5 and so on. Thus, we have that there must

exist values of b such that
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FRL 2 ð1Þ ¼ F2k
RL jðjmÞ; k $ 0; j $ 4; 3 # m # j

that is, considering jm ¼ F21
RLm ð1Þ;

FRL 2ð1Þ ¼ F2k
RL j W F21

RLm ð1Þ
leading to

FRLm W Fk
RL j W FRL 2 ð1Þ ¼ 1; for any k $ 0; j $ 4; 3 # m # j ð49Þ

which are BCB curves crossed at suitable b values, related to cycles having symbolic

sequence

RL2ðRLjÞkRLm

for any k $ 0; j $ 4 and 3 # m # j:
For values of b smaller than b0 ¼ 210:385 (value at which the BCB of the 7–cycle

occurs, as shown in Figure 11(c), at which Frð1Þ ¼ FRL 2 ð1Þ is merging with j3Þ; the
symbolic sequence of cycles which undergo a BCB cannot have the symbols ðRL2Þk for
k . 1, i.e. two consecutive applications of the rightmost branch FRL 2 cannot occur. While

for larger values of b they can occur. For b . b0 we can easily detect BCBs of cycles

having symbolic sequence ðRL2ÞkRL3 for any k . 1. In fact, as b increases from b0, the

inverse of j3 on the right side, F21
RL 2 ðj3Þ; appears (which did not exist before). Moreover,

also many other preimages of jj on the right side, F21
RL 2 ðjjÞ; for any j . 3 may now be

crossed, which could not be possible before, and so on with many other preimages.

As b increases from b0, at b ¼ 28:98 we have that F2
RL 2 ð1Þ is merging with j3 (see

Figure 12(a)), at b ¼ 27:2 we have that F12
RL 2ð1Þ is merging with j3; see Figure 12(b). It is

clear that before the fold bifurcation of the branch FRL 2 (shown in Figure 12(c), at

b ¼ bðFRL 2Þ ¼ 27:008), this must occur for any integer. That is, for any k . 1 the

condition

Fk
RL 2ð1Þ ¼ j3

must occur, leading (from j3 ¼ F21
RL 3ð1ÞÞ to the BCB curves

FRL 3 W Fk
RL 2 ð1Þ ¼ 1; k $ 2 ð50Þ

Figure 12. First return map FrðxÞ at g ¼ 0:5 a ¼ 0:3 In (a) b ¼ 28:98 In (b) b ¼ 27:2 In (c)
b ¼ 27:01.
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which have as limit set the fold bifurcation curve FRL 2 . From Figure 10 it seems that this

family of cycles with symbolic sequence ðRL2ÞkRL3 for any k . 1 is associated with the

BCB of attracting cycles.

Clearly we can find many more families of BCB curves also above the periodicity

region of the 7–cycle. For example, we can easily see that the above reasoning can be

repeated for the inverse of jj on the right side, F
21
RL 2ðjjÞ; for any j . 3. That is, for b . b0;

we must have suitable b values such that, for k $ 1;

Fk
RL 2 ð1Þ ¼ F21

RL 2 ðjjÞ

leading (by using jj ¼ F21
RL jð1ÞÞ to the BCB curves of attracting cycles with symbolic

sequence ðRL2ÞkRLj for any k $ 2 and any j . 3;

FRL jWFk
RL 2 ð1Þ ¼ 1; k $ 2; j . 3 ð51Þ

which also have as limit set the fold bifurcation curve FRL 2 .

A one-dimensional bifurcation diagram of the example here considered at a ¼ 0:3 and
b in the range 217 , b , 25 is shown in Figure 13. We can argue (as we shall prove in

the next section) that each BCB and each fold bifurcation is a limit set of infinitely many

other BCBs, as well as each homoclinic bifurcation. The homoclinic bifurcation occurring

at bðxRL 3Þ; limit set of BCB of cycles with symbolic sequence ðRL2ÞðRL3Þk for any k . 1

and of many other families as well can be better observed in the enlargement in Figure 14

(a), marked by a red arrow. While in the enlargement of Figure 14(b) we can appreciate the

cascade of attracting cycles with symbolic sequence ðRL2ÞkRL3 for any k . 1, occurring

for b . b0. At all the values of b in which an attracting cycle does not exist, the first return

map seems chaotic in the whole interval ½0; 1�, and thus the map f seems chaotic in the

whole unbounded interval ð21; 1� (now the first return map is not expanding, so that we

cannot make use of the result in [37]).

The short description given above, between the two BCB curves BRL 3 and BRL 2 , can

obviously be repeated between any pair of BCB curves BRLnþ1 and BRLn in parameter

ranges not including the related codimension-two points and in which the fold bifurcation

curves FRL nþ1 and FRL n exist.

Figure 13. One-dimensional bifurcation diagram at g ¼ 0:5; a ¼ 0.3, along the vertical segment
shown in Figure 10. The intervals (I) and (II) are enlarged in Figure 14.
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However, it is worth to note that the true bifurcation structure occurring in this range is

still to be understood. Considering the description of the cycles involved in the BCB

curves by using the concatenation of the symbolic sequences, in the example described

above we have seen that between two BCBs of stable cycles RL3 and RL2 the families

ðRL3ÞmRL2 and RL3ðRL2Þm for any m $ 1 exist, but their limit sets are unusual (they are

not BCB curves). The limit set of the family RL3ðRL2Þm as m!1 is the fold bifurcation

curve FRL 2 while the limit set of the family ðRL3ÞmRL2 as m!1 is the homoclinic

bifurcation of xRL 3 ; i.e. of the unstable basic cycle RL3. Thus we can see that the sequence

of BCBs related to the period adding structure exists, but not only. Here we have the

existence of many other families, and not related to the U-sequence occurring in

continuous unimodal one-dimensional maps, because we cannot have here the cascades of

period doubling bifurcations (existing in the U-sequence, see [40]), as flip bifurcations

cannot occur in our system.

6.2 BCBs of repelling basic cycles

Let us now turn to consider an interval between two BCB curves BRLnþ1 and BRLn in

parameter ranges not including the related fold bifurcation curves FRL nþ1 and FRL n : That
is, consider a value a . �an and bðBRLnþ1Þ , b , bðBRLnÞ:

In Figure 2 we have evidenced a small segment at a ¼ 0:9 . �a4, between the BCB

curves BRL 5 and BRL 4 ; in what can be called a chaotic regime, as in this interval of b values,

26:24 ¼ bðBRL 5Þ , b , bðBRL 4 Þ ¼ 24:72; no attracting cycle can exist, as we can prove

that the first return map Fr has a first derivative which is larger than 1 in all the points, and

thus (from Proposition 4) we have that Fr is chaotic in the whole interval ½0; 1�; and the

map f has ð21; 1� as robust chaotic attractor. In fact, at b ¼ bðBRL 5Þ it is

F0
RL 5ð1Þ ¼ 2bðBRL 5Þga5 . 1, crossing which the branch of FRL 4 enters in the definition

of the first return map Fr: From F0
RL 4ð1Þ ¼ F0

RL 5ð1Þ=a . F0
RL 5ð1Þ . 1 at b ¼ bðBRL 5 Þ; the

rightmost branch of Fr enters with slope larger than 1, and since at b ¼ bðBRL 4 Þ by

assumption it is F0
RL 4ð1Þ . 1 it follows F0

RL 4 ð1Þ . 1 for any value of b in the considered

interval. Moreover, from this we also have that at any value of b it must be F0
RL 4 ðxÞ . 1 in

all the points of definition of the function FRL 4 of the first return map, that is for

j5 # x # 1 (as in fact decreasing x from 1 the slope F0
RL 4ðxÞ must increase, being FRL 4

increasing and concave).

Figure 14. One-dimensional bifurcation diagrams at g ¼ 0:5; a ¼ 0.3, enlargements of the parts (I)
and (II) in Figure 13. The arrow in (I) shows the homoclinic bifurcation occurring at bðxRL 3 Þ.
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The BCB occurring at b ¼ bðBRL 5Þ is shown in Figure 5(a), the one occurring at

b ¼ bðBRL 4 Þ is shown in Figure 5b, while at a value of b inside the interval it is shown in

Figure 4.

Similarly we can reason in a generic case. So, no attracting cycle can exist and the first

return map Fr is chaotic in ½0; 1�. However, as b increases in the range bðBRLnþ1 Þ , b ,
bðBRLn Þ the point Frð1Þ ¼ FRLnð1Þ increases from 0 to 1 (being FRLnð1Þ ¼ 1 at the BCB

related to b ¼ bðBRLnÞÞ, thus crossing infinitely many preimages of the discontinuity points
(which indeed are dense in the interval ½0; 1�), which means the crossing infinitely many

other BCBs leading to the appearance of repelling cycles, as well as crossing infinitely

many preimages of repelling cycles (which also are dense in the interval ½0; 1�) and thus

crossing infinitely many homoclinic bifurcations.

For each value of b in the considered interval we can classify what occurs considering

the trajectory of the point x ¼ 1. We know that the dynamics are chaotic in ½0; 1� thus we
can list the following cases:

(i) if Fk
r ð1Þ is mapped into a discontinuity point at some k, then b is the value of the BCB

of a cycle;

(ii) if Fk
r ð1Þ is mapped into a repelling periodic point at some k, then b is the value of a

homoclinic bifurcation of the cycle;

(iii) if Fk
r ð1Þ is aperiodic (and dense in ½0; 1�), then b is not a bifurcation value.

Families of BCB curves can be easily identified which are crossed in this interval

(among the infinitely many which we know to occur), considering the preimages of

discontinuity points, and reasoning as in the previous case. That is, all the families of

BCBs previously described occur also now (with obvious changes), with the only

difference that now they involve only repelling cycles (i.e. no fold bifurcation curve can be

crossed). For example, considering the discontinuity points jj for j $ 5; and the repelling

fixed points xRL k for k $ 5; we can list several families of BCBs and homoclinic

bifurcations.

For each discontinuity point jj for j $ 5 we can consider the preimages F2k
RLm ðjjÞ for

any k . 0 and any m $ j: The sequences F2k
RLm ðjjÞ for any k . 0 have as limit set the

repelling fixed points xRLm (m $ jÞ: Thus each homoclinic bifurcation at which, for m $ 5;

FRL 4ð1Þ ¼ xRLm

occurs, is a limit set of infinitely many other BCBs. For example, let bðxRLm Þ be the

bifurcation value at which FRL 4ð1Þ ¼ xRLm occurs, then, as b is further increased, BCB

values at which

FRL 4ð1Þ ¼ F2k
RLm ðjjÞ

must occur for any j $ 5; m $ j and k . 0: The limit value as k!1 is bðxRLm Þ: Thus, the
following BCB values must be crossed:

FRL 4ð1Þ ¼ F2k
RLm W F21

RL j ð1Þ

that is

FRL j W Fk
RLmWFRL 4ð1Þ ¼ 1
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which are BCB curves of cycles with symbolic sequence RL4ðRLmÞkRLj, j $ 5 and m $ j;
and as k!1 they accumulate to a homoclinic bifurcation curve.

7. Each bifurcation is a limit set of families of BCBs

The examples shown in the previous section suggest that all the bifurcation curves, border

collision, fold and homoclinic bifurcation curves are limit sets of families of BCB, as

qualitatively represented in Figure 15. This is indeed what we prove in the following.

Proposition 7. Any BCB is a limit set of infinitely many BCBs, on both sides when related

to a repelling cycle, only from above when related to an attracting cycle.

Proof. Let us first analyse this property related to the BCBs of basic cycles of f , then,

considering the fact that at each BCB a suitable iterate of the first return map has

qualitatively the same structure in the rightmost branch, the result holds in general for the

BCB of any cycle. The main point not yet completely commented is the role played by the

codimension-two point in each BCB. However, from the examples already described its

role is clarified. In fact, in all the cases we have shown that a BCB of a basic cycle is a limit

set of other BCB values from above. In fact, at any value of a, after the BCB, increasing

the parameter b, the new branch entering the definition of the first return map leads to

infinitely many new BCBs, specially related to the crossing of the preimages of the

discontinuity points which are accumulated to x ¼ 0. More rigorously, consider the BCB

of a basic cycle of f , say BRLm ; then at b ¼ bðBRLmÞ it is FRLm ð1Þ ¼ 1, and for values of b

slightly larger than bðBRLm Þ the new rightmost branch of the first return map Fr is FRLm21 ðxÞ
for jm # x # 1; and Frð1Þ ¼ FRLm21ð1Þ increases from the value 0. Thus considering the

discontinuity points jj; j . m, of the first return map, which have as limit value for j!1
the point x ¼ 0, we have that as soon as FRLm21 ð1Þ . 0 infinitely many of them belong to

the range of FRLm21 ; and thus BCBs must occur satisfying

FRLm21 ð1Þ ¼ jj

that is (considering jj ¼ F21
RL jð1ÞÞ

F21
RL j W FRLm21ð1Þ ¼ 1

at bifurcation values say b ¼ bj . bðBRLm Þ and such that the limit value of bj for j!1 is

bðBRLm Þ.
This occurs independently of the crossing of the BCB curve BRLm below, at or above its

codimension-two point a ¼ �am. What makes difference, and thus leads to a particular role

of the codimension-two point, is the following:

Figure 15. Qualitative representation of the curves which are limit sets of other bifurcation curves.
B denotes a BCB curve while F a fold bifurcation curve.
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(j.1) crossing the BCB curve BRLm at a point with a , �am and varying b the bifurcation

point is a limit set of other BCB values only from above;

(j.2) crossing the BCB curve BRLm at a $ �am and varying b the bifurcation point is a

limit set of other BCBs both from below and from above.

This difference is immediately shown. In fact, as we know, for a , �am the colliding

fixed point is attracting and also a repelling one exists, xRLm ; with the same symbolic

sequence. The immediate basin given by the interval ðxRLm ; 1� and no BCB can involve

points of this interval, so that for smaller values of b; before the bifurcation, there cannot
be other BCB values (see the example in Figure 8(a),(b) or in Figure 9(a),(b).

Differently, in the case a $ �am (see the example in Figure (6a)) at the BCB value

b ¼ bðBRLm Þ we can consider each discontinuity point jj for j $ m and the preimages

F2k
RLmðjjÞ for any k . 0: For any j $ m the sequences F2k

RLm ðjjÞ have as limit value for

k!1 the point x ¼ 1. Thus BCB values for b; say bj;k, must have been crossed satisfying

FRLm21 ð1Þ ¼ F2k
RLm ðjjÞ

that is (considering jj ¼ F21
RL jð1ÞÞ

FRL j W Fk
RLm W FRLm21 ð1Þ ¼ 1

and for any j $ m the limit for k!1 of the values bj;k is (from below) bðBRLmÞ A

Proposition 8. Each homoclinic bifurcation curve is a limit set of infinitely many border

collisions, both from below and above.

Proof. Let us consider a homoclinic bifurcation associated with a fixed point of FrðxÞ, then
for any k–cycle of Fr the reasoning is the same by using the kth iterate of the first return

map.

Let the rightmost branch of FrðxÞ be FrðxÞ ¼ FRLm ðxÞ for some integer m $ 1, and thus

jj, j $ ðmþ 1Þ; are the discontinuity points, and xRL j for any j $ ðmþ 1Þ are repelling

fixed points (all SBR, as already shown). Then there are infinitely many sequences of

preimages of the discontinuity points having as limit set a repelling fixed point from below

and from above. Thus any value bj at which a homoclinic bifurcation Frð1Þ ¼ xRL j for

some j occurs, is a limit set from below and from above of b values at which BCB curves

related to the equations Frð1Þ ¼ j2k
i must have been crossed before, at smaller values of b

having bj as limit, or will be crossed increasing b: A

Proposition 9. Each fold bifurcation is a limit set of infinitely many homoclinic

bifurcations and border collisions, only from below.

Proof. Let us consider a fold bifurcation associated with a pair of fixed points of FrðxÞ (i.e.
basic cycles of f ), then for any k–cycle of Fr the reasoning is the same by using the kth

iterate of the first return map.

At the fold bifurcation the rightmost branch of FrðxÞ; say FrðxÞ ¼ FRLmðxÞ; leads to a

fixed point x
*

RLm which is repelling and homoclinic from its left side, and attracting from its

right side. Thus, the result follows by the same arguments used above as x
*

RLm is the limit

set from below of sequences of preimages of the existing discontinuity points as well as of

sequences of preimages of all the existing repelling fixed points. A

Proposition 10. Chaotic bands do not occur.
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Proof. In PWS systems, it is common to have chaos occurring in a finite number of

intervals, called chaotic bands, which are bounded by the images of the critical point(s) of

a map [3,5,7]. However, in many applications it is preferable to have the chaotic system in

one unique band, or interval. In the case of PWL systems, as shown in [7], it is also proved

that when chaotic bands exist, then a kink point or discontinuity point must belong to a

chaotic band. This result is true also for the PWS map f in (3) with a vertical asymptote.

In fact, as we have evidenced in this section, the origin x ¼ 0 is necessarily a limit point of

repelling cycles and homoclinic points, and thus must be a limit point of the chaotic set.

But map f has a vertical asymptote on the right side of x ¼ 0, and this implies that the

chaotic set can never be bounded. It follows that chaos is either an unbounded chaotic

repellor (when the chaotic set belongs to the boundary of a stable set or of a basin of

attraction), or the dynamics are chaotic in the whole unbounded interval ð21; 1�: A

Differently, in the region with a . 1, which we consider in the Part II [35], the chaotic

sets, when existing, are necessarily bounded in a finite interval, and only in the form of

chaotic repellors (persisting the property that chaotic bands cannot exist).

8. Conclusions and outlook

In this work we have investigated some properties of the discontinuous map given in (3)

for the parameter range given in (5) and defined as AI in Figure 1. Besides the introduction

of the contact points between the BCB curves and the fold bifurcation curves of basic

cycles and their role, we have proved that a similar codimension-two point exists on any

BCB curve of an admissible cycle. We have explained their role in terms of the

bifurcations occurring on their crossing. The main results are obtained making use of the

first return map defined in Section 3. Moreover, we have proved that chaos always exists,

as in our system all the unstable cycles are homoclinic, and that the chaotic set is

unbounded, of zero measure or of full measure, and robust (persistent under variation of

the parameters). The dynamic properties on the crossing of the BCB curves when fold

bifurcations are also crossed have been illustrated via examples, showing that the structure

is much richer than that occurring in other systems (for example in comparison with the

period adding structure or the U-sequence). In our system, any BCB curve as well as any

fold bifurcation curve and any homoclinic bifurcation curve is a limit set of infinite

families of BCB curves, as proved in Section 7. However, the understanding of the

bifurcation structure related to the occurrence of fold bifurcations and BCBs as b increases

is left for further investigation. Another open problem is related to the particular role of

codimension-two bifurcation points, a BCB and a fold bifurcation related to cycles with

different symbolic sequences, in which case the codimension-two points act as organizing

centres and are issuing points of infinitely many families of bifurcation curves, both of fold

type and of border collision type, as clearly visible in Figure 1. The open problems here

evidenced are neither considered in [35], in which the other ranges marked as regions AII,

BI and BII in Figure 1 are considered.
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3. We recall that for the particular case a ¼ 1, the bifurcation curves are obtained by replacing

12 anþ1=12 a with nþ 1 and 12 an=12 a with n in the expressions given above.
4. Recall that in a discontinuity point of a map, the two limiting values of the map on both sides of

the discontinuity are both called critical points, as both may be involved in border collision
bifurcations.
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