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Border collision and fold bifurcations in a family of one-dimensional
discontinuous piecewise smoothmaps: divergence and bounded dynamics

Roya Makroonia,1, Farhad Khellata,2 and Laura Gardinib*

aFaculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran; bDESP University of
Urbino Carlo Bo, Urbino, Italy

(Received 21 March 2015; accepted 18 April 2015)

In this work we continue the study of a family of 1D piecewise smooth maps, defined
by a linear function and a power function with negative exponent, proposed in
engineering studies. The range in which a point on the right side is necessarily mapped
to the left side, and chaotic sets can only be unbounded, has been already considered.
In this work we are characterizing the remaining ranges, in which more iterations of the
right branch are allowed and in which divergent trajectories occur. We prove that in
some regions a bounded chaotic repellor always exists, which may be the only non-
divergent set, or it may coexist with an attracting cycle. In another range, in which
divergence cannot occur, we prove that unbounded chaotic sets always exist. The role
of particular codimension-two points is evidenced, associated with fold bifurcations
and border collision bifurcations (BCBs), related to cycles having the same symbolic
sequences. We prove that they exist related to the border collision of any admissible
cycle. We show that each BCB, each fold bifurcation and each homoclinic bifurcation
is a limit set of infinite families of other BCBs.

Keywords: piecewise smooth maps; border collision bifurcations of repelling cycles;
chaotic repellors; codimension-two bifurcation points; unbounded chaotic sets

1. Introduction

Piecewise smooth (PWS) systems have been widely investigated in the last decade, due to

the large number of non-smooth systems proposed in several applied fields. For example,

in physical and engineering systems, a recent survey can be found in [10] (see also [4]).

Many applications in engineering may include specific nonlinearities in the map, as power

functions. In particular, much attention has been devoted to the square-root singularities in

impact oscillators, following the works of Nordmark ([17], [18]). In this paper we consider

the PWS map proposed in [13] given by

x 7! f mðxÞ ¼
f LðxÞ ¼ axþ m if x # 0

f RðxÞ ¼ bx2g þ m if x . 0

(
ð1Þ

where a, b and g are real parameters and m . 0. As recalled in that paper, this PWS system

was already considered by many authors, mainly in the continuous case, for g , 0: In [7]

the normal-form mapping of sliding bifurcations is derived, leading to map (1) with

g ¼ 23=2; g ¼ 22 and g ¼ 23; related to different cases of sliding bifurcations. The

case with g ¼ 21=2 is considered in [3]. Other examples of grazing and sliding
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bifurcations with nonlinear leading-order terms occur in power converters and in non-

smooth sliding-mode controls ([1],[5],[6]).

In [19] the map in (1) was considered in the discontinuous case with g . 0; and some

remarks for the particular case with g ¼ 1=2 are reported in [20]. This leads to a particular
family of maps in which the function f RðxÞ defined on the right side has a vertical

asymptote at the discontinuity point x ¼ 0:
As in [11] and [13] we consider system (1) for positive values of the parameter m, and

for any m . 0 the transformation ðx; a; b;mÞ! ðx=m; a; bm2g21; 1Þ leads from (1) to the

following map:

x 7! f ðxÞ ¼
f LðxÞ ¼ axþ 1 if x # 0

f RðxÞ ¼ ðb=xgÞ þ 1 if x . 0

(
ð2Þ

The peculiarities of this family in the range related to an invertible map have been studied

in [14], where interesting bifurcation structures associated with the presence of the vertical

asymptote are described, even if, due to invertibility, chaotic sets cannot exist. In [13] we

have considered the case of non-invertible map f ðxÞ in a particular range in which the

trajectories cannot be divergent:

Range AI : P1 ¼ p ¼ ða; b; gÞ : 0 , a # 1; b # 21; g . 0f g
proving the properties of codimension-two points associated with fold bifurcations and

border collision bifurcations (BCB) related to cycles having the same symbolic sequence.

It was also proved that in Range AI only unbounded chaotic sets can exist, which may lead

to robust unbounded chaotic attractors (having the properties shown in [12]). In this work,

we are considering the remaining ranges for the parameters, classified as follows (as

motivated in the next section):

Range AII : P2 ¼ p ¼ ða; b; gÞ : a . 1; b # 21; g . 0f g
Range BI : P3 ¼ p ¼ ða; b; gÞ : 0 , a # 1; 2 1 , b , 0; g . 0f g
Range BII : P4 ¼ p ¼ ða; b; gÞ : a . 1; 2 1 , b , 0; g . 0f g

ð3Þ

As it is used in PWS systems of this kind, we study the system’s dynamical properties

making use of the symbolic notation based on the letters L and R corresponding to the two

disjoint partitions

IL ¼ ð21; 0�; IR ¼ 0;þ1� � ð4Þ

To each trajectory we associate its itinerary by using the letter Lwhen a point belongs to IL
and R when a point belongs to IR. A cycle is represented by its finite symbolic sequence.

For example, a cycle with symbolic sequence RLn (corresponding to a basic cycle) has one

periodic point on the right partition and n on the left one. The symbolic sequence can also

be associated with the functions which are to be applied in order to obtain a periodic point

of the cycle, as fixed point of a proper composition of the two functions defining f . As an

example, to get the periodic point of a cycle RLn on the right side we have to solve the

equation f nL + f RðxÞ ¼ x:
Notice that the point x ¼ 0 is associated with bifurcations of two kinds, BCBs, as well

as homoclinic bifurcations of cycles. In fact, whenever a cycle has the periodic points

which include x ¼ 0 (and thus also x ¼ 1), the parameters are said to be at the BCB values

R. Makrooni et al.2
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of the cycle, because they are always related to the appearance/disappearance of the cycle.

When a preimage of a periodic point (or pre-periodic point) of a cycle merges with 0, then

we shall see that the cycle undergoes a homoclinic bifurcation.

The Ranges AII and BII, in which a . 1, are characterized by the existence of a

repelling fixed point in the partition IL

x*L ¼ 2
1

a2 1
, 0 ð5Þ

so that divergent trajectories certainly exist, with immediate basin ð21; x*LÞ. However, for
x . x*L the system can have other attractors as well as chaotic sets.

The investigation (still not complete) of the dynamics occurring when a parameter

point p ¼ ða; b; gÞ belongs to the different ranges in (3) is the object of this paper. The

properties of map f in each different range are proved making use of a suitable first return

map, which exists also when the trajectories are mainly divergent. The plan of the work is

as follows. In Section 2 some preliminary results are related to the fixed points of our

system and divergent trajectories. In Section 3 it is considered the Range AII (which

corresponds to Figure 1 to the interval SðbÞ [ ð2p=2;2p=4�). It is shown that the system
has divergent trajectories, as 21 is always an attractor with a basin of attraction B1 of

positive measure. For b , 2a=ða2 1Þ all the points have a divergent trajectory except for
a repelling fixed point x*L and its preimage, while for 2a=ða2 1Þ , b # 21 a chaotic

repellor exists which belongs to the frontier of the basin of attraction B1. This basin may

coexist with the basin of an attracting cycle of period n $ 2: The Range B with 21 ,
b , 0 (which corresponds to Figure 1 to the interval SðbÞ [ ½2p=4; 0Þ) is considered in

Section 4, and the BCBs of basic cycles with symbolic sequences LRn for any n $ 1 are

shown to occur. In Subsection 4.1 the Range BI is considered, showing that the system has

non-divergent dynamics and persistent unbounded chaotic sets (mainly of zero measure).

A peculiar structure of attracting cycles is illustrated. The existing attracting cycles have

symbolic sequences different from those existing in Ranges AI and AII, and are related to

periodicity regions issuing from organizing centres at codimension-two bifurcation points.

All the existing cycles are characterized by repeated iterations also on the R side.

Codimension-two points due to contact points between BCB curves and fold bifurcation

Figure 1. Two-dimensional bifurcation diagram in the parameter space ða; SðbÞÞ; at g ¼ 0:1; bðFRÞ
20:7152667: The qualitative shape of f ðxÞ in three different ranges, AII, BI and BII, is also shown.

Journal of Difference Equations and Applications 3
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curves of cycles having the same symbolic sequences are proved to exist, and the related

properties are illustrated. They are limit points of infinite families of BCBs. Also the fold

bifurcation values and the homoclinic bifurcation values are shown to be limit points of

infinite families of BCB values. In Subsection 4.2 we investigate Range BII, showing that

the map has properties similar to those occurring in Range AII, although now a chaotic

repellor belonging to the frontier of B1 always exists. The basin of attraction B1 of

positive measure may coexist with another basin of positive measure, related to an

attracting cycle of period n $ 1: The existing attracting cycles are related to periodicity

regions issuing from organizing centres in Range BI. Section 5 concludes, evidencing that

there are many open problems which are left for further investigation.

2. Preliminary properties

For the PWS map in (2), the discontinuity point is at the origin, x ¼ 0; that is also a vertical
asymptote for the function on the right side. In the parameter Range BI, in which the slope

of the straight line is not larger than 1, any point on the right side, no matter how close it is

to x ¼ 0; is mapped to the left side and then the trajectories start to increase and a point

with x . 0 is reached again. That is, the trajectories cannot be divergent, as it also occurs

in the invertible case studied in [14] and in the non-invertible case of Range AI considered

in [13].

Differently, in the Ranges AII and BII, in which a . 1; due to the existence of the

repelling fixed point x*L, the vertical asymptote is mainly related to divergent trajectories.

In fact, as already recalled in the Introduction, a set of positive measure of points with

divergent dynamic behaviour exists, denoted B1 (basin of 21 or set of divergent

trajectories). As any total basin, it is given by all the preimages of any rank of the

immediate basin, which is the interval ð21; x*LÞ ¼ ð21;21=ða2 1ÞÞ; so that

B1 ¼
[1
k¼0

f 2kð21; x*LÞ: ð6Þ

Clearly, the first preimage of the immediate basin is f21
R ðð21; x*LÞÞ ¼ ð0; x*21

L Þ which is

the right neighbourhood of the origin bounded by the preimage x*21
L ¼ f21

R ðx*LÞ; given by

x*21
L ¼ b

x*L 2 1

� �1=g

¼ 2bða2 1Þ
a

� �1=g

: ð7Þ

An immediate result is that bounded dynamics different from the preimages of the

repelling fixed point x*L can exist only for parameter values such that x*21
L , 1; which

leads to the condition b . 2a=ða2 1Þ: In the ða; bÞ-parameter plane the curve Bf of

equation

Bf : b ¼ 2
a

a2 1
ð8Þ

is below the line b ¼ 21, independently of the value of g . 0; and it bounds a region

associated with only divergence. In fact, when x*21
L $ 1 ðb # 2a=ða2 1Þ , 21), then

except for x*L and its preimage x*21
L , all the other points have a divergent trajectory, being

mapped to the immediate basin ð21; x*LÞ in one or two iterations at most.

Differently, for b . 2a=ða2 1Þ a bounded chaotic set exists. To prove the existence

of chaotic sets we make use of the existence of homoclinic orbits. It is well known that in

R. Makrooni et al.4
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one-dimensional non-invertible maps, homoclinic orbits of a repelling k-cycle, k $ 1

(k ¼ 1 corresponds to a fixed point), exist when it is a snap-back repellor (SBR), following

the definition given by Marotto in [15], [16]. We recall that a repelling cycle may become

an SBR via a critical homoclinic orbit, associated with critical homoclinic explosions, or

V-explosions, as shown in [8] for smooth continuous systems, and in [9] for generic PWL

and PWS systems, continuous and discontinuous. The existence of homoclinic orbits leads

us to show that for parameter values satisfying

2
a

a2 1
, b , 0 ð9Þ

a bounded chaotic repellor always exists in the interval ½x*L; 1�; as stated in the following

proposition.

Proposition 1. (SBR bifurcation of x*L). Consider map f ðxÞ given in (2) with g . 0 and

a . 1:
If 21 , b , 2a=ða2 1Þ then all the points except for x*L ¼ 21=ða2 1Þ and x*21

L ¼
ð2bða2 1Þ=aÞ1=g have a divergent trajectory.

If b ¼ 2a=ða2 1Þ besides x*L, the only non-divergent points belong to a critical

homoclinc orbit of x*L. No chaotic repellor exists.

If 2a=ða2 1Þ , b , 0 then x
*

L is an SBR and a bounded chaotic repellor exists

in½x*

L; 1�.

Proof. The first point is immediate, as shown above. For the third item, notice that for

parameter values such that b . 2a=ða2 1Þ it is x*21
L , 1; which leads to the existence of

a sequence of preimages of x*21
L from the left side. That is, for any k . 0;

x*2ðkþ1Þ
L ¼ f2k

L ðx*21
L Þ ð10Þ

gives a sequence of points converging from above to x*L; leading to a non-critical (and non-
degenerate) homoclinic orbit of x*L: Thus x

*
L is an SBR, and this is enough to state that in

the interval ½x*L; 1� a bounded chaotic set of map f exists (see [9]).

At the homoclinic bifurcation value b ¼ 2ða=ða2 1ÞÞ it holds x*21
L ¼ 1 and thus

f21
L ðx*21

L Þ ¼ 0 so that a critical homoclinic orbit of x*L exists. However, all the points in

ð0; 1Þ are mapped in the immediate basin of B1 thus the only non-divergent points are

those belonging to the homoclinic orbit, and no chaotic repellor can exist. A

It follows that an explosion of repelling cycles occurs as the parameter b increases

through the value 2a=ða2 1Þ; and a parameter point ða; bÞ crosses the curve Bf : This
global bifurcation will be explained and commented in the next section. Not only x*L
becomes homoclinic, but also infinitely many repelling cycles, among which basic cycles

RLn, appear and are homoclinic.

Moreover, as we shall see, for b satisfying (9) the invariant set of bounded dynamics

can be of positive measure or a chaotic set of zero measure. The two different behaviours

depend on the existence or non-existence of an attracting cycle, respectively.

As an example of the existence of attracting cycles, in Figure 1 it is shown the two-

dimensional bifurcation diagram in the parameter space ða; SðbÞÞ at the fixed value g ¼
0:1: In order to consider the parameter space in the complete range for the parameter b,

that means 21 , b , 0, following [2] we use the nonlinear transformation SðyÞ ¼
arctanðyÞ which maps an unbounded interval into a bounded one. So that instead of the

Journal of Difference Equations and Applications 5
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interval b [ ð21; 0Þwe have the interval arctanðbÞ [ ð2p=2; 0Þ: In particular, in the case
b ¼ 21 we have arctanð21Þ ¼ 2p=4 which is evidenced in Figure 1.

The coloured regions in Figure 1 represent sets of values of the parameters for which

the map has an attracting cycle, different colours are associated with different periods,

showing many different periodicity regions. We also notice that cycles of the same period

have a different symbolic sequence for b , 21 and 21 , b , 0: White points in a # 1

represent parameter sets at which there exists an unbounded chaotic attractor, while white

points in a . 1 represent parameter sets at which there exists a bounded chaotic repellor,

or an attracting cycle of period larger than 45.

In the parameter region b , 21 infinitely many periodicity regions are issuing from

the particular point ða; bÞ ¼ ð0;21Þ while in the parameter region 21 , b , 0 infinitely

many periodicity regions are issuing from particular codimension-two points ð0; bðBLRn ÞÞ
which behave as organizing centres, and still to be properly investigated.

Grey regions existing for a . 1 represent parameter sets at which the system has

divergent trajectories (which may or may not coexist with an attracting cycle). The light

grey region is bounded by the bifurcation curve Bf given in (8), and below it the dynamics

are divergent, as stated in Proposition 1.

Besides the repelling fixed point x*L; fixed points on the right side may also exist. They

are associated with a smooth fold bifurcation of the increasing branch f RðxÞ of the map, so

that when existing they are in pair, one attracting and one repelling. The fixed points can be

obtained by solving the equation f RðxÞ ¼ x; that is

b

xg
þ 1 ¼ x ð11Þ

whose solutions in general cannot be written in explicit form. However, we can investigate

the fold bifurcation value and the value of the two merging fixed points, say x*R; by
considering the condition that the first derivative in the fixed point must be equal to þ1:
Thus, from

f
0
RðxÞ ¼

2bg

xgþ1
ð12Þ

by using these two conditions b=ðx*

R

gÞ þ 1 ¼ x
*

R and 2bg=ðx*

RÞgþ1 ¼ 1 we obtain the

equation of the fold bifurcation curve

FR : b ¼ bðFRÞ; bðFRÞ ¼ 2
1

g

g

gþ 1
Þ

� �gþ1

ð13Þ

and the fixed point at the fold bifurcation is given by

x*R ¼ g

gþ 1
, 1: ð14Þ

It is worth to note that for any g . 0 the value of b related to the fold bifurcation is always

larger than 21 (i.e. 2ð1=gÞðg=ðgþ 1ÞÞgþ1 . 21; which is equivalent to

gg , ðgþ 1Þgþ1Þ, and that x*R , 1:

Proposition 2. Let g . 0; a . 0; bðFRÞ , b , 0; then the map f has two fixed points in

the R side, one repelling, xuR and one attracting xsR; satisfying 0 , xuR , xsR , 1:

R. Makrooni et al.6
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Proof. As shown above, the branch f R becomes tangent to the main diagonal when (13)

holds, and it intersects the main diagonal in two distinct points for b FRð Þ , b , 0: Recall
that in generic cases, a monotone increasing continuous map can only have fixed point

whose stability is alternating. Since f
0
RðxÞ . 0 and f

00
RðxÞ , 0 for any x . 0; in our map f

we can have only one pair of fixed points, say xuR , xsR; then the fixed point xuR is

repelling, as the slope is larger than 1, while the opposite occurs in the fixed point xsR,

which is thus attracting. A

The right branch of the map, f RðxÞ; has horizontal asymptote at the value 1 so that any

point x . 1 is mapped in one iteration to a point smaller than 1: Moreover, f RðxÞ
intersects the x2 axis in a point which is the solution of f RðxÞ ¼ 0; leading to

x ¼ ð2bÞ1=g ¼: O21
R : ð15Þ

This point is the rank-1 preimage of the origin (discontinuity point) on the right side,

and clearly it plays an important role when O21
R # 1: We have O21

R . 1 (respectively,

, 1) for b , 21 (respectively,21 , b , 0). This different shape of the map on the right

side, also qualitatively evidenced in Figure 1, leads to different dynamic behaviours in the

PWS map f , and motivates the introduction of the different ranges, as defined in Section 1

in (3), each one considered separately in the following sections.

3. Range AII a > 1; b # 21
� �

: mainly divergence

As described in [13], any cycle of map f may undergo a BCB: this happens when a

periodic point collides with x ¼ 0 from the left side and thus its image is a periodic point

on the right side 0; 1
� �

which collides with x ¼ 1. In that paper we have determined the

BCB curves BRLn of basic cycles of symbolic sequence RLn occurring for b , 21 that is

BRLn : b ¼ 2
an 2 1

an21ða2 1Þ ð16Þ

as well as the fold bifurcation curves FRLn of the same basic cycles, that is

FRLn : b ¼ 2
1

gan

anþ1 2 1

a2 1

g

gþ 1

� �gþ1

; a # �an ð17Þ

where ð�an; �bnÞ; �bn ¼ 2ð1=g�anÞ is a codimension-two point related to cycles with the same

symbolic sequence RLn (contact point between the curve BRLn and the curve FRLn).

Moreover, we have seen that for any n . 1; the following inequalities hold:

a1 ¼ 1

gþ 1
, �anþ1 , �an , �a1 ¼ 1

g
ð18Þ

which leads to the following proposition.

Proposition 3. Let a . 1; b # 21 and 0 , g , 1: If the codimension-two point ð�an; �bnÞ
satisfies �an . 1 then the region of an attracting cycle RLn exists.

Let a . 1; b # 21 and g $ 1; then besides divergent trajectories only a bounded

chaotic repellor can exist.

Journal of Difference Equations and Applications 7
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Proof. From (18) it is immediate that for g $ 1 it holds �a1 # 1 so that for a . 1 no fold

bifurcation curve FRLn can be crossed and no basic cycle can be attracting. Moreover, we

have numerical evidence that also all the other existing cycles have no stability regions.

Thus for a . 1 the ranges in which we can have a set of positive measures of non-

divergent trajectories are related to the values 0 , g , 1:
We know that for a fixed value of a, a . 1, increasing b from the boundary Bf when a

fold bifurcation curve FRLn is not crossed (for a . �anÞ, then the BCB occurring crossing

BRLn involves a repelling basic cycle, while when the fold bifurcation curve FRLn is

crossed first (for a , �anÞ; then the BCB occurring crossing BRLn involves an attracting

cycle. A

For 0 , g , 1 at least the stability region of the 2-cycle LR exists in a . 1 (since

�a1 ¼ 1=g . 1). In the ða; bÞ-parameter plane, b ¼ 21 is the equation of the BCB curve of

a 2-cycle, as f L 0ð Þ ¼ 1 and f Rð1Þ ¼ 0 holds independently of the values of the other

parameters a and g. Moreover, for a , �a1 the BCB involves an attracting 2-cycle, while

for a $ �a1 it involves a repelling 2-cycle.

An important result is that to study the dynamics of map f ðxÞ for x*21
L , 1 (when

divergent trajectories exist) we can still make use of a first return map inside the interval

½0; 1�, similar to the one used in [13], even if there are points in ð0; 1Þ with divergent

trajectories. In fact, regarding the function on the right side, recall that in one iteration any

point x . 1 is mapped to a point f RðxÞ , 1; so that we can study the dynamics of the map

by using the first return map in ½0; 1�; but considering only the first return of the points in

the interval

J ¼ ðx*21
L ; 1� , I ¼ ½0; 1�

as for the remaining points we know that the trajectory never comes back (since the

interval ð0; x*21
L Þ is mapped in the immediate basin of infinity ð21; x*LÞÞ:

The existence and construction of the first return map of f in the suitable interval are

given in the following proposition.

Proposition 4. Let a . 1; g . 0 and 2 ða=ða2 1ÞÞ , b # 21: The dynamics of map f
in (2) can be studied by using the first return map FrðxÞ in the interval I ¼ 0; 1

� �
; taken for

the points in the interval J ¼ ðx*21
L ; 1�: FrðxÞ: is a discontinuous map with infinitely many

branches defined as follows:

FrðxÞ :¼

FRL�nðxÞ ¼ f �nL + f RðxÞ if j�nþ1 # x # 1

FRL�nþ1 ðxÞ ¼ f �nþ1
L + f RðxÞ if j�nþ2 # x , j�nþ1

..

. ..
.

FRL�nþj ðxÞ ¼ f
�nþj
L + f RðxÞ if j�nþjþ1 # x , j�nþj

..

. ..
.

8>>>>>>>>>><
>>>>>>>>>>:

ð19Þ

where �n $ 1 is the smallest integer for which f �nL + f Rð1Þ [ ½0; 1Þ,

FRLm ðxÞ ¼ amb

xg
þ 12 amþ1

12 a

R. Makrooni et al.8
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and the discontinuity points are preimages of the origin given by

jmþ1 ¼ f21
R + f2m

L 0ð Þ ¼ 2b

ððam 2 1Þ=ðam a2 1ÞÞð Þ þ 1

� �1=g

ð20Þ

which have as limit value, as m!1; the point x*21
L .

Moreover, for any j $ 1; FRL�nþjðj�nþjþ1Þ ¼ 0 and FRL�nþj ðj�nþjÞ ¼ 1 hold, while the

rightmost branch satisfies FRL�n ðj�nþ1Þ ¼ 0 and its range can be smaller than ½0; 1�:

Proof. Starting from the first return of the point x ¼ 1, let �n be the smallest integer such

that

f �nL + f Rð1Þ [ ½0; 1Þ ð21Þ

then FrðxÞ is necessarily defined as in (19). The infinitely many preimages f2m
L ð0Þ of 0

exist for any m $ 1, and have as limit set the repelling fixed point x*L: Thus the infinitely
many preimages jmþ1 ¼ f21

R + f2m
L ð0Þ, discontinuity points of FrðxÞ; also exist in the

interval ðx*21
L ; 1� for any m $ �nþ 1; and have x*21

L as limit point.

In the particular case in which the condition in (21) occurs as f �nL + f R 1ð Þ ¼ 0; we also

have FRL�nþ1ðxÞ ¼ f �nþ1
L + f Rð1Þ ¼ 1; so that we define Frð1Þ ¼ f �nL + f Rð1Þ ¼ 0 in the single

point j�nþ1 ¼ 1 and FrðxÞ ¼ f �nþ1
L + f RðxÞ in ½j�nþ2; j�nþ1Þ:Notice that in this case the range of

FRL�nþ1ðxÞ ¼ f �nþ1
L + f RðxÞ in ½j�nþ2; 1� is exactly ½0; 1�, and similarly in all the other branches

of FrðxÞ which are defined in (19). A

An example is shown in Figure 2. For x ¼ 1 we have f 4L + f Rð1Þ . 0 so that �n ¼ 4: The
preimages of the origin on the left side are accumulating to x*L and a few of the infinitely

many branches of FrðxÞ (accumulating to x*21
L ) can be seen in the enlargement.

The particular case

f �nL + f Rð1Þ ¼ 0 ð22Þ

Figure 2. In (a) map f ðxÞ is shown at g ¼ 0:5; a ¼ 1:15; b ¼ 23:6; for which it is �n ¼ 4; and its
first return map FrðxÞ in ½0; 1� is also shown. In (b) map FrðxÞ is enlarged. The discontinuity points jj
have limit point x*21

L ¼ 0:22049:

Journal of Difference Equations and Applications 9
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mentioned in the proof given above can be rewritten as f �nL + f R + f Lð0Þ ¼ 0 (since

f Lð0Þ ¼ 1Þ, or equivalently, by applying f L on both sides of (22), as follows:

FRL�nþ1ð1Þ ¼ f �nþ1
L + f Rð1Þ ¼ 1 ð23Þ

and thus it corresponds to the BCB of a basic cycle with symbolic sequence RL�nþ1 (as in

fact x ¼ 0; as well as x ¼ 1; is a periodic point of period ð�nþ 2ÞÞ:
In terms of the preimages of the origin the condition in (22) also corresponds to

1 ¼ f21
R + f2�n

L ð0Þ ð24Þ

and by using the definition in (20) with m ¼ �n, j�nþ1 ¼ 1; after some algebra we get the

equation of the BCB of a cycle with symbolic sequence RLn given in (16).

We can also notice that each component of the first return map Fr; FRLn ðxÞ is

continuous and increasing, as F
0
RLnðxÞ . 0; for x . 0: This also follows from the explicit

expression of the first derivative:

F
0
RLn ðxÞ ¼ anf

0
RðxÞ ¼

2bg

xgþ1
an . 0: ð25Þ

Moreover, since F
00
RLnðxÞ , 0; for x . 0; as follows from

F
00
RLnðxÞ ¼ d

dx

2bg

xgþ1
an

� �
¼ bgðgþ 1Þ

xgþ1
an , 0 ð26Þ

all the branches are concave. The range of each component is from 0 to 1; except at most

the first branch on the right, called rightmost branch. It is worth noticing that the properties

of increasing and concave branches hold for any composition of the functions FRLn ðxÞ.
Another immediate consequence of the constructive definition of the first return map

FrðxÞ; is that infinitely many repelling basic cycles necessarily exist. In fact, for any

j $ �nþ 1 the increasing and concave branches FRLjðxÞ which are continuous and take

values from 0 to 1 lead to repelling fixed points xRLj , and it is easy to see that all these

points are homoclinic.

Since the interval ð0; x*21
L Þ represents a set of points having divergent trajectories, then

also all the points in J ¼ ðx*21
L ; 1� which are mapped in the interval ð0; x*21

L Þ will have
divergent trajectories too. So it is clear that for x*21

L , 1 there are infinitely many intervals

in J which are preimages of some rank of ð0; x*21
L Þ and thus belong to the basin B1:

However, what is left can be a set of positive measure or of zero measure, and the map

FrðxÞ completely represents the dynamics of f . The two possible dynamic behaviours so

described are illustrated in Figures 2 and 3.

At the parameter values used in Figure 2, it is x*21
L ¼ 0:153119 and �n ¼ 4; so that the

rightmost branch of the first return map is given by FRL4 ðxÞ in the interval ½j5; 1�. All the
other preimages jj, discontinuity points of FrðxÞ; exist for any j . 5 accumulating to x*21

L :
Thus, also all the branches defined by FRL4þj ¼ f

4þj
L + f RðxÞ exist for any j $ 1 and intersect

the diagonal, leading to the existence of repelling (SBR) fixed points xRLj for any j . 5;
which also are accumulating to x*21

L ; and are associated with basic cycles of f : From the

shape of the branches of Fr we can see that in this case no attracting cycle can exist (as the

slope of Fr is everywhere larger than 1). A chaotic repellorL exists in the interval ðx*21
L ; 1�

which includes all the repelling cycles, their stable sets and related limit points. Taking the

preimages by FrðxÞ of the interval ð0; x*21
L Þ we can see that almost all the points of the

R. Makrooni et al.10

D
ow

nl
oa

de
d 

by
 [

93
.1

50
.1

44
.9

5]
 a

t 0
6:

43
 1

9 
Ju

ne
 2

01
5 



interval ðx*21
L ; 1� belong to the basin B1: These preimages form a fractal structure, and are

dense in the interval ðx*21
L ; 1�; and the frontier is given by the chaotic repellor L. For the

map f this means that a chaotic repellor belongs to ½x*L; 1� and all the other points have

divergent trajectories.

Moreover, as b increases from the value 23:6, used in Figure 2, the value FRL4ð1Þ ¼
f 4L + f Rð1Þ of the rightmost branch of Fr increases, and when FRL4ð1Þ ¼ f 4L + f Rð1Þ ¼ 1; from
(23) it follows that the BCB of the cycle with symbolic sequence RL4 occurs (and from

(16) with a ¼ 1:15 and n ¼ 4 the bifurcation value b . 23:2832 is obtained). Differently,
as b decreases from the value23:6, the value FRL4 ð1Þ ¼ f 4L + f Rð1Þ of the rightmost branch

of F decreases, and when FRL4 ð1Þ ¼ f 4L + f Rð1Þ ¼ 0 ð which corresponds to f 5L + f Rð1Þ ¼ 1Þ
from (22) it follows that the BCB of the cycle with symbolic sequence RL5 occurs (and

from (16) with a ¼ 1:15 and n ¼ 5 the bifurcation value b . 23:855 is obtained). As b

decreases up to the boundary of the curve Bf , which occurs at b ¼ 2a=ða2 1Þ ¼ 27:�6;
all the BCB curves of cycles with symbolic sequence RLk for k . 4 are crossed, as in fact

the limit set, point x*21
L (given in (7)), approaches the value x ¼ 1: Thus, in the example

given in Figure 2 for any b [ ð27:�6;23:6Þ the non-divergent set is always a bounded

chaotic repellor, the segments of points having divergent trajectories become wider and

wider as b decreases, and for b ¼ 2a=ða2 1Þ ¼ 27:�6 any orbit is divergent except for a

unique homoclinic orbit of x*L (Proposition 1).

Differently, at the parameter set used in Figure 3, we have x*21
L ¼ 0:0002335; and

since �n ¼ 4 the rightmost branch of the first return map is given by FRL4 ðxÞ in the interval

½j5; 1�. All the other preimages jj, discontinuity points of FrðxÞ; exist for any j . 5

accumulating to x*21
L : Thus, also all the repelling (SBR) fixed points xRLj exist for any

j . 5; accumulating to x*21
L ; basic cycles of f : From the shape of the branches of Fr now

we can see that in this case an attracting cycle exists, as the rightmost branch FRL4 ðxÞ
intersects the diagonal in two fixed points, one repelling ðxRL4Þ and the other attracting

ðxs
RL4 Þ, with j5 , xRL4 , xs

RL4 , 1 (which are basic cycles of f both with symbolic

sequence RL4). The immediate basin of the attracting fixed point xs
RL4 is the interval

ðxRL4 ; 1�, and the total basin, of positive measure, is the set of all its preimages, which has a

fractal structure, as its frontier includes a chaotic repellor L
0
which consists of all the

repelling cycles, their stable sets and related limit points. Clearly there is also another

basin of positive measure, that of points having divergent trajectories, given by the interval

ð0; x*21
L Þ and all its preimages in the interval ðx*21

L ; 1�; which also has a fractal structure.

Figure 3. In (a) map f ðxÞ is shown at g ¼ 0:5; a ¼ 1:2; b ¼ 22:6; for which it is �n ¼ 4; and its first
return map FrðxÞ in ½0; 1� is also shown. In (b) map FrðxÞ is enlarged. The discontinuity points jj have
limit point x*21

L ¼ 0:0002335.
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The frontier between the two basins of positive measure is given by all the preimages of

the point x*21
L (which are dense in the chaotic repellor L

0
).

For the map f this means that a chaotic repellor belongs to ½x*L; 1� and separates two

basins of attraction, both of positive measure, one is B1 and the other is the basin Bðxs
RL4 Þ:

For a . 1 we can take advantage of other results obtained in [13], as it is easy to see

that they hold also in Range AII. In fact, the equations of the BCB curves BRLn reported in

(16) and fold bifurcation curves FRLn in (17) are clearly unchanged, and unchanged are

also their properties related to the dynamics when the BCB curves are crossed in the ða; bÞ-
parameter plane. The codimension-two point ð�an; �bnÞ on a BCB curve BRLn separates

different dynamic behaviours. When the parameter point ða; bÞ belongs to the BCB curve

BRLn then a periodic point is merging with x ¼ 1, for the rightmost branch of the first return

map it holds F0
RLn ð1Þ ¼ 2bgan ¼ gan a n21

a n21ða21Þ ¼ ga an21
a21

and

. for a , �an it holds F
0
RLnð1Þ , 1 which means that the colliding cycle is attracting,

and thus the fold bifurcation curveFRLn (associated with a point in which F0
RLn ¼ 1Þ

must have been crossed before at a smaller value of b;

. for a . �an it holds F0
RLn ð1Þ . 1 which means that the colliding cycle is repelling,

and thus the fold bifurcation curve FRLn is not involved (it is virtual).

For a point ða; bÞ [ BRLn with a $ �an; the first return map consists of infinitely many

branches FRLjðxÞ, j $ n; and all of them, including the rightmost one FRLnðxÞ, have range
½0; 1�: Since F

0
RLn ð1Þ . 1; then it must be F

0
RLnðxÞ . 1 for any x [ ½jnþ1; 1Þ: Notice that

the codimension-two points �aj of BRLjðxÞ, j . n; are all smaller than �an which means that at

fixed a decreasing b all the BCB curves BRLjðxÞ, j . n are crossed and at such bifurcation

points it holds F
0
RLjð1Þ . 1 for any j . n: This implies that at ða; bÞ [ BRLn also all the

other branches, given by FRLj ðxÞ, j . n; are expansive. In fact, the slope is certainly

F
0
RLjðxÞ . 1 for x [ ½jjþ1; x

*
jþ1� where x*jþ1 is the repelling fixed point of FrðxÞ, then for

x [ ½x*jþ1; jj� the slope, although decreasing, is larger than 1 as at the considered parameter

value of a it cannot cross the value 1 (a branch FRLjðxÞ of the first return map can have

points with slope smaller than 1 only if at fixed value of a, decreasing b the fold

bifurcation curve FRLj is crossed, which can occur for a , �aj that cannot be at the

considered parameter value).

The above arguments show that the first return map is expanding at the points ða; bÞ [
BRLj (where a $ �an) for any j $ n; so that the non-divergent set is a bounded chaotic

repellor. The same result holds not only at the BCB values. In fact, considering any point

ða; �bÞ [ BRLn with a . �an; above the curve Bf ; then for any parameter point ða; bÞ with
2a=ða2 1Þ , b # �b it is F

0
rð1Þ . 1 and thus the rightmost branch of FrðxÞ has the slope

larger than 1 in all its points (due to monotonicity and concavity), as in the example shown

in the enlargement of Figure 2. Then, not only the rightmost branch, but also all the other

(infinitely many) branches defining the first return map FrðxÞ have the slope larger than 1

in all the points. In fact, reasoning as above, the related branches all have a repelling fixed

point, with slope larger than 1, and on its right side the slope, although decreasing, cannot

cross the value 1 (as this cannot occur for the considered parameter values �a . �anÞ:
We have so proved that for any fixed g . 0 considering a BCB curve BRLn , in all the

points ða; bÞ of the two-dimensional bifurcation diagram with a $ �an and b # �bn above the

curve Bf ; the first return map FrðxÞ is expanding, and thus the non-divergent set is always a
bounded chaotic repellor. As a parameter point ða; bÞ approaches the curve Bf all the

repelling fixed points of FrðxÞ approach the limit point x*21
L and the segments of points

having divergent trajectories become wider and wider as b decreases. At the boundary of

the curve Bf (at b ¼ 2a=ða2 1Þ) any orbit is divergent except for a unique homoclinic

R. Makrooni et al.12
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orbit of x*L (Proposition 1). An example of the map when the parameters are approaching

the curve Bf is shown in Figure 4, clearly the first integer �n is very large, x
*21
L is close to 1;

and all the branches constituting FrðxÞ are expanding.

Only the basic cycle RL can be stable, as �a1 ¼ 2 and �aj , 1 for j . 1. In black some

BCB curves BRLn are shown. The curve Bf bounds the region of divergence without chaos

(light grey points). In (b) only the bifurcation curvesFRL (fold of the 2-cycle) and BRLn are

drawn, by using the equations given in the text.

Several basic cycles RLn can be stable (some periodicity regions are in colour), as

�a1 ¼ 10 and �aj . 1 for j ¼ 1; 2 . . . ; 6 . Some BCB curves BRLn (in black) and some fold

bifurcation curves FRLn are also shown. The curve Bf bounds the region of divergence

without a chaotic set. In (b) only the bifurcation curves FRLn (in red) and BRLn (in black)

are drawn, by using the equations given in the text.

It is plain that for a . 1 the possibility to have periodicity regions of attracting cycles

is much reduced. For example we have seen above that it is impossible for values g $ 1:
However, at small values of g (see Figure 1) we can have wide regions of attracting cycles

also for a . 1. Two examples are illustrated in Figure 5 at g ¼ 0:5 and Figure 6 at

g ¼ 0:1: The green curve represents the boundary Bf of the region leading to no chaos and

almost all divergent orbits.

All the BCB curves of basic cycles RLn exist in the region above Bf and are

accumulating to Bf : Also notice that the curve Bf has limit 21 for a! 1 and limit 1 for

a!1 (as clearly visible in Figure 1).

The curves associated with the basic cycles are shown in Figures 5 and 6, but there are

infinitely many other BCB curves, dense in the region above Bf : The existence of fold

bifurcation curves mainly depends on the parameter g: As already remarked, they do not

exist for g $ 1:We know that at g ¼ 0:5 only the fold bifurcation curve of the 2-cycle RL
exists for a . 1, as its codimension-two point is �a1 ¼ 2; and that of the 3-cycle RL2 is

�a2 ¼ 1: Differently, at g ¼ 0:1 we can see in Figure 6 several stability regions (in colour),
thus bounded by fold bifurcation curves, at least in a right neighbourhood of a ¼ 1.

The dark grey points in the two-dimensional bifurcation diagrams in Figures 5 and 6

denote that the initial condition used in the numerics belongs to B1.
When a parameter point ða; bÞ (at fixed g , 1Þ belongs to a periodicity region related

to an attracting basic cycle RLn (as in the case considered above, in Figure 3), then the

Figure 4. In (a) map f ðxÞ is shown at g ¼ 0:5; a ¼ 1:15; b ¼ 27; for which it is �n ¼ 4; and its first
return map FrðxÞ in ½0; 1� is also shown. In (b) map FrðxÞ is enlarged. The discontinuity points jj have
limit point x*21

L ¼ 0:8336.
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rightmost branch crosses the diagonal, and two fixed points exist in the rightmost branch

FrðxÞ ¼ FRLnðxÞ; xRLn repelling and xsRLn attracting, satisfying jnþ1 , xRLn , xsRLn , 1.

Thus in J a set of points of positive measure exists whose trajectories converge to the

attracting fixed point xsRLn . However, the map has still a chaotic repellor, as all the repelling

fixed points are homoclinic, as well as homoclinic are all the existing repelling cycles. For

the first return map, the interval ðxRLn ; 1� is the immediate basin of the attracting fixed

point xsRLn : The total basin BðxsRLnÞ is given by all the preimages of any rank of the

immediate basin:

B xsRLn

� � ¼ [k¼0

1
F2k
r ððxRLn ; 1�Þ: ð27Þ

The fixed point xRLn is homoclinic on its left side while all the other fixed points xRLj ; j . n

(having as limit set x*21
L Þ are homoclinic on both sides, so that a chaotic repellor L (an

Figure 5. Two-dimensional bifurcation diagram in the ða; bÞ-parameter plane at g ¼ 0:5. Only the
basic cycle RL can be stable, as �a1 ¼ 2 and �aj , 1 for j . 1. In black some BCB curves BRLn are
shown. The curve Bf bounds the region of divergence without chaos (light grey points). In (b) only
the bifurcation curves FRL (fold of the 2-cycle) and BRLn are drawn, by using the equations given in
the text.

Figure 6. Two-dimensional bifurcation diagram in the ða; bÞ-parameter plane at g ¼ 0:1. Several
basic cycles RLn can be stable (some periodicity regions are in colour), as �a1 ¼ 10 and �aj . 1
for j ¼ 1; 2 . . . ; 6. Some BCB curves BRLn (in black) and some fold bifurcation curves FRLn

are also shown. The curve Bf bounds the region of divergence without a chaotic set.
In (b) only the bifurcation curves FRLn and BRLn (in black) are drawn, by using the equations
given in the text.
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invariant Cantor set with chaotic dynamics) exists in ½x*21
L ; xRL�n �: Thus, the total basin

BðxsRLnÞ consists of intervals forming a fractal structure dense in ½x*21
L ; 1�; its frontier

›BðxsRLnÞ includes all the repelling cycles of Fr in ½0; 1�, and their limit points, that is,

›BðxsRLnÞ is the chaotic repellor L , ½x*�1L ; xRL�n�. In terms of the original map f the chaotic

repellor belongs to the interval ðx*L; xRLn �; and separates two basins of positive measure, B1
and BðxsRLn Þ:

Proposition 1 states that for 21 , b # 2a=ða2 1Þ divergent dynamics occur and a

chaotic set does not exist, while for2a=ða2 1Þ , b , 21 the map is chaotic and we have

proved the following proposition.

Proposition 5. Let a . 1 and 0 , g , 1; then the dynamics of map f can be classified as
follows:

(j.1) for2a=ða2 1Þ , b , 21 and ða; bÞ not belonging to the stability region of some
attracting cycle, almost all the trajectories are divergent, except for a chaotic repellor

included in the interval ½x*L; 1�;
(j.2) for 2a=ða2 1Þ , b , 21 and ða; bÞ belonging to the stability region of some

attracting cycle with symbolic sequence s, there exist two basins of positive measure.

The basin BðxssÞ ¼ <k¼0
1 f 2kððxs; 1�Þ where xs and xss are the two rightmost periodic

points of the repelling and attracting cycles, respectively. The basin of divergent

trajectories is given by B1 ¼ <k¼0
1 f 2kðð21; x*LÞÞ . The frontier between the two

basins belongs to a chaotic repellor included in the interval ½x*L; xs�.
We notice that the proper structure of the existing periodicity regions of attracting or

repelling cycles is still an open problem. However, what is proved is that for any fixed

value a . 1, increasing the parameter b from the boundary value on the curve Bf all the

BCB curves of basic cycles RLn are crossed (the BCB of the 2-cycle RL occurs at

b ¼ 21). Moreover, independently of the crossing also of a fold bifurcation curve of some

cycle (which has the same symbolic sequence of a companion existing repelling cycle), at

the value b ¼ 21 all the cycles having symbolic sequence obtained concatenating

sequences of the kind RLn; that is RLk1RLk2RLk3 . . . all exist and are repelling, persisting

for any larger value of b, 21 , b , 0:
Considering the rightmost branch of the first return map FrðxÞ, FRLn ðxÞ, we have that
. whenever FRLn ð1Þ] merges with a preimage of a discontinuity point of FrðxÞ the

BCB of some cycle occurs;

. whenever FRLnð1Þ merges with a preimage of a repelling cycle of FrðxÞ one more

homoclinic explosion of that cycle occurs.

So, for any fixed value of a, in any interval between two BCB curves of basic cycles,

bðBRLnþ1Þ # b # bðBRLnÞ; infinitely many BCBs of cycles and homoclinic bifurcations of

repelling cycles occur. In fact, increasing b in that interval, the rightmost branch of the first

return map, FRLn ðxÞ, has FRLn ð1Þ which takes all the values from 0 to 1; crossing the values
of infinitely many preimages of the discontinuity points jj; j . n, accumulating to x*21

L ; as
well as crossing the values of infinitely many preimages of the expanding fixed points xRLj ;
j . n, also accumulating to x*21

L :

4. Range B ð21 < b < 0Þ
In the previous section we have shown that a characteristic property of the map in the

range b , 21 is that a point belonging to ½0; 1� in the R side is immediately mapped to the
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L side, in one iteration. In particular, the basic cycles existing in range A are only those of

symbolic sequence RLn: In this section we consider the other range of interest, which is

characterized by trajectories which can also be repeatedly mapped in the R side, and we

show the existence of periodicity regions associated with attracting basic cycles having the

symbolic sequence LRn for any n $ 2: A few of the related regions are shown in Figure 7.

In fact, for the range of b here considered it holds that the preimage of the origin, say

j1 ¼ f21
R ð0Þ ¼ O21

R ; (see (15)) satisfies

j1 ¼ ð2bÞ1=g , 1

so that an orbit of map f starting from a point in the interval ðj1; 1� must have at least two

consecutive points in IR:
We have also seen that at b ¼ 21 a border collision of a 2-cycle LR occurs, and

depending on the value of a, it can be attracting or repelling.

For 0 , a , �a1 ¼ 1=g a pair of 2-cycle appears by fold bifurcation when b , 21, and

the attracting one undergoes a BCB at b ¼ 21, leaving the repelling 2-cycle, which

persists (repelling) for any larger value of b.

For a $ �a1 ¼ 1=g at b ¼ 21 a repelling 2-cycle appears by BCB, which persists

(repelling) for any larger value of b.

Moreover, for any a . 0, not only the repelling 2-cycle persists for b . 21, but also

all the cycles having symbolic sequence obtained concatenating sequences of the kind

RLk1RLk2RLk3 . . . all exist and are repelling, persisting for any larger value of b;21 ,
b , 0:

In Section 2 we have also seen that a fold bifurcation in f R occurs, leading to two fixed

points of map f . It is worth to note that this fold bifurcation in f R occurs independently of

the value of the parameter a. That is, whichever is the value of the parameter a, as b

increases from the value 21 the fold bifurcation value bðFRÞ in (13) is reached and for

bðFRÞ , b , 0 the branch f R intersects the main diagonal in two distinct fixed points of f ,

xuR , xsR, the smallest one is repelling and the largest one attracting.

We can prove that for any fixed value of a . 0 and g . 0 in the interval 21 , b ,
bðFRÞ the BCB curves (in the ða; bÞ-parameter plane) of all the basic cycles RnL must be

crossed. In fact, from f Rð1Þ ¼ 1þ b we have that increasing the value of the parameter b

the value f Rð1Þ also increases, so that when the condition f Rð1Þ ¼ j1 holds, it corresponds
to f Rð1Þ ¼ f21

R ð0Þ that is f 2Rð1Þ ¼ 0 and thus f L + f
2
Rð1Þ ¼ 1 or also f 2R + f Lð0Þ ¼ 0 leading to

Figure 7. Two-dimensional bifurcation diagrams in the ða; bÞ-parameter plane. In (a) g ¼ 0:1: In
(b) g ¼ 0:5:

R. Makrooni et al.16
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the BCB of a 3-cycle with symbolic sequence LR2: Similarly, increasing b all the

conditions

f kRð1Þ ¼ j1 ð28Þ
(i.e. f kRð1Þ ¼ f21

R ð0ÞÞ for any k . 1 must occur before the fold bifurcation value bðFRÞ
leading to the BCB of a ðk þ 2Þ-cycle with symbolic sequence LRkþ1: The equation of the
bifurcation curve is given by

BLRkþ1 : f kþ1
R + f Lð0Þ ¼ 0 ð29Þ

or equivalently, by using f Lð0Þ ¼ 1;

BLRkþ1 : f L + f
kþ1
R ð1Þ ¼ 1 ð30Þ

which also corresponds to

BLRkþ1 : f kþ1
R ð1Þ ¼ 0 ð31Þ

showing that the equation of the BCB of basic cycles LRn is independent of the parameter

a, so that in the ða; bÞ-parameter plane the curves are horizontal straight lines. For example,

in the case k ¼ 1 (i.e. for the 3-cycle discussed above), from f Rð1Þ ¼ 1þ b; and f 2Rð1Þ ¼
f Rð1þ bÞ ¼ b=ððbþ 1ÞgÞ þ 1 we obtain

b

ðbþ 1Þg þ 1 ¼ 0

that is bþ ðbþ 1Þg ¼ 0: For g ¼ 0:5 (as in the exampl

e shown in Figure 7(b)) we get bðBLR2 Þ ¼ ðð12 ffiffiffi
5

p Þ=2Þ ø 20:618034:
We have so proved the following proposition.

Proposition 6. Let a . 0, g . 0 and 21 # b , bðFRÞ ¼ ð21=gÞðg=ðgþ 1ÞÞgþ1: Then
increasing b from 21 the BCB of an ðnþ 1Þ-cycle with symbolic sequence LRn for any

n $ 1 occurs when the following condition, independent of a, holds:

BLRn : f nR 1ð Þ ¼ 0: ð32Þ
Moreover, at a fixed value of the parameter a, denoting bðBLRn Þ the value of the parameter
b at which the BCB curve BLRn is crossed, then the sequence fbðBLRnÞ}n¼1

n¼1 is monotone

increasing, i.e. bðBLRn Þ , bðBLRnþ1 Þ; with limit value bðFRÞ as n!1:

A few BCB curves at different values of g are shown in Figure 7, in the ða; bÞ-
parameter plane (horizontal straight lines). In the result proved so far we do not specify

whether the BCB occurs for an attracting cycle or for a repelling one. Indeed, besides g;
this depends on the fixed value of the parameter a, and we shall consider below different

ranges for it, that is, we shall consider separately the cases 0 , a # 1 and a . 1.

4.1 Range BI ð21 # b < 0; 0 < a # 1Þ : bounded dynamics, codimension-two points
of BCB and fold bifurcation

The relevant property characterizing the range under consideration is that the left branch

f LðxÞ is a straight line with slope not larger than 1, so that any point on the L side has an

Journal of Difference Equations and Applications 17
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increasing trajectory up to a point on the R side, not larger than 1. On the right side, any

point x . 1 is mapped in a point f ðxÞ [ ð0; 1Þ in one iteration. Thus the range of the map is

ð21; 1�, and divergence cannot occur.

To investigate the dynamic properties we can use the first return map FrðxÞ in the

interval ½0; 1� on the right side. It is plain that for j1 # x , 1, where j1 ¼ O21
R , the

definition is FrðxÞ ¼ f RðxÞ (in particular Frðj1Þ ¼ f Rðj1Þ ¼ 0). While as x decreases

from j1 the map FrðxÞ is defined by the branches FRLn ðxÞ for any n $ 1. In fact,

considering a point on the left side of j1 the first return map is defined by FrðxÞ ¼
FRLðxÞ ¼ f L + f RðxÞ for j2 # x , j1 where j2 ¼ f21

R + f21
L ð0Þ; and Frðj2Þ ¼ FRLðj2Þ ¼ 0

(while FRLðj1Þ ¼ 1Þ: Then, considering a point on the left side of j2 the first

return map is defined by FrðxÞ ¼ FRL2 ðxÞ ¼ f 2L + f RðxÞ for j3 # x , j2 where j3 ¼
f21
R + f22

L ð0Þ; and notice that Frðj3Þ ¼ 0 while FRL2ðj3Þ ¼ 1 and so on. It is obvious

that the process can continue ad infinitum, as all the inverses f2n
L ð0Þ exist for any

n $ 1; and thus

jnþ1 ¼ f21
R + f2n

L ð0Þ ð33Þ

all exist for any n $ 1; and the first return map has infinitely many branches, given

by

FRLnðxÞ ¼ f nL + f RðxÞ ð34Þ

defined in the intervals jnþ1 # x , jn for any n $ 1 (and FRLn ðjnþ1Þ ¼ 0; while

FRLn ðjnÞ ¼ 1Þ:
We have so proved that the first return map in ½0; 1� is a discontinuous map defined by

infinitely many increasing branches as stated in the following proposition.

Proposition 7. Let g . 0; 21 , b , 0 and 0 , a # 1: The dynamics of map f can be

studied by using the first return map FrðxÞ in the interval I ¼ ½0; 1�: FrðxÞ is a

discontinuous map with infinitely many branches defined as follows:

Fr xð Þ :¼

f R xð Þ if j1 # x # 1

..

. ..
.

FRLn xð Þ ¼ f nL + f R xð Þ if jnþ1 # x # jn;

..

. ..
.

8>>>>>>><
>>>>>>>:

ð35Þ

where

FRLn ðxÞ ¼ anb

xg
þ 12 anþ1

12 a
ð36Þ

and the discontinuity points are preimages of the origin given by

j1 ¼ O21
R ¼ ð2bÞ1=g , 1 ð37Þ

R. Makrooni et al.18
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and, for any n $ 1; by

jnþ 1 ¼ f21
R 8f2n

L 0ð Þ ¼ 2b

ððan 2 1Þ=ðanða2 1ÞÞÞ þ 1

� �1=g

; ð38Þ

which have as limit value, as n!1; the point x ¼ 0. Moreover, for any n $ 1;
FRLn ðjnþ1Þ ¼ 0 and FRLn ðjnÞ ¼ 1 hold, while the rightmost branch satisfies 0 # FrðxÞ ¼
f RðxÞ # 1þ b for j1 # x # 1:

An example of the first return map is shown in Figure 8.

The increasing and concave branches of the first return map different from the

rightmost one have range from 0 to 1, thus for any n $ 1 all the branches FrðxÞ ¼ FRLn ðxÞ
exist and intersect the diagonal in repelling fixed points xRLn which have x ¼ 0 as limit

point as n!1: It is easy to see that all these repelling fixed points of FrðxÞ; which
represent the basic cycles with symbolic sequence RLn; are homoclinic on both sides.

From the definition of the first return map FrðxÞ a few properties are immediate, and stated

in the following proposition.

Proposition 8. Let g . 0; 21 , b , 0 and 0 , a # 1:
(j.1) Each component FRLnðxÞ of the first return map Fr is a continuous, increasing and

concave function (for n ¼ 0; FRðxÞ ¼ f RðxÞ), and the same properties hold for any

composition.

(j.2) The composite functions defining a k2iterate of map f may undergo either a BCB

or a smooth bifurcation related to the eigenvalue þ1.

(j.3) The itinerary of any point for the map f consists of sequences associated with the

syllables RLn; n $ 1, related to the branches FRLnðxÞ defining the first return map FrðxÞ;
and of syllables Rm; m $ 1; related to the rightmost branch where Fr is defined via f RðxÞ:

(j.4) The basic cycles with symbolic sequence RLn exist for any n $ 1 (related to fixed

points xRLn of Fr belonging to the branches FRLn ðxÞ) and all are homoclinic on both sides.

Thus, in this range chaotic dynamics always occur. However, as we have shown in

Proposition 6, for any fixed value of a, as b increases from 21 to 0; the rightmost branch

f Rð1Þ ¼ 1þ b increases from 0 to 1; and in this range of values for b, attracting cycles may

also exist, in particular, for any n . 1 the basic cycles having symbolic sequence RnL. That

Figure 8. In (a) map f at g ¼ 0:5; a ¼ 0:9; b ¼ 20:95; and its first return map FrðxÞ in ½0; 1� is
also shown. In (b) map FrðxÞ is enlarged.
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is, even if all the fixed points xRLn of Fr exist and are repelling, for the basic cycles R
nL it is

also possible to cross fold bifurcation curves, leading to periodicity regions of attracting

cycles with the same symbolic sequence RnL, as we can see in Figure 7. In fact, BCBs of

attracting cycles may occur, as considered in the next subsection.

4.1.1 BCB of cycles of f

Considering the example shown in Figure 8, we can argue as in Proposition 6. That is,

keeping constant the value of the parameter a, increasing the parameter b also the value

Frð1Þ ¼ f Rð1Þ ¼ 1þ b increases and the fold bifurcation value bðFRÞ is approached, as
shown in Figure 9(b). This implies that the number of right preimages of the discontinuity

point j1; that is, the points f2k
R ðj1Þ; k $ 1; must increase, being infinitely many when

b ¼ bðFRÞ, having as limit point the tangency point x*R in (14). There are no such

preimages at small values of b, as in Figure 8, and the first occurrence ðk ¼ 1Þ is shown in
Figure 9(a), where it can be seen that f21

R ðj1Þ ¼ 1; that is, f Rð1Þ ¼ j1; and the BCB value

of the 3-cycle RL2 is reached.

Since FRLðj1Þ ¼ 1; this also means that the first return map FrðxÞ has a 2-cycle with

periodic points f1; j1} and also that the second iterate of FrðxÞ must have a fixed point in

x ¼ 1, as FRL + f Rð1Þ ¼ 1: This implies that the rightmost branch of the function F2
r ðxÞ,

which is given by the function FRL + f RðxÞ; takes values from 0 to 1, as shown by an arc in

Figure 10(a). Clearly this corresponds to the BCB of a 3-cycle, i.e. the collision of periodic

points of a 3-cycle with symbolic sequence R2L with x ¼ 0 and with x ¼ 1.

As the rightmost branch of the function FRL + f RðxÞ intersects the diagonal in two fixed
points (xR 2L repelling and x

s
R 2L

attracting), we can state that an attracting 3-cycle undergoes

its BCB, while a repelling 3-cycle persists as b increases. This also means that at a smaller

value of the parameter b a fold bifurcation of the function FRL + f RðxÞ must have been

occurred, leading to the appearance of the pair of 3-cycles, as shown by an arc in Figure 10

(b). At the fold bifurcation the function FRL + f RðxÞ is tangent to the diagonal in one fixed

point x*
R 2L

(merging of the repelling xR 2L and attracting xs
R 2L

fixed points).

As stated in Proposition 6, as b increases, all the values f kRð1Þ ¼ j1 must occur, at the

BCB curves BLRkþ1 , which means that the first return map FrðxÞ has a ðk þ 1Þ-cycle (k

applications of f R followed by one application of FRL) with periodic points

f1; f Rð1Þ; . . . ; f kRð1Þ ¼ j1} and also that the ðk þ 1Þ-th iterate of FrðxÞ must have a fixed

Figure 9. First return map FrðxÞ at g ¼ 0:5; a ¼ 0:9: In (a) b ¼ 20:6181; BCB of LR2. In (b)
b ¼ 20:39; close to the fold bifurcation of f RðxÞ.
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point in x ¼ 1, as FRL + f
k
Rð1Þ ¼ 1: This implies that the rightmost branch of the function

FRL + f
k
RðxÞ takes values from 0 to 1. Clearly, this corresponds to the BCB of a ðk þ 2Þ-

cycle of f with symbolic sequence Rkþ1L, at which the merging of periodic points with

x ¼ 0 and with x ¼ 1 occurs.

It is possible that such BCBs of basic cycles always occur with an attracting cycle, for

any k $ 1; and thus that all these BCBs occur after a value of b at which a fold bifurcation
of a ðk þ 1Þ2 cycle of the first return map FrðxÞ (a ðk þ 2Þ-cycle of f ) takes place, leading
to the appearance of a pair of cycles with the same symbolic sequence, one attracting and

the other repelling.

Regarding the basic cycles, we can give sufficient conditions to have the BCB

occurring with an attracting cycle (and thus, increasing b, the BCB occurs after the fold

bifurcation). In fact, at the BCB of a ðk þ 2Þ-cycle of f with symbolic sequence Rkþ1L we

have the periodic points f1 ¼ FRLðj1Þ; f Rð1Þ; . . . ; f kRð1Þ ¼ j1} so that in the k points

belonging to the branch f R the slope is smaller than 1, and it is

F
0
RLðj1Þ ¼ agð2bÞ21=g

thus a sufficient condition to have an attracting cycle undergoing BCB is given in the

following proposition.

Proposition 9. Let a . 0, g . 0 and denote by bðBLRnÞ the value of the parameter b at

which the BCB of LRn; BLRn ; occurs. If

bðBLRn Þ , 2ðagÞg
then the BCB involves an attracting cycle.

In general, we have seen that for a basic cycle RnL a BCB occurs when f nRð1Þ ¼ 0 and it

may be in pair with a fold bifurcation, which occurs when two fixed points are merging in a

point x* [ ð0; 1Þ which is a solution of the equation

f L + f
n
RðxÞ ¼ x

that can also be rewritten as follows:

f nRðxÞ ¼
1

a
ðx2 1Þ: ð39Þ

Figure 10. First return map FrðxÞ at g ¼ 0:5; a ¼ 0:9: In (a) b ¼ 20:6181; BCB of LR2. In (b)
b ¼ 20:645 fold bifurcation of LR2:The added arc is the rightmost branch of the second iterateF2

r ðxÞ:
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This equation shows that, differently from the BCB of the basic cycles LRn, and

differently from the fold bifurcation of the fixed points of f RðxÞ (which do not depend on

a), the fold bifurcation curves also depend on the value of the parameter a. The fold

bifurcation of a basic cycle LRn happens when the iterate f nRðxÞ (function with increasing

and concave branches, which depends only on b) becomes tangent in a point x* [ ð0; 1Þ to
the straight line of equation ðx2 1Þ=a (connecting the points ð0;2ð1=aÞÞ and ð1; 0Þ of the
plane ðx; x 0 Þ ¼ ðx; f ðxÞÞ, and depending only on aÞ: For example, the case shown in

Figure 10(b) corresponds also to the one in Figure 11, where the function f 2RðxÞ is tangent
to the straight line ðx2 1Þ=0:9 exactly in the two merging fixed points of the function

FRL + f RðxÞ (rightmost branch of F2
r ðxÞÞ in Figure 10(b) (corresponding to the rightmost

fixed point of the 3-cycles for the map f ).

This also explains why at small values of the parameter a it is more likely to have fold

bifurcation curves. In fact, when a is small the slope 1=a becomes larger, and it is more

likely to have the branches of the functions f nRðxÞ which become tangent to that line in the

required interval, for many different values of n. When a is larger, the tangency can be

virtual, it does not take place in the interval ð0; 1Þ so that a BCB of basic cycles can occur

without a ‘previous’ fold bifurcation, and is related to a repelling cycle.

So, it can be expected that BCBs may occur without a previous fold bifurcation, also

for not basic cycles. An example is given in Figure 12. In that figure, the parameter b is

such that

f Rð1Þ ¼ j2 ð40Þ
and considering that FRL2ðj2Þ ¼ f 2L + f Rðj2Þ ¼ f Lð0Þ ¼ 1; by applying FRL2ðxÞ to both sides
in (40) we obtain

FRL2 + f Rð1Þ ¼ f 2L + f
2
Rð1Þ ¼ 1

which means that a BCB of a cycle with symbolic sequence R2L2 occurs. It is also a 2-

cycle of the first return map FrðxÞ involving the rightmost branch f RðxÞ and the branch

FRL2 ðxÞ; and it can be seen as a fixed point of the rightmost branch of F2
r ðxÞ, which is now

Figure 11. Map f ðxÞ at g ¼ 0:5; a ¼ 0:9; b ¼ 20:645;which corresponds to the fold bifurcation of
LR2: The second iterate, f 2ðxÞ; and the rightmost branch is tangent to the straight line in (39).
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given by the function FRL2 + f RðxÞ; which takes values from 0 to 1, as shown by an arc in

Figure 12(b). The BCB of the 4-cycle of f occurs without a companion attracting 4-cycle.

This can be deduced from the slope of the function F2
r ðxÞ in the point x ¼ 1, that is the

slope of the function FRL2 + f RðxÞ in the point x ¼ 1: It is larger than 1, so that for larger

values of b the single 4-cycle appears repelling and it will persist repelling for any larger

value of b in this parameter range.

By construction of the first return map FrðxÞ the discontinuity points of FrðxÞ occur at
the points jj; j $ 1 which are preimages of the origin (as given in (37) and in (38)).

Moreover, for any j $ 1 it is

FRLjðjjÞ ¼ 1: ð41Þ
From this we have seen that whenever the point Frð1Þ ¼ f Rð1Þ merges with a preimage of

the origin of any rank, say j2k
j ; for k $ 0 (k ¼ 0 leads to jjÞ so that

f Rð1Þ ¼ j2k
j ð42Þ

then a BCB of a cycle occurs. In fact, if k ¼ 0 we have

FRLj + f R 1ð Þ ¼ 1; ð43Þ
leading to a BCB of the cycle of f with symbolic sequence R2Lj (the case corresponding to

j ¼ 2 has been shown above).

For k $ 1 let

j2k
j ¼ F2k

r ðjjÞ ¼ F21
RLnk + ::: +F

21
RLn1 ðjjÞ ð44Þ

where F21
RLn1 ðjjÞ represent the involved branches of the first return map, with ni $ 0 for

i ¼ 1; . . . ; k (for ni ¼ 0 it holds F21
RLni ðxÞ ¼ f21

R ðxÞ; i.e. the inverse of the rightmost branch

of FrÞ. From

f Rð1Þ ¼ F2k
r ðjjÞ ¼ F21

RLnk + · · · +F
21
RLn1ðjjÞ

we can write

FRLn1 + · · · +FRLnk + f Rð1Þ ¼ jj

Figure 12. First return map FrðxÞ at g ¼ 0:5; a ¼ 0:9; b ¼ 20:841; BCB of the unstable cycle
R 2L 2. In (b) the arc is the rightmost branch of the second iterate F2

r ðxÞ:
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and thus, by applying FRLj on both sides, we have

FRLj +FRLn1 + · · · +FRLnk + f Rð1Þ ¼ 1 ð45Þ

representing the BCB of a cycle of the first return map Fr (of period ðk þ 2Þ), and a cycle

of f with symbolic sequence

RRLnk . . .RLn1RLj: ð46Þ

We remark that for the first return map the BCB in (42) also corresponds to

Fkþ1
r ð1Þ ¼ jj

(that is, the trajectory of x ¼ 1 for the first return map Fr is mapped to a discontinuity point

of Fr), so that by using FRLjðjjÞ ¼ 1 and FRLj21 ðjjÞ ¼ 0; it can also be written as

FRLj +Fkþ1
r 1ð Þ ¼ 1 ð47Þ

or, equivalently,

FRLj21 +Fkþ1
r 1ð Þ ¼ 0: ð48Þ

Moreover, from the above conditions we can notice that at each BCB the properties of

the iterate of order ðk þ 2Þ of the first return map are similar (with obvious changes) to

those commented above for the BCB of the basic cycle R2L and for the BCB of the cycle

R2L2 of f as fixed points of Fr. That is, a suitable iterate of the first return map, Fkþ2
r ðxÞ, has

the rightmost branch which is increasing from 0 to 1. Then what matters is the first

derivative of that rightmost branch of the function Fkþ2
r in the point x ¼ 1. Recall that all

the composite functions consist of branches which are monotone increasing and concave,

so that the first derivative exists and is necessarily positive and decreasing. So, at a BCB

value, considering the first derivative D of the function FRLj +FRLn1 + · · · +FRLnk + f RðxÞ in
the point x ¼ 1 :

D ¼ d

dx
ðFRLj +FRLn1 + ::: +FRLnk + f RÞðxÞjx¼1 ð49Þ

we can state that

(i.1) if D $ 1 then the crossing of the BCB curve increasing b leads to the appearance

of a repelling cycle (having the symbolic sequence given in (46));

(i.2) if D , 1 then the crossing of the BCB curve increasing b leads to the

disappearance of an attracting cycle (having the symbolic sequence given in (46)), leaving

a repelling cycle with the same symbolic sequence (which means that at smaller values of

b a fold bifurcation of cycles having the same symbolic sequence must occur, leading to

their existence).

When D , 1; the suitable iterate Fkþ2
r ðxÞ of the first return map has the point x ¼ 1

which is attracting from its left side, with immediate basin ðxs; 1� where s ¼
RRLnk . . .RLn1RLj; and xs is homoclinic on its left side, while all the other repelling fixed

points are homoclinic on both sides. Thus, almost all the points are converging to 1; that is,
all the points except for those of a chaotic repellor in ½0; xs� for the first return map Fr, in

ð21; xs� for the map f .

R. Makrooni et al.24
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Noticing that the function FRLj +FRLn1 + . . . +FRLnk + f RðxÞ is monotone increasing and

concave, so that its first derivative is positive and decreasing, we can conclude that on any

BCB curve (the existence of infinitely many of them will be proved below), a particular

codimension-two point may exist (related to the value D ¼ 1Þ, separating the curve in two
different parts, associated with different dynamic properties, as for the BCB curves BRLn of

the basic cycles considered in Section 3. That is, crossing a BCB curve in a point above

(D . 1Þ or at (D ¼ 1) its codimension-two point, a repelling cycle is created which

persists for any larger value of b, while crossing a BCB curve below its codimension-two

point (D , 1) an attracting cycle (born by fold bifurcation at a smaller value of b)

disappears, leaving the repelling one for any larger value of b: We can so state the

following proposition.

Proposition 10. Let a . 0, g . 0 and21 # b , bðFRÞ ¼ 2ð1=gÞðg=ðgþ 1ÞÞgþ1:When

f Rð1Þ merges with the preimage of a discontinuity point of the first return map Fr, say

f mR ð1Þ ¼ F2k
r ðjjÞ ¼ F21

RLnk + · · · +F
21
RLn1 ðjjÞ

where m $ 1; ni $ 0 for i ¼ 1; . . . ; k with
P

ini ¼ k ðF21
RL0 ¼ f21

R for ni ¼ 0Þ then the

BCB of a cycle of period ðmþ 1þ kÞ of the first return map Fr occurs, corresponding to

the BCB of a cycle of f with symbolic sequence

RmRLnk . . .RLn1RLj: ð50Þ

Let

D ¼ d

dx
FRLj +FRLn1 + . . . +FRLnk + f

m
R

� �
xð Þjx¼1 ð51Þ

if D $ 1 then the colliding cycle appears repelling, and persists repelling for larger

values of b (without an attracting cycle with the same symbolic sequence);

if D , 1 then the colliding cycle is attracting, and disappears for larger values of b,

while a repelling cycle with the same symbolic sequence, born by fold bifurcation at a

smaller value of b, persists for larger values of b:

At small values of the parameter a, by increasing b more regions of attracting cycles

can be observed. Differently, when a approaches 1 the repelling cycles become dominant.

In Figure 13(a) the complete range of b values from 21 to the value bðFRÞ; related to

the appearance of the attracting fixed point by fold bifurcation in f RðxÞ; is shown at

Figure 13. One-dimensional bifurcation diagrams of x as a function of b, at g ¼ 0:5: In (a) a ¼ 0:2
is fixed. In (b) a ¼ 0:9 is fixed. In (c) an enlarged part of (b) is shown.
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a ¼ 0:2, and several attracting cycles can be observed. While at a ¼ 0:9 in Figure 13(b) it
is shown only the range of b from the value 20:7 (as before no attracting cycle can be

detected numerically), an enlargement in Figure 13(c) shows that only the basic cycles are

observable as attracting.

It is clear that the preimages of the discontinuity points in the first return map are

infinitely many, their limit points include all the existing repelling cycles (all SBR). For

example at the parameter value used in Figure 9(a) we can see that the value f Rð1Þ has
already crossed infinitely many preimages, and infinitely many BCB values have already

been crossed. In fact, in Figure 9(a) a sequence of preimages of j1; F
2k
RLðj1Þ is

accumulating as k!1 to the repelling fixed point xRL so that all the BCBs having

equation

f R 1ð Þ ¼ F2k
RL j1ð Þ ð52Þ

that is

Fkþ1
RL + f Rð1Þ ¼ 1 ð53Þ

associated with cycles of f having symbolic sequence RðRLÞkþ1 must have been occurred.

This symbolic sequence can also be written as R2LðRLÞk or, equivalently, as LR2ðLRÞk for
any k $ 1; and leads to a family of BCB curves which are issuing from the first

codimension-two point intersection between the BCB curve of the cycles LR and the

smooth fold bifurcation curve of the cycle LR2; see the enlargement in Figure 14(a).

Clearly, the value of a in Figure 9(a) is quite large, and the crossing of the BCB curves

is mainly associated with the appearance of repelling cycles, while at the value of a used in

Figure 14(a) the crossing of at least some of the BCB curves issuing from the

codimension-two point is associated with attracting cycles (having the same symbolic

sequence), thus they occur after the crossing of related fold bifurcation curves. Two

examples are illustrated in Figure 15, BCB of the 5-cycle LR2LR and of the 7-cycle

LR2ðLRÞ2:
It is easy to see how many different families of BCB curves exist. For example

sequences of preimages of j1; can be considered accumulating also to all the other

repelling fixed points xRLj that is, for any j . 1, F2k
RLj ðj1Þ are accumulating as k!1 to the

repelling fixed point xRLj thus all the BCB curves having equation

f R 1ð Þ ¼ F2k
RLj j1ð Þ ð54Þ

Figure 14. Enlarged parts of organizing centres in Figure 7(b) ðg ¼ 0:5Þ:
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that is

FRL +F
k
RLj + f R 1ð Þ ¼ 1 ð55Þ

must have been crossed, associated with cycles of f having symbolic sequence RðRLjÞkRL
for any k $ 1 and any j . 1:

Also the preimages of j2 can be considered, for example F2k
RLðj2Þ which are

accumulating as k!1 to the repelling fixed point xRL, orF
2k
RL2ðj2Þwhich are accumulating

as k!1 to the repelling fixed point xRL2 ; leading to the BCB curves of equations

f R 1ð Þ ¼ F2k
RL j2ð Þ

FRL2 +Fk
RL + f Rð1Þ ¼ 1

ð56Þ
and

f R 1ð Þ ¼ F2k
RL2 j2ð Þ

Fkþ1
RL2 + f Rð1Þ ¼ 1

ð57Þ

associated with cycles of f having symbolic sequence RðRLÞkRL2 for any k $ 1 and

RðRL2Þkþ1 for any k $ 1: In general for any jn we have

f R 1ð Þ ¼ F2k
RLn21 jnð Þ

FRLn +Fk
RLn21 + f Rð1Þ ¼ 1

ð58Þ

and

f R 1ð Þ ¼ F2k
RLn jnð Þ

Fkþ1
RLn + f Rð1Þ ¼ 1

ð59Þ

for any n $ 1 associated with cycles of f having symbolic sequence RðRLn21ÞkRLn for any

k $ 1 and RðRLnÞkþ1 for any k $ 1:
Let us also show the BCBs which are associated with other cycles are clearly visible in

Figure 14(a) of symbolic sequence ðLR2ÞkLR for any k $ 1: They obviously involve the

preimages ðf21
R +F21

RLÞkðj1Þ so that we have

ðFRL + f RÞk 1ð Þ ¼ j1

FRL + ðFRL + f RÞk 1ð Þ ¼ 1
ð60Þ

Figure 15. Map FrðxÞ at g ¼ 0:5; a ¼ 0:2: In (a) b ¼ 20:861; BCB of the 5-cycle LR2LR of f ðxÞ.
In (b) b ¼ 20:947 BCB of the 7-cycle LR2ðLRÞ2 of f ðxÞ.
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leading to BCB of cycles with symbolic sequence RLðRLRÞk that is, equivalently,

ðLR2ÞkLR: Two examples related to k ¼ 2 and k ¼ 4 are illustrated in Figure 16, BCB of

the 8-cycle ðLR2Þ2LR and of the 14-cycle ðLR2Þ4LR.
From Figure 14(a),(b) we can see that all the BCB curves and fold bifurcation curves

are issuing from particular codimension-two points which are the intersection points of the

BCB of the basic cycles LRn with the fold bifurcation curves of basic cycles LRnþ1: Such
points play the role of organizing centres, or big bang bifurcation points, and belong to the

line a ¼ 0 which also is a particular curve, as it can be considered the BCB curve of cycles

with the point at infinity, 21, and especially for map f it represents the transition non-

invertible/invertible.

The sequence of bifurcation curves issuing between the periodicity regions of the

cycles LR and LR2 shown in Figure 14(a) is repeated with obvious changes between the

BCB curves of cycles LRn and LRnþ1 for any n . 1, and clearly, as we have shown

above, the limit set of the BCB curves of the basic cycles is the fold bifurcation curve

of the fixed points of f RðxÞ:
In Figure 14(b) we can see that several families of BCB curves occur after a related

fold bifurcation. For example, a family of BCB curves exists, accumulating to the fold

bifurcation curve of LR3; FLR3 ; satisfying the following equation, for all k $ 1 :

f RðFRL + f
2
RÞk 1ð Þ ¼ j1

that is

FRL + f RðFRL + f
2
RÞk 1ð Þ ¼ 1

related to cycles having the symbolic sequences ðLR3ÞkLR2: In Figure 17(a) we illustrate

the BCB of the 7-cycle LR3LR2 (k ¼ 1Þ and in Figure 17(b) that of the 11-cycle

ðLR3Þ2LR2 (k ¼ 2Þ.

4.1.2 Homoclinic bifurcations

As we have seen above, whenever the point f Rð1Þ merges with the preimage of a

discontinuity point of the first return map Fr; then a BCB occurs. Similarly we have that

whenever the point f Rð1Þ is preperiodic to a cycle, then another homoclinic bifurcation of

the cycle occurs. This and other properties are given in the following proposition.

Figure 16. Map FrðxÞ at g ¼ 0:5; a ¼ 0:2: In (a) b ¼ 20:818; BCB of the 8-cycle ðLR2Þ2LR of
f ðxÞ. In (b) b ¼ 20:79; BCB of the 14-cycle ðLR2Þ4LR of f ðxÞ:
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Proposition 11. Let g . 0, 0 , a # 1 and 21 , b , 0:

(1) If the point f Rð1Þ merges with the preimage of a repelling periodic point of the first
return map Fr, then a homoclinic bifurcation of the cycle occurs.

(2) All the repelling cycles of f are homoclinic at least on one side.

(3) Each homoclinic bifurcation curve is a limit set of BCB curves.

(4) Each BCB curve is a limit set of other BCB curves.

(5) The map f always has an unbounded chaotic set in ð21; 1�.
(6) The map f cannot have divergent trajectories.

Proof.

(1) Assume that the point f Rð1Þmerges with the preimage of a repelling periodic point

x* of the first return map Fr, say

f mR 1ð Þ ¼ F2k
r x*ð Þ ¼ F21

RLnk + . . . +F
21
RLn1 x*ð Þ; ð61Þ

then a homoclinic bifurcation of the cycle occurs. In fact, it holds Fk
r + f

m
R ð1Þ ¼ x*

at the bifurcation value, and at a smaller value of b (before the bifurcation) it must

be Fk
r + f

m
R ð1Þ , x* while at a larger value of b (after the bifurcation) it must be

Fk
r + f

m
R ð1Þ . x*. Thus after the bifurcation the periodic point x* has preimages

starting with f21
R ðx*Þ which did not exist before the bifurcation. This leads to an

explosion of homoclinic orbits of the same cycle which did not exist before the

bifurcation, proving that it is a new homoclinic bifurcation.

(2) To show that all the repelling cycles are homoclinic at least on the left side,

consider a repelling n-cycle of the first return map Fr and a fixed point z* of the

map Fn
r belonging to the cycle of Fr and to a branch Fs of the map Fn

r : Then
preimages on the left side of z* exist which are accumulating to all the repelling

fixed points of the first return map Fr (having as limit point x ¼ 0), and each

preimage on the left side of z* has a preimage on the branch Fs thus leading to an

homoclinic orbit of z*: With a similar argument we can say that except for the

repelling cycle which exists with a companion attracting cycle, all the other

repelling cycles are homoclinic on both sides.

(3) To show that homoclinic bifurcation curves are limit sets of BCB curves, consider

the homoclinic bifurcation value at which f mR ð1Þ ¼ F2k
r ðx*Þ occurs, then

Figure 17. Map FrðxÞ at g ¼ 0:5; a ¼ 0:2: In (a) b ¼ 20:587; BCB of the 7-cycle LR3LR2 of f ðxÞ.
In (b) b ¼ 20:5762 BCB of the 11-cycle ðLR3Þ2LR2 of f ðxÞ:
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Fk
r + f

m
R ð1Þ ¼ x*;which also implies that at a smaller value of b it is Fk

r + f
m
R ð1Þ , x*

while at a larger value of b it is Fk
r + f

m
R ð1Þ . x*: This means that after the

bifurcation preimages of the discontinuity points, which did not exist before, are

accumulating to x* from above, thus the homoclinic bifurcation value is a limit set

of BCB values.

(4) To show that BCB curves are limit sets of other BCB curves, consider a

bifurcation value related to an n-cycle of the first return map Fr; then the rightmost

branch of the map Fn
r ranges from 0 to 1 and at the bifurcation value either a

repelling fixed point merges with x ¼ 1, xs ¼ 1; or an attracting one, xss ¼ 1: In
the first case, for a larger value of b, after the bifurcation, a repelling cycle appears

(which persists for larger values of b) leading to a new fixed point xs , 1 in the

map Fn
r and preimages of the discontinuity points of the first return map Fr, which

did not exist before, are accumulating to xs from above, thus the BCB value is a

limit set of other BCB values. Similarly in the second case, when xss ¼ 1; for a
larger value of b, after the bifurcation, the repelling cycle having the same

symbolic sequence of the attracting cycle which disappeared is left (and it persists

for larger values of b). Then after the bifurcation the fixed point xs , 1 has

preimages in the map Fn
r also on its right side, which did not exist before.

Moreover, in the map Fn
r ; preimages of the discontinuity points of the first return

map Fr, which did not exist before, are accumulating to xs from above, thus the

BCB value is a limit set of other BCB values.

(5) The property (2) of the first return map Fr given above (repelling cycles which are

homoclinic) proves that the first return map Fr always has a chaotic set in ½0; 1�,
even if there exists an attracting cycle. In terms of the map f , this means that an

unbounded chaotic set in ð21; 1� always exists.
(6) It is also plain that divergent trajectories cannot exist, as each point in ½0; 1� has

the trajectory which returns back in ½0; 1�: A

In the next section we shall see that in the last range here considered, when a repelling

fixed point x*L exists, for 21 , b , 0; then the chaotic sets, which also always exist, can

only be bounded, while a set of points of positive measure exists with divergent trajectories.

4.2 Range BII ða > 1; 2 1 < b < 0; Þ : bounded chaotic repellors

The properties of the dynamic behaviours in this range mainly depend on the fact that the

slope of the function f LðxÞ is larger than 1; so that the repelling fixed point x*L ¼
21=ða2 1Þ , 0 exists. As in Section 3 let us denote by B1 the set of positive measure of

points having divergent trajectories (basin of 21; or set of divergent trajectories).

As usual, it is given by all the preimages of any rank of the immediate basin, which is the

interval ð21; x*LÞ; so that

B1 ¼
[k¼0

1
f 2kð21; x

*

LÞ: ð62Þ

The first preimage of the immediate basin is f21
R ðð21; x*LÞÞ ¼ ð0; x*21

L Þ which is the right

neighbourhood of the origin bounded by the preimage x*21
L ¼ f21

R ðx*LÞ; given by

x*21
L ¼ b

x*L 2 1

� �1=g

¼ 2bða2 1Þ
a

� �1=g

;
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and clearly for b . 21 it is always x*21
L , O21

R : Thus for any 21 , b , 0 an invariant

set of bounded dynamics exists in ð21; 1�; which can be of positive measure (and

including a chaotic set) or a chaotic set of zero measure. The two different behaviours

depend on the existence or non-existence of an attracting cycle, respectively. Moreover,

when an attracting cycle exists, a bounded chaotic repellor always exists in the interval

½x*L ; 1�.
To prove these properties, we still make use of a first return map. In fact, regarding the

function on the right side, we recall that in one iteration any point x . 1 is mapped to a

point f RðxÞ # 1: Thus, even if in ð0; 1Þ there exist points having divergent trajectories,

following the same reasoning as in Section 3, we can still study the dynamics of the map

by using the first return map in ½0; 1� but considering only the first return of the points in

the interval ðx*21
L ; 1�; as for the remaining points we know that the trajectory never comes

back (as the interval ð0; x*21
L � is mapped in the immediate basin of infinity ð�1; x*L�Þ:

Clearly, the interval ð0; x*21
L Þ represents a set of initial conditions having divergent

trajectories, and all the points which are mapped in this interval will have divergent

trajectories too.

Proposition 12. Let g . 0; a . 1 and 2 1 , b , 0: The dynamics of map f can be

described by using the first return map FrðxÞ in the interval I ¼ ½0; 1� taken for the points

in the interval J ¼ ðx*21
L ; 1�: FrðxÞ is a discontinuous map with infinitely many branches as

defined in (35), in which the discontinuity points are accumulating to x ¼ x*21
L :

Proof. Starting from the first return of the point x ¼ 1, as described in the previous section,

with the rightmost branch given by f RðxÞ; the infinitely many preimages f2n
L ð0Þ all exist,

and have as limit set the repelling fixed point x*L: Thus the infinitely many preimages

jj; j $ 1, discontinuity points of FrðxÞ; all exist in the interval ðx*21
L ; 1�; and have x*21

L as

limit point for j!1: A

This also implies the existence of infinitely many repelling (and all homoclinic) fixed

points xRLn (basic cycles RLn of f ).

An example with a pair of 2-cycles of the first return map is shown in Figure 18(a).

In that case, for map f there exists an attracting 3-cycle LR2; and thus also a companion

repelling one.

Figure 18. Stable cycles and divergent trajectories at g ¼ 0:5; a ¼ 1:5. In (a) b ¼ 20:62. In (b)
b ¼ 20:36.
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In general, when an attracting ðnþ 1Þ-cycle LRn exists, let xsLRn be the rightmost

periodic point of the attracting cycle, and xLRn be the rightmost periodic point of the

repelling cycle ðxLRn , xsLRn Þ: The interval ðxLRn ; 1� belongs to the basin of the attracting

cycle and the total basin of attraction of the attracting cycle is given by all its preimages of

any rank. Such a basin has positive measure, and a fractal structure. In fact, its frontier

includes a chaotic repellorL
0
which consists of all the repelling cycles, their stable sets and

related limit points. There is also another basin of positive measure, that of the divergent

trajectories, given by the interval ð0; x*21
L Þ and all its preimages in the interval ðx*21

L ; 1�;
which also has a fractal structure. The frontier between the two basins (both of positive

measure) includes all the preimages of the point x*21
L (which are dense in a chaotic repellor

L
0
).

We can reason in a similar way for any attracting cycle with symbolic sequence s;
denoting xs and xss the two rightmost periodic points of the repelling and attracting cycle,

respectively, where xs , xss: For the map f the two basins of the first return map have the

same properties and cover the whole real line ð21;1Þ: However, the chaotic repellor of
map f is confined in the interval ½x*L; xs�: In particular it holds for s ¼ R; when an

attracting fixed point of f RðxÞ exists (an example is shown in Figure 18(b)).

The other possible dynamic behaviour mentioned above occurs when the map has no

attracting cycle. In such a case, a chaotic repellor L exists in the interval ðx*21
L ; 1� which

includes all the repelling cycles, their stable sets and related limit points. Taking the

preimages by FrðxÞ of the interval ð0; x*21
L Þ we have that almost all the points of the

interval ðx*21
L ; 1� belong to the basin B1: These preimages have a fractal structure, and are

dense in the interval ðx*21
L ; 1�; and the frontier is given by the chaotic repellor L. For the

map f this means that a chaotic repellor belongs to ½x*L; 1� and all the other points have a

divergent trajectory.

We have so proved the following proposition.

Proposition 13. Let g . 0, a . 1 and 21 , b , 0: The dynamics of map f can be

classified as follows:

(1) if ða; bÞ does not belong to the stability region of some attracting cycle, almost all

the trajectories are divergent, except for a chaotic repellor included in the interval

½x*L; 1�;
(2) if a; b

� �
belongs to the stability region of some attracting cycle with symbolic

sequence s, there exist two basins of positive measure. The basin BðxssÞ ¼
<k¼0

1 f 2kðxs; 1� where xs and xss are the two rightmost periodic points of the

repelling and attracting cycles, respectively. The basin of divergent trajectories is

given by BðxssÞ ¼ <k¼0
1 f 2kð21; x*LÞ: The frontier between the two basins belongs

to a chaotic repellor included in the interval ½x*L; xs�.

5. Conclusions and outlook

In this work we have further investigated some properties of the discontinuous map given

in (2) for the parameter ranges given in (3) when the map has the qualitative shapes shown

in Figure 1. In each case the results are obtained making use of the first return map in a

suitable interval. A common result to all the three different cases is that any BCB may be

related to a codimension-two point due to the contact with a fold bifurcation curve of

cycles with the same symbolic sequence. However, the dynamics are different in the

different ranges. In Range AII, 21 is always an attractor with a basin of attraction B1 of
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positive measure. However, for parameters above the curve Bf (homoclinic bifurcation of

the unstable fixed point x*LÞ chaotic repellor exists which belongs to the frontier of the basin
of attraction B1 and an attracting cycle may also exist. In the Range BI divergence cannot

occur, and an unbounded chaotic repellor always exists, while in Range BII we have

shown that the system has properties similar to those occurring in Range AII, although

now a chaotic repellor belonging to the frontier of B1 always exists. The dynamics

occurring for 21 , b , 0 have been only partly investigated. We have shown how many

attracting cycles may exist, associated (as b is varied) with fold bifurcations and BCBs, not

only of basic cycles with symbolic sequences LRn for any n $ 1 but also of many other

infinite families, showing that the bifurcation structure is much richer than that occurring

in other systems. In fact, we have seen from the examples in Section 4.1 that the period

adding structure is strictly included and the U-sequence cannot be obtained, as flip

bifurcations are not allowed. The bifurcation structure strongly depends on the

codimension-two points on the BCB curves which we have proved to exist. Moreover, we

have shown that BCB curves are limit curves of infinite families of other BCB curves, and

that also fold bifurcation and homoclinic bifurcation curves are limit sets of infinite

families of BCB curves.

We have numerical evidence (as shown in Figure 1 and in Figure 7) that organizing

centres are related to codimension-two points, each one due to intersection of a BCB curve

and a fold bifurcation curve of cycles having different symbolic sequences LRn and

LRnþ1, respectively, occurring at a ¼ 0: These are issuing points of infinite families of

BCB curves and fold bifurcation curves, and left for further investigation.
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