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Abstract—Considering a family of two-dimensional piecewise linear maps, we discuss two different mech-
anisms of reunion of two (or more) pieces of cyclic chaotic attractors into a one-piece attracting set,
observed in several models. It is shown that, in the case of so-called ‘contact bifurcation of the 2 kind’,
the reunion occurs immediately due to homoclinic bifurcation of some saddle cycle belonging to the basin
boundary of the attractor. In the case of so-called ‘contact bifurcation of the 1* kind’, the reunion is a
result of a contact of the attractor with its basin boundary which is fractal, including the stable set of a
chaotic invariant hyperbolic set appeared after the homoclinic bifurcation of a saddle cycle on the basin
boundary. © 1998 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Our purpose is to describe some mechanisms of reunion of two or more pieces of a cyclic chaotic
attractor in R? into a one-piece chaotic attracting set.

When observing such a reunion in several nonlinear models, one can often classify it in one of
the following two possibilities:

1. Itis due to a so-called ‘contact bifurcation of the 2" kind’ [1-4], giving rise to a direct reunion
of the pieces of the attractor by pairs, and the resulting shape of the attractor is a junction,
two by two, of the pieces existing before separately (Fig. 1).

2. Another type of reunion is due to a so-called ‘contact bifurcation of the 1 kind’ (see the same
references as above): two or more pieces of some cyclic chaotic attractor, being situated far
enough from each other, under small parameter variation, can suddenly give rise to the
appearance of bursts—rare points of the trajectories in some region of the phase space
including the old pieces of attractors [Fig. 2(a)]. The number of the rare points increases as
the iterations are continued, and they belong to a new chaotic attractor [Fig. 2(b)]. In some
sense, chaotic attractors begin to ‘feel each other’” when the distance between them is still
finite. When calculating trajectories in a system with ‘rare points’, their appearance seems
rather unusual as we cannot see, in phase space, any other attracting set except for the two
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Fig. 1. An example of the “contact bifurcation of the 2" kind"” when the reunion of two pieces of an attractor occurs due
to the first homoclinic bifurcation of a saddle cycle belonging to the basin boundary of the attractor.

(or more) pieces of attractor under consideration. Due to this, it can be supposed that, in the
region between the attractors, a repeller should exist. Contact bifurcation with it causes the
rare points. Moreover, such repeller have a complicated topological structure, so that an
observer cannot usually see any order in the appearance of such rare points and this visual
randomness has both phase space and temporal nature.

Really, as described in [4] (ch. 5), besides the two types recalled above, there are several kinds of
contact bifurcations between chaotic attractors and their basins, with different dynamical effects.
However, we shall restrict our interest to the two mentioned above, because these are the two
kinds of contact bifurcations involved in the piece-wise linear maps which interest us in this
work.

The family F of maps that we consider is the family of two-dimensional piecewise linear
continuous maps, as a function of four parameters, given by:

X [ 0\/x
F: — \ r<x+1,
y 0 al\y

F= (1)

P X [—b b\/x N —b - !
5. — T2
T\ a—d d)\y a—d) yzrtd

where both the above mentioned scenarios can be realized, depending on the parameters of the
family. Note that the map F can be considered in some sense as a 2Dim analog of the skew tent
map. We shall consider the case in which F has two saddle fixed points, O and P, which are at
the boundary of a closed bounded trapping region, Z, of the phase plane (where trapping means
mapped into itself: F(Z)= Z).
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Fig. 2. An example of “*contact bifurcation of the 1*' kind"* when the reunion of two pieces of an attractor is via appearance
of rare points of the trajectories in the regions between picces, when they are still far from each other. The reunion occurs
due to a boundary crisis: each chaotic piece has a contact with its fractal basin boundary.

It should be noted that the case in which a dynamical system has two saddle fixed points occurs
quite often in the modern theory of nonlinear dynamics.
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We shall see that, in the first case, the contact bifurcation (without rare points) is a result of
the first homoclinic bifurcation of the saddle P. In the second case, the reunion bifurcation (with
rare points) is caused by the contact of the attractors with the boundary of its basin of attraction,
which includes the stable set of the saddle P after its first homoclinic bifurcation.

Therefore, two different situations can occur in our model: in the first case, the first homoclinic
bifurcation of P gives rise to immediate reunion of the attractors. In the second one, the
homoclinic bifurcation of the saddle P creates an hyperbolic invariant set A (on the boundary of
the basins) without reunion of attractors. The stable set W*(A) of the set A has Cantor like
structure. It plays the role of ‘separator’ of the basins of the different pieces of the cyclic attractor.
Under parameter variation, a bifurcation occurs when the chaotic attractors have a contact with
W*(A). At this bifurcation value, the basin of each piece of the cyclic attractor comes to be
intermingled, assuming that the preimages of each contact point are dense everywhere on the
‘attractor’. Soon after the contact bifurcation, the old attractor disappears due to the infinitely
many intersections with W*(A), and a new attractor arises.

The structure of the paper is as follows. In Section 2, we describe the map F. A so-called
‘saddle-saddle’ area is defined in the parameter space when both the fixed points of the map ¥
are saddles. Correspondingly, a bounded invariant area is found in the phase space.

Section 3 is devoted to the study of different kinds of attractors of the map F. Depending on
the parameters, the attractor can be either a cycle of any period or a cyclic chaotic attractor of
any period. We give exact formulae for the boundaries of the regions of existence of the attracting
cycles of different periods. A conjecture is formulated about the order of appearance of the
attractors in the system under parameter variation. It is shown that the case of stability loosing
of any point cycle due to the flip bifurcation (besides the cycle of period 2) results in the
appearance of a cyclic chaotic attractor of doubling period. In the case in which the cycle of
period 2 becomes unstable, a cyclic chaotic attractor of period 2’ can appear, where i depends on
the parameters. The bifurcations which may then occur consists of the pairwise reunion of the
pieces of the attractor to give only a one-piece chaotic set. The main problem concerns the
bifurcation causing the reunion. It is connected with the first homoclinic bifurcation of the saddle
P (Section 4) as well as with an invariant hyperbolic set analogous to the Smale horseshoe which
appears after the homoclinic bifurcation. We give a construction of this set in Section 6.

Different mechanisms of reunion of pieces of cyclic chaotic attractors are explained in Section
5, considering the sequences of bifurcations of the 4-. 2- and 1-piece chaotic attractors, as well
as those of the 6-, 3- and 1-piece chaotic attractors.

2. DESCRIPTION OF THE MAP. ‘SADDLE-SADDLE AREA’ IN THE PARAMETER
SPACE. BOUNDED INVARIANT REGION IN THE PHASE SPACE

Consider the four-parameter family F of two-dimensional piecewise linear continuous maps
given in (1). The map F consists of two linear maps F, and F, defined below and above,
respectively, the straight line LC_, = {(x,p):y = x+ 1} which is a line of discontinuity of the
Jacobian of the map, F. The map, F, is one-to-one if d>ab/l and is noninvertible otherwise.
Indeed, if d<ab/l, the map, F, is of (Z,— Z>) type, i.e. each point (x,y)eR? has two preimages,
provided that y<ax//+a; has zero preimages, provided that y>ax//+a and has a unique
preimage if y = ax//+a. Thus, the straight line, LC = {(x,y):y = ax//+a}, is the locus of ‘critical
values’ of F, i.e. the so-called critical line of rank-1 [35, 2, 4]. Due to these properties, the map F
can be considered as a two-dimensional analog of the skew tent map.

Denote the fixed point of F, by O = (0,0). The eigenvalues of F, are

W =aand g, =1

with corresponding eigendirections
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Fig. 3. The triangle of stability of the fixed point P in the (b, d)-parameter plane, ¢ > 1, 0 </ < |; D is the region in
which P is saddle.

u; = (0,1)and u, = (1,0).
Let us fix the parameters a and / so that the fixed point O is a saddle:
a>1, 0</<1.

The local stable (unstable) manifold of O is denoted by wy(O) (2,(0)) which is obviously a
segment of the straight line {y = 0} ({x = 0}).
The fixed point of the map F, is denoted by P = (x,,),), where

b(1—a) (I1-NHd—a)

T b= )= =d)(1=)" T ba— D (1~ Iy
We are interested in a so-called ‘saddle-saddle’ area D in the parameter space in which both the
fixed points O and P are saddles and, moreover, a bounded trapping region Z exists in the phase
plane (x,y).

For any fixed a>1 and 0 </<1, the region of stability of P = (x,,y,) in the (b,d) parameter
plane is the triangle I1; bounded by three segments of the following straight lines

d= —14+b(1 +a)/(1+1),(d)
d=1+b(1—a)/(1—1),(d,)
d = (ab+1)/1,(dy)

The fixed point P becomes a saddle if the parameter point (b,d) intersects either (d,) (the eigenvalue
of P crosses through —1) or (4,) (the eigenvalue crosses through 1). In the last case, obviously a
bounded invariant area in the phase plane does not exist. Thus, the region D, in the parameters’
space we are interested in is defined as follows:

D = {(a,bd]): a> 1, d* <d<min, x{(d)),(d).(d3)},0< <1}

where d* denotes a bifurcation curve of destruction of the trapping region Z which will be defined
below (Fig. 3). We will restrict ourself to the condition 5> 0 (at b = 0, the map F'is a triangular
map and its dynamics are described in [8]).
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Fig. 4. Trapping region Z of the map F, in the phase plane (x, y).

The local stable (unstable) manifold of P is denoted by wy(P) (o,(P)) which is a segment of the
straight line y = Q"x+ R*denoted as (y,) for short, (y = Q"x+ R", denoted as (1) for short) where

bl d( =D =Gt h) )+ —a,

O = R = A = b ’
el dI DGt bl —@)+l-a.
- b ) - ba—dl+d+1—b—1

and 0</, <1, 4, < — 1 are eigenvalues of F.:
fo = (I =b+d+ S (b—1—dF —4{dl—ba))2.
Gy = (—b+d—/(h—I—dy —4(dl—ba))}2.

Assuming now that the parameters belong to the region D, we shall find a bounded region in the
phase plane (x,)) which is trapping for F. Consider the region Z, bounded by the segments of
the four straight lines: {x = 0}, {1y = 0} (containing, respectively, o,(0) and wy(0)), LC and of
the straight line (y,) (containing %,(P)). The region Z is a quadrilateral with corner points
0 =(0,0), 4, = LC~(»,), B, =(0.a) and C, = (—R"/Q",0) (Fig. 4). It is easy to see that if
(a,b,d,l)eD and b>0 then the region Z is trapping (i.e. mapped into itsell: F(Z)=Z). The
bifurcation destroying the invariance of Z takes place when F,(4,) = C,. This bifurcation deter-
mines the appearance of the first heteroclinic trajectory from the saddle P to the saddle O and
also the homoclinic connection for O (see [2, 4]). The curve ¢* in the parameter space corresponds
to this last condition.

3. ATTRACTORS: ATTRACTING CYCLES AND CYCLIC CHAOTIC ATTRACTORS

Let (a,b,d,))eD, b>0 and, consequently, the bounded invariant region Z exists in the phase
plane. We shall see that an attractor of the map F, necessarily belonging to Z, is either an
attracting cycle y, of period # or a cyclic chaotic attractor A4,,, of period m, where n, m can
assume any natural value, depending on the parameters.
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Fig. 5. The regions [1, of existence of attracting cycles 3, in the (b, d)-parameter plane where " = 2°, at ¢ = | + 10 "* and
I=03forn=2,.... 17.

We shall find the regions I1,eD, n>2, such that if parameters belong to IT,, then an attracting
cycle of period n of the map F exists. Let y, = {(x,1),(X2,02).-.. (X,,1,)} be a cycle of period n
such that one of its points (let us assume the point (x,y,)) belongs to the region x+ | < y <ax//+a,
i.e., x,+ 1 <y, <ax,//+«a; and the other points belong to the region 0 <y < x+1,1.e., 0 <y, < x,+ 1,
i = 2...., n. The appearance of y, 1s a result of saddle-node bifurcation and it is defined by the
condition (x,,y))eLC. From (x,,y,) = F/~'(Fy(x,.31)) at y, = ax,//+a we get the locus. in the
parameter space, of the appearance of y,;

;o bl" 2(1fl)(a”—l)—+—(l”—l)(a”"r"—l)
e = anrl(a_])(] _[u) ’

which is a straight line in the (b,d) parameter plane at fixed values for @, / and #. Note that the
cycle y, arises at the stability loosing of the fixed point P, that is d,, = (d,).

The curve of stability loosing of 7, can be found as a result of flip bifurcation, when one of the
cycle multiplicators becomes equal to — 1. Also, this curve is a straight line in the (h,d) parameter
plane at fixed g, / and n:

] bl a4+ 1)
Aoy = =5 F T T
a4+

Thus, the regions I1,eD of existence of attracting cycles y, are:

M, = {(a.b.dNeD:d,, <d<d,,}.

The regions I1, are shown in Fig. 5 in the (V'.d) parameter plane where b =2 ata = 1+ 1077,
[=0.3wheren=2,.,17.

Note that, at fixed values. a> 1, 0 </< 1, the number of the regions I1,, is finite, thatisn = 2....,
n*, where n* is a number which depends on ¢ and /. Moreover. if a/> 1, there is not any attracting
cycle of the map F at (a.b.d.l) ¢ D. But, if a—1 and /- 1. then n* > oo.



1380 Y. MAISTRENKO e al.

When the parameter point (b,d) crosses one of the regions Il, through the curve 4, ,, a flip
bifurcation for y, occurs. What is the result for the dynamics of the map F? Computer simulations
show that this bifurcation gives rise to the appearance of a cyclic chaotic attractor, of doubling
period 27 when n >3 and of period 2* for n = 2, k depending on the parameters. Further variation
of the parameters can give rise to the bifurcation of the pairwise reunion of the pieces of the
attractor and, finally, all pieces merge into a one-piece attracting set.

By ./, ., we denote a cyclic chaotic attractor of period m, arising after stability loosing of the
cycle of period n. Using analytical results and computer simulations, we can deduce the following
consequences for the bifurcations under parameters variation:

1. Letn=2:
V3> g =2y 1= sl =,

where k can be any positive integer depending on the parameters, moreover, k— oo, as a— 1,
b—0,d— —1 and [-0.
2. Letn>3:

N/‘n:‘S%n.2n=>'5yn.n=$15yn‘l'

As was mentioned above, the bifurcations y,=>2/, »« and y,=.<,, ,, are flip bifurcations for the
corresponding cycles (y, and vy,). Our purpose is to describe the bifurcations causing the reunion
of the pieces of the cyclic chaotic attractors, i.e. bifurcations «,,,=<,,, A,,=>,,,
Ay y=>l 51,1 =2,.., k.

4. STRUCTURE OF STABLE AND UNSTABLE SETS OF P. FIRST HOMOCLINIC
BIFURCATION OF P

In order to describe the first homoclinic bifurcation of the saddle fixed point P, we consider
the structure of its stable and unstable sets. The stable set of P has the form:

Wi(P) = wy(P)u U F"(wy(P)) = w(P)u U Wi i = Loy, i, = 1,2,

nzl

where wy(P) is the local stable set of P, that is, a halfline of equation (y,) with the end point
= LCn(y,). The global stable set W*(P) is given by the union of all the preimages of wy(P):

F™l(wo) = Fy '(wg)UF5 (wy) = wouw!,
where the set wouw! | consists of two half-lines issuing from the point W_, (see Fig. 6a),
F~3(wy) = Fr\(wh DUFs'(wl ) = wluw'?

F 3 we) = FTIW")UF'w'2) = whuw'20uwZow!?),

Fwg) = F " HUF W Yo F W) uF{(w'd)
HHU]’VIHZUWHZ|UHHZZU“/IZZIUM,,?iZU IZIZUWIZII

and so on. By main beak we shall call the beak formed by the halflines w'?} and w'? with the end
point C_; where C_, = F5 '"Fy (C_)),C_, = w' ,nLC, [see Fig. 6(a)].
The unstable set of P is given by:
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Fig. 6. The structure of the stable set W*(P) of the saddle fixed point P before (a) and in the moment (b) of the first
homoclinic bifurcation of P.
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where oy(P) is the local unstable manifold of P, given by the segment [A4,.4,], where 4, = F(A,),

Ao = LC_n(,), A, = Fy(4,).

The first homoclinic bifurcation of P occurs when C_, = A, (which corresponds also to the
merging of C_, with 4, and C_, with 4,), i.e. when the main beak (and thus the stable set of pP)
has a first contact with W*(P) and, consequently, infinitely many preimages of the main beak
also have the contacts with W*(P) [see Fig. 6(b)]. The curve # in the parameter plane (b,d)
corresponding to the first homoclinic bifurcation of P is shown in Fig. 7, as well as the curves
H 5, i =1.,.. 4, corresponding to the first homoclinic bifurcations of saddle cycles of period 2/,
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Fig. 7. The curve #, in the parameter plane (4, d), of the first homoclinic bifurcation of P. The curves #'y, i=1,..., 4

of the first homoclinic bifurcations of period-2' saddle cycles such that a balf of the cycle points lie above LC_, and the
others are below. Each curve # . correspond 1o the bifurcation of pairwise reunion of the pieces of the cyclic chaotic
attractor .o/, y-1 = .0/ 5 50

such that half of the cycle points lie above LC ., and the others are below. The curves # ',
separate the regions of existence of the cyclic chaotic attractors .s7, 5.1 of period 2" and <7, 5
of period 2/, i.e. corresponding to the bifurcation of pairwise reunion of the pieces of the cyclic
chaotic attractor: o7, .+1=>.o7,,.. While for the curve #, as we will see, for some parameter
values, it also corresponds to the reunion of two pieces of the chaotic attractor into a one-piece
attractor, while for other parameter values, the homoclinic bifurcation of P does not cause such
bifurcation in the attractor. In order to simplify the exposition, let us study in detail these two
different cases considering the bifurcations .o/, ,=.¢/,, and .o/, ,=>.o7, ,.

5. TWO DIFFERENT MECHANISMS FOR THE REUNION OF TWO PIECES OF THE
2-CYCLIC CHAOTIC ATTRACTOR INTO A ONE-PIECE ATTRACTOR AND OF THREE
PIECES OF THE 3-CYCLIC CHAOTIC INTO A ONE-PIECE ATTRACTOR

Let us fix the parameter values « = 1.5, /= 0.1, h = 0.45 and vary the parameter d starting
from d, = —0.7. As can be seen from Fig. 7, at such parameter values, the dynamical system
generated by F has a cyclic chaotic attractor .o/, of period 4: o/, = {.of} 4 A3 4.3 4.3, )
Flsth gy = 50, i = 1,23, Fatty) = b, (Fig. 8).

Using the theory of critical lines [5], we can find the boundary of the basin of attraction of
each element .«/% , = o7, , with respect to the fourth iteration of F (see [2, 4] for details). Indeed,
the immediate basin of attraction of ./} ; is bounded by the segments of the critical line LC, the
local unstable manifold ay(P) of P, as well as the local stable and unstable manifolds of the point
p, which is one of the points of the saddle cycle y, = {p,,p.} of period 2. The first homoclinic
bifurcation of y, occurs at d = —0.718..., giving rise to the pairwise reunion of .74 4 (o7} , with
/34 and /3, with .73 ). The result of the reunion is the cyclic chaotic attractor .7, of period
2: oy, = {/)o.73,) (Fig. 9). Note that all the bifurcations .of, =/, 1, k = 3,..., are
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Fig. 8. A 4-cyclic chaotic attractor, 7, ; = {.o/} ,,.o/3 4, .34, /3 ,} of the map F.
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Fig. 9. A 2-cyclic chaotic attractor ./, , = {7}, /3 .} of the map F.

analogous to the one described above, being the result of homoclinic bifurcation of the period
— 2% " saddle cycle.

Let us consider the last bifurcation .o/, ,=>.<7,,. The parameter point (b,d) intersects the curve
H at d = —0.835..., and the first homoclinic bifurcation of P takes place (Fig. 10). As in the
previous cases, the bifurcation causes the reunion of the pieces of the attractor .o/}, and .o/3,
giving rise to the one-piece attracting set .o/, ,. Let us now consider a different crossing of the
curve #, in another point: d = —0.53..., b = 0.8. As can be seen from numerical experiments,
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Fig. 10. Contact bifurcation of the 2" kind corresponding to the reunion of two pieces of the attractor o/, , into a one-
piece chaotic attractor .7, ;.

in this case the homoclinic bifurcation of P does not cause the reunion of .o7} , with /% ,. After
this bifurcation, as we shall see in Section 6, an invariant hyperbolic set A appears in the
neighborhood of P. The stable set W¥(A) of this set has a Cantor like structure and is a limit set
of the stable set of P. It plays the role of ‘separator’ of the basins of the two disjoint attractors
of the map F*. Thus the basin boundary becomes a fractal set at this homoclinic bifurcation of
P. In Fig. 11, the 2-piece attractor .of,, and some branches of W*(P) are shown at d = —0.55,
b = 1, at parameter values just beyond the first homoclinic bifurcation of P.

At d = —0.57703... the attractor &/, has a first contact with W*(A). It is clear that such a
contact shall cause the destruction of the closed invariant chaotic set, assuming that the preimages
of the contact point are dense everywhere on the attractor. Just after this bifurcation, numerical
evidence shows the existence of an attractor with a high density of iterated points in the places
previously occupied (i.e. before the contact) by the old two pieces of the attractor and rare
iterated points between them (Fig. 12). These rare points belong to the trajectories which escape
through the gaps appearing after the intersection of the attractor with W*(A). They spend a
relatively short time all over the attractor, following the unstable set of P, then return again
inside the old position of the two-piece attractor and remain there for a sufficiently long time.
And so on. Indeed, we already get a one-piece attractor .o/, ,. If we continue to iterate, the new
shape of the attractor comes to be close to the unstable set W*(P) [see Fig. 2(b)].

When considering the curve #°, one can find a point 4 separating two different kinds of
mechanisms of reunion of two pieces of .7, , as described above: a crossing of .# to the left of A
gives rise to the immediate reunion at the moment of homoclinic bifurcation of P; to the right
side of 4, the homoclinic bifurcation results in basin fractalization only and the real curve of
merging of the two pieces of the attractor, starting from the 4, lies below #. It is a curve
characterized by the contact of the attractor with its basin boundary.

Above, we have considered the consequence of bifurcations .o/ ,=.o/,,=>.¢7, |, 1.e. the reunion
bifurcations for the pieces of the 2-cyclic chaotic attractor, i = 1,..., k. We assume that, in the
general case, n>3 the bifurcation .o, ,,=.o/, , is always of the 2" kind, i.e. the result of the
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Fig. 11. An example of the 2-cyclic chaotic attractor &, , = {.o/},,.¢/3 .} of the map F and some brunches of the stable
set of the saddle P, after the first homoclinic bifurcation of P.
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Fig. 12. Contact bifurcation of the 1" kind corresponding to the reunion of two pieces of the attractor o/, into a one-
piece chaotic attractor .5, via appearance of rare points of the trajectories in the regions between the pieces.

homoclinic bifurcation of the saddle cycle of period # on the basin boundary, while the bifurcation
A, =, is always of the 1" kind.

As an example, let us consider the sequence of bifurcations o3 ¢=>9 35 and o5 ;=75 . In Fig,
13(a), the 6-cyclic chaotic attractor, 7, is shown at parameter values a = 1.05, b = 4,
d= —0.27 and / = 0.3. This attractor appears after the flip bifurcation of the attracting cycle
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Fig. 13. A 6-cyclic chaotic attractor ./, , = {.e/},.o/3 ... ./%,) of the map F (a) which bifurcates into the 3-cyclic

chaotic attractor .« ; = {.&/} ;,./3 1. .«/3,} (b) due to the contact bifurcation of 2 kind. The one-piece chaotic attractor
/4, (¢) is obtained as a result of the contact bifurcation of 1" kind.

73 = {P3.p3.p3}, which becomes a saddle. At d = —0.29... the attractor .54 bifurcates into the
3-cyclic chaotic attractor o7, [Fig. 13(b)] due to the contact bifurcation of the 2 kind, which
corresponds to the first homoclinic bifurcation of the saddle cycle ;.

At d = —0.315..., the one-piece chaotic attractor. /5, is obtained [Fig. 13(c)] as a result of
the contact bifurcation of the 1" kind. that is, the reunion of the three pieces of the attractor
occurs due to the contact of each piece of the attractor with its basin boundary, which is already

fractal.
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Fig. 13— continued.

n

6. DESCRIPTION OF THE HORSESHOE

In this section, we construct an invariant hyperbolic set analogous to the Smale horseshoe,
which appears after the first homoclinic bifurcation of P. Let us consider the parameter values
soon after this bifurcation of P (described by the curve .# in Fig. 7), for example, by taking a
lower value of d. Then the beaks belonging to the stable set of P will cross the unstable set of P,
creating infinitely many homoclinic points of P. Our purpose is to show that, also in this case
(our map F is not a diffeomorphism but a two-dimensional piecewise linear map with a non
unique inverse), the existence of homoclinic points of P implies the existence of an hyperbolic
Cantor set A, with chaotic dynamics, near P, for a suitable power of F, say ™, and corre-
spondingly, this gives an invariant chaotic set for the map F, called L in the previous sections.
To see this, let us recall the ‘folding™ action of the critical curve LC. If we consider a strip S
crossing LC_,, as in Fig. 14(a) and one side along the unstable set W*(P) for convenience, then
F(S) is “folded” along LC. Figure 14(a) also schematically shows the relative positions of the
critical segments of interest with the stable and wunstable sets of P. Note that
S, = FS) = S"uS? = FI(SAR)UFASNR,) and, for the non invertibility of F, we have
F~'(S,)> S. However, we can recover S as follows: F7'(S")UF; (S?') = S. Note also that if we
take the strip S crossing not only LC_,, but also the two branches of w_; issuing from the point
C_;of LC_, (see Fig. 14(a)), then F(S) intersects w_,. Moreover, we can always take S in such
a way that F(S) intersects w_, in two disjoint segments, as in Fig. 14(a). In fact, we can proceed
in reverse order, choosing S*VUS™ first, as in Fig. 14(a), with disjoint intersections with w_, and
having two portions labelled n; and 7, below w . Note that both n, and =, have one side
bounded by a segment of W*(P), one side bounded by a segment of W*(P) and n,nn, = ¢. Then
Fy'(m)) and F, '(n,) are two disjoint strips on opposite sides with respect to LC_,, and defining
H, = Fy«F'\(n)), H, = F> V" (1), we get two disjoint ‘horizontal’ strips, as close to P as we
want, by fixing suitable values of the integer j. Let us assume a fixed value of j. Then
F'*'(HUH,) = mum, and it is easy to see that, in a finite number of iterations by F. we shall get
F"(H\wH,) = V0V, where V| and V. are disjoint strips which intersect H;wH, as in Fig. 14.
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(a) A,

\

" S,S{st

(b) w"

Vo

Fig. 14. Construction of Smale horseshoe (a) and its enlargements (b, ¢), after the first homoclinic bifurcation of saddle
fixed point P (for the details see text).
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Fig. 14-—continued.

In fact, after (j+1) applications of F, we get mum, and then Kmum,) = F)mum,),
F¥(m,um,) = F, o Fy(m,um,) and after i applications of F = F,, for a suitable integer i, we shall be
sufficiently near P to get disjoint intersections with H, and H,, as in Fig. 14(a). It is now clear
that the ‘standard horseshoe mechanism’ can be instaured, proving the existence of an invariant
Cantor set, A< H,uH,. In fact,

VoV, = T(HuH,)where T = F"andm = i+ 3 4.
Moreover
V,=T,(H),V,=T,)(H,)
where
T\ =FioF cFoFcFy, and T,= FioF -F5?

Thus we can consider T-(H,UH,)—(V,UV,) as a map with a unique inverse by defining 7' as
follows: let xeV, U V,, then T-'(x) = Ty '(x) if xeV,, T~ '(x) = T5 '(x) if xeV,where

Ti'=F, «F 'eF, ' oF ' cFy/ and T5' = F, 2o Frlo Fyl

For the map T:(H,vH,)—(V,uV,)and its inverse T~', the standard procedure used for invertible
maps works well. Let us repeat a few steps. Define A;; = HinV; (see Fig. 14(b)). Consider A,,
and A, as subsets of V|. Then they are the image by T of two subsets of H,. Note that one side
of A,, and A,,, the right one in our figure, belongs to the stable set W'(P). Thus, these sides must
be the image by 7 of two disjoint pieces on the right side of H|, bounded by W*(P). The opposite
sides of A,, and A,, belong to the side of V| which is the image by T of the side of H, opposite
to W*(P). It follows that A,, and A;, must be the image by T of two disjoint horizontal strips
included in H,, say H,, and H,,, T(H,)) = A,, and T(H,;) = A,,, or equivalently, T"'(A,)) = H,
and T'(A,)) = H,,. Analogous reasonings lead to the definition of two disjoint strips inside H:
T (An)= HpcHyand T™Y(Ay) = Hy= Ho, Hy,nHyy = ¢
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Now, let us take the images. Consider the two subsets A, and A,, of H,. As these are subsets
of H,, their images by T belong to V. The low boundary of such subsets belong to the stable set
W*(P), thus, their images by T are two disjoint pieces on the side of V5, belonging to W*(P) (see
Fig. 14(b)). The opposite sides of these subsets belong to the side of H, opposite to W*(P) and
thus, their images by 7 belong to the opposite sides of V5. That is, T(A,) = V5, and T(Ay) = Vas
are two disjoint ‘vertical’ strips belonging to V.. In a similar way T(A,,) = V,, and T(A,) = V-
are two disjoint ‘vertical’ strips belonging to ¥, and so on. The mechanism is standard (see e.g.
[6, 7]). We shall find a Cantor set A< H,UH, which is both forward and backward invariant by
T.ie. T(A)=Aand T"'(A) = A.

Now, regarding hyperbolicity we note that, by construction, we started with two horizontal
strips H, and H,, having one side on W*(P) and one side on W*(P). However, from the process
of construction of the subsets H,, and V,, (which also have one side on W P) and one side on
W*(P)), we can deduce that, really, in a neighbourhood of P, the structure of the stable and
unstable sets of P is such that W*(P) includes infinitely many ‘segments parallel’ to «, (i.e. the
local stable set W, (P)) and the same holds for W*(P): it includes infinitely many ‘segments
parallel’ to Wi, (P) (see Fig. 14(c)). Thus, we can presume to start the process with two horizontal
strips, H, and H,, having two opposite sides on W'(P) and the other two opposite sides on W*(P).
Then the Cantor set A is hyperbolic.
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