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Abstract

This article reconsiders the Hicksian multiplier-accelerator model with the “floor” related to the
depreciation on actual capital stock. Through the introduction of the capital variable, a growth trend is
created endogenously by the model itself, along with growth rate oscillations around it. The “ceiling”
can be dispensed with altogether. As everything is growing in such a model, a variable transformation
is introduced to focus relative dynamics of the income growth rate and the actual capital output ratio.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Business cycle theory

Business (or trade) cycle theory has been a most vital research area in economics for
more than a Century, and the explanations offered have been very diverse. In various periods,
general surveys have been produced, such as the excellent ones byvon Haberler (1937)and
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several following editions. A recent general review isGlasner (1997). The more sophisti-
cated business cycle theories use different mechanisms to explain upswing and downturn,
involving both supply and demand side, the monetary issues, and business confidence and
expectations.

The present paper has no intention to address such enormous diversity, but keeps to the
Samuelson–Hicks model that grew out of Keynesian macroeconomics. This origin shows
up in the fact that the cycles are generated solely through the demand side. The model
distinguishes itself by letting one single mechanism be responsible for both upswing and
downturn. This may be seen as a bit unsophisticated and mechanistic, but lends the model
a certain elegance and unity of structure. It is also quite rich in potential results and has
called forth a considerable literature since its evolution in the period 1939–1950. It is still
interesting to see what it can do.

The present paper has a double scope.First, the Hicksian “floor” is related through a
depreciation factor to the actual capital stock that results from the successive investments
generated by the model. This seems to be a most reasonable assumption, as the “floor”
is defined to be maximum disinvestment when there is no reinvestment at all.Second, as
this, unlike the traditionally assumed fixed, “floor” can result in unbounded deviation of
all variables, a new method of relative dynamics is suggested. The strategy is based on
relative growth rates instead of the variables themselves. Using this we find that the model
proposed can produce growth rate cycles of any periodicity. These growth rate cycles are
always bounded (even without any “ceiling”), whereas the income variable itself shows
exponential growth (with cyclic deviations). The method therefore also provides a synthesis
between growth theory and business cycle theory.

1.2. The Samuelson–Hicks model

The objective of the present article thus is to reconsider the Hicksian multiplier-
accelerator model of business cycles. This model, introduced bySamuelson (1939), was
based on two interacting principles: consumers spending a fractionc of past income,
Ct = cYt−1, and investors aiming at maintaining a stock of capitalKt in given propor-
tion a to the incomeYt to be produced. With an additional time lag for the construction
period for capital equipment, net investments, by definition the change in capital stock,
It = Kt −Kt−1, becomeIt = a(Yt−1 − Yt−2). As income is generated by consumption
and investments,Yt = Ct + It , a simple feed back mechanismYt = (c + a)Yt−1 − aYt−2
was derived. It could generate growth or oscillations in income.

The consumption component was referred to in terms of the “multiplier” and the in-
vestment component in terms of the “principle of acceleration”. To be quite true to history,
two remarks should be added: first, Samuelson applied the accelerator to consumption ex-
penditures only; the above described application to all expenditures is due toHicks (1950),
discussed in more detail below. The difference in terms of substance is marginal. Second, all
these models contain an additional term called “autonomous expenditures” (i.e., government
expenditures, any consumption independent of income, and investments not dependent on
the business cycles generated by the model). The multiplier, 1/(1 − c) (i.e., the multiplica-
tive factor applied to such autonomous expenditures), resulted in an equilibrium income,
or a particular solution to the difference equation. Income could then be redefined as a
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deviation from this equilibrium income, and the original equation regained, though now in
income deviations from the equilibrium. This makes sense of negative values of income
that inevitably result from the above difference equation.

However, there was more to the Hicksian reformulation. He realized that there must be
limits to the accelerator-based investment function. In a depression phaseIt = a(Yt−1 −
Yt−2) < 0, and it can even happen that income (=production) decreases at a pace so fast
that more capital can be dispensed with than disappears through natural wear. As nobody
actively destroys capital to such an end, there is a lower limit to disinvestment, the so
called “floor”, fixed at the (negative) net investment that occurs when no worn out capital
is replaced at all.

At the same time Hicks suggested that there be a “ceiling” at full employment, when
income could not be expanded any more. Hicks never assembled the pieces to a complete
formal model. It is clear that the floor constraint is applied to the investment function, so it
becomes something likeIt = max{a(Yt−1 − Yt−2),−I f}, whereI f is the absolute value of
the floor disinvestment. On the other hand it is not quite clear what the ceiling is applied to.
Most likely Hicks thinks of it as applied to income, so that the income formation equation
is changed toYt = min{cYt−1 + It, Y

c}, whereYc is the full employment capacity income.
Gandolfo (1985)interpreted the model this way, andHommes (1991)gave a more or less
full analysis of this model. The above symbols conform to Hommes’s notation. It seems
that the first formalization in this format is due toRau (1974).

It is not obvious in such a formulation which agents cut their expenditures when the
ceiling is reached. As an alternative one might incorporate it in the investment function, along
with the floor, thereby implying that it is the investors who abstain from further investment
when they realize that full employment is reached. This was the choice ofGoodwin (1951)
and many other students of the Hicksian business cycle machine, including the present
authors (seePuu, 1989; Sushko et al., 2003).

To the complete model also belong the autonomous expenditures which were already
mentioned. These can be constant, or growing. In his verbal description Hicks seems to
have been in favour of exponentially growing autonomous expenditures, as he obviously
wanted to model both growth and cycles around a growing trend. Growth, however, was
not created endogenously by the model, as the cycles were, but introduced ad hoc. To
make this type of model suitable for analysis, the floor and ceiling must be assumed to
be growing too, at the same rate as the autonomous expenditures, and this seems to have
been Hicks’s own tacit assumption. The assumption of equal growth rates is fairly arbitrary.
Gandolfo modelled it this way, though Hommes preferred to analyze the stationary case
where autonomous expenditures, floor, and ceiling were all constant. A recent mathematical
analysis of Gandolfo’s case may be found inGallegati et al. (2003).

1.3. A suggested reformulation

The assumed growth of the floor along with the autonomous expenditures is particularly
problematic. A growing capital stock, as a result of growing autonomous expenditures,
shouldincreasethe absolute value of maximum disinvestment, so it is not only arbitrary
to assume the floor to grow at the same rate as the autonomous expenditures, but the
change evengoes in the wrong direction. The floor would rather bedecreasingwith capital
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accumulation. For this reason it seems to be important to make capital an explicit variable
in the model, and to relate the floor directly to capital stock; putI f

t = rKt , whereKt is
capital stock andr is the rate of depreciation. Just to avoid misunderstanding, it should be
understood that, although the income variable, as we have seen, can be negative in the sense
of a negativedeviationfrom equilibrium, capital by necessity always is nonnegative.

Making this change to the model, we get the extra benefit that the growing trend need not
be introduced exogenously. It would resultwithin the model through capital accumulation.
The model henceexplainsboth the growth trend and the business cycles that take place
around it.

As for the ceiling, at least for a start, we dispense with it. It was noted byDuesenberry
(1950) in his review of Hicks’s book 1950, that both floor and ceiling were not always
needed for bounded motion and that in particular the ceiling could be dispensed with.
Allen (1957, p. 220)gives a very clear account of the argument: “On pursuing this point, as
Duesenberry does, it is seen that the explosive nature of the oscillations is largely irrelevant,
and no ceiling is needed. A first intrinsic oscillation occurs, the accelerator goes out in the
downswing, and a second oscillation starts up when the accelerator comes back with new
initial conditions. The explosive element never has time to be effective—and the oscillations
do not necessarily hit a ceiling”.

Of course, with accumulating capital, the floor is no longer fixed, and the growth of
capital stock allows increasing amplitude swings around the growth trend for which it is
also responsible. Growth is something that economists regard as a good feature for a model,
but it is no good for the use of mathematical methods which favour the study of fixed points
and their destabilization, stationary cycles, quasiperiodicity, and chaos. To make the model
suitable for standard analysis, we focus on relative dynamics, the rate of growth of income,
and of the actual capital/output ratio.

Before this reduction to relative dynamics, we, however, have to state the complete model
with the explicit inclusion of the stock of capital.

2. The model

2.1. The absolute growth dynamics

Let us first just restate the consumption function

Ct = cYt−1, (1)

and the investment function

It = max{a(Yt−1 − Yt−2),−rKt−1}, (2)

wherec, a andr are parameters such that 0< c < 1, a > 0, 0< r < 1.
We now also need a relation for capital stock updating

Kt = Kt−1 + It, (3)

which just says that capital stock changes with net investments according to(2), accelerator
generated asKt = Kt−1 + a(Yt−1 − Yt−2), or, in the case when the floor is activated, just
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decays, like a radioactive substance asKt = (1 − r)Kt−1. As there is no ceiling, the income
generation equation reads

Yt = Ct + It. (4)

Eqs. (1)–(4)now define the complete system. It is easy to see through numerical studies
that the model can create a process of accumulating capital, along with a growth trend in
income, and this without any growing autonomous expenditures at all. Further, the model
creates growth cycles around these secular trends.

2.2. Fixed points and their stability

Let us first note that if

a(Yt−1 − Yt−2) + rKt−1 ≥ 0, (5)

then the first alternative in(2) applies. Let us call the part of phase space where the inequal-
ity (5) is satisfiedRegion I. Then, eliminating the consumption and investment variables
through substitution from(1) into (3) and (4), we see that inRegion I the system is defined
by

Kt = Kt−1 + a(Yt−1 − Yt−2), (6)

Yt = cYt−1 + a(Yt−1 − Yt−2). (7)

Let us now look at the other alternative, where the second branch of(2) is activated (i.e.,
It = −rKt−1). This occurs when

a(Yt−1 − Yt−2) + rKt−1 < 0. (8)

Let us call thisRegion II. From(1) to (4) we get

Kt = (1 − r)Kt−1, (9)

Yt = cYt−1 − rKt−1. (10)

It is easy to find the fixed points for(6)–(7). From (7), there is just one fixed point
for income,Yt = Yt−1 = Yt−2 = 0. Next, puttingYt−1 = Yt−2 in (6), we conclude that
Kt = Kt−1, that isany (positive) capital stock may be an equilibrium stock. Simulation
experiments indicate that, depending on the dynamical process (i.e., on the initial condi-
tions), the stock of capital may end up at different equilibrium values. As for stability, this
also implies that, if there is some perturbation of the capital stock, then the process will
again end up at a new equilibrium stock. However, income always goes to the single zero
equilibrium. This, of course, is true only if the equilibrium isstable.

It is also obvious that the system(9)–(10)has only one fixed point located at the origin
of phase space.

Let us first investigate the stability of the system(6)–(7). As (7) is independent of the
capital stock, we can study this single equation alone. However, we have to observe that(7)
is a linearsecond orderdifference equation. Writing down the Jacobian matrix of(7) and
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the corresponding characteristic equation, one can easily get its roots, or eigenvalues:

λ1,2 = 1
2(a+ c) ± 1

2

√
(a+ c)2 − 4a. (11)

From(11)we can immediately see that the zero fixed point is a node if (a+ c)2 − 4a > 0
and a focus if (a+ c)2 − 4a < 0. It is stable iff |λ1,2| < 1 . The latter condition holds
for the parameter ranges:c < 1, a < 1, a > −(1 + c)/2. Taking into account the feasible
parameter range, we conclude that thestability regionfor the fixed point of(7) is

0< c < 1, 0< a < 1.

Because of the linearity, the system (6)–(7) is a contraction for the above parameter range
not only at the fixed point but in the entireRegion I.

The system(6)–(10) becomes an expansion if|λ1,2| > 1, which happens fora > 1.
Now let us check the stability of the system(9)–(10). Its eigenvalues areµ1 = c and

µ2 = 1 − r. As 0< r < 1 and 0< c < 1, we note that both eigenvalues are positive and
less than unity. Accordingly, the system(9)–(10), defined inRegion II, is a contraction.

The economics of this is that inRegion II the system tends to equilibrium, with zero
capital and zero income. The stability of the map(9)–(10) would be a big problem if the
process were not easily mappedback into Region I, where the fixed point, as we have
seen, may be unstable. Then the process can jump back and forth between the Regions any
number of times, so being kept going forever. If

r < 1 − c,

(a+ c)2 − 4a < 0,

a > 1,

hold, then, as proved inAppendix A(available on the JEBO website), this jumping between
regions occurs in finite numbers of iterations foranyinitial conditions we may care to choose.
The first condition states in terms of subject matter that the rate of capitaldepreciationr is
less thanthe rate ofsaving1 − c. This seems to be a condition fairly likely to be fulfilled
in most cases.

2.3. The fixed point bifurcation

As we have seen, only the fixed point of(7) may become unstable. Indeed, at

a = 1, (12)

the eigenvalues(11)are complex conjugate and have unitary modulus. Thus, the fixed point
has a bifurcation analogous to the Neimark bifurcation. At the bifurcation we can write the
eigenvalues(11)asλ1,2 = cosθ ± i sinθ, where

cosθ = 1
2(a+ c), (13)
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and

sinθ = 1
2

√
4a− (a+ c)2.

In the case that there is a rational rotation around the fixed point with a rotation number
m/n, the solutionθ = 2πm/n holds. Then, using(13) and(12), we get the exact value of
the parameterc which corresponds to the rotation numberm/n:

c = 2 cos

(
2πm

n

)
− 1. (14)

For instance, at the bifurcation(12) the rotation numberm/n, wherem = 1 andn =
1,. . . ,6holds forc = 1,−3,−2,−1, (

√
5 − 3)/2< 0 and 0, respectively. Obviously, these

values are out of the admissible parameter range, som/n = 1/6 is the lowest basic resonance
that falls into the admissible parameter range 0< c < 1, starting atc = 0, a = 1. We see
the pointsc according to(14)for n = 6,. . . ,15 marked by the ascending sequence of circles
on thea = 1 line in Fig. 3. The global dynamics of the system(1)–(4) ata = 1 is briefly
described inAppendix B(also available on the JEBO website).

Our study of this bifurcation was confined to the fixed point of(6)–(7), and the reader
may note that then(7) is no different from the original Samuelson–Hicks model. However,
globally, the moving floor component, which is related to capital stock, is important, and

Fig. 1. Time series of oscillating income around a growth trend (white curve), and growing capital stock with
recessions (black).
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eventually it is the growing capital stock that is responsible for the secular growth created
by the proposed model fora > 1.

In Fig. 1, we show typical growth paths for capital and income. Income (or rather its
deviation from equilibrium) is the white curve, oscillating around the zero value, with
increasing height of the peaks and increasing amplitude. The picture was calculated for
parametersa = 2.25, c = 0.65, r = 0.01. As we will see below, this case results in a 23-
period growth cycle around a growing trend. As the growth rate makes a constant amplitude
oscillation, income itself oscillates with increasing amplitude. As for capital, the black
curve shows an ever increasing trend with periodic recessions. As we see, the slope of these
increases. This is a reflection of the fact that the floor restriction slackens with increasing
capital, and larger disinvestment is allowed with growing capital stock. The falling segments
occur where the floor is activated. InFig. 1, we emphasized this through the colour of the
vertical strips, the darker shade indicating that the floor is activated (i.e., that the system is
in Region II). In the bright strips the system is inRegion I.

3. Stationary relative dynamics

It is convenient to study the phenomena in the above way only whena ≤ 1, that is when
the zero fixed point for income is stable. If it is not, then there is exponential growth in the
model, so all variables eventually explode. If we try to display time series such asFig. 1over
prolonged periods, we just get horizontal lines first and then oscillations growing so fast
that they break any frame for the figure. In the same way, in the phase diagrams we only see
spiralling motions that move out from the frame, even if there is something more to see, such
as growth cycles, or a quasiperiodic trajectory around a trend. However, we cannot catch
these visually, neither can we use standard mathematical analyses for such growing systems.

We would need to find some variable transformations that make the oscillations around
the exploding trends stationary periodic, quasiperiodic, or chaotic, whatever they are,
but such that they can be studied by standard methods. As the growth trend is not given
by any exogenous term growing at agiven rate, unlike the Gandolfo version, we have
to define some transformed variables within the modelsuch that they undergo stationary
cyclic or other motion.

As a pedagogical device, one of the present authors(Puu, 1963)40 years ago sug-
gested studying the evolution of new relative variables for the original Samuelson–Hicks
model:Yt = (c + a)Yt−1 − aYt−2 through definingyt := Yt/Yt−1. The objective was to
avoid complex numbers in the study of second order difference equations through mak-
ing the iteration one dimensional, though non-linear. In fact the original model becomes
yt = (c + a) − a/yt−1. However, this strategy makes, for instance, cyclic variations in the
income growth variable really become cyclic. We now have a system with capital as an
additional variable, but never mind, we can work out a suitable relative representation for
the capital variable as well.

Let us again eliminate investments and consumption in (3)–(4) through substitution
(1)–(2) and then define new variables. Let

xt := Kt/Yt−1 (15)
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and

yt := Yt/Yt−1. (16)

These new variables are the actual capital/output ratio, as distinguished from the optimal
ratio a, and the relative change of income from one period to the next, quite as in the
framework suggested inPuu (1963). Again there is a reduction of dimension for the system,
now from3to2. Using these new variables defined in(15)–(16), we can restate the dynamical
system as follows. Suppose we have

xt−1(a(yt−1 − 1) + rxt−1) ≥ 0.

This corresponds toRegion I in the original model as we see from(5). The reader may
wonder about the occurrence ofxt−1 as a multiplicative factor in this new region definition.
The reason for it is that division of the inequalities(5) or (8) through byYt−1, which can
take on a negative sign, may change the sense of the inequality. For this reason we would
have to split the two regions in four, but we can avoid this complication if we multiply the
left hand sides of the inequalities(5) or (8) through by a variable defined in the new system
(15)–(16), which always takes the sign ofYt−1. Such a variable isxt , as we see from(15),
because capital stockKt is always nonnegative.

Using(15)–(16), the system inRegion I can then be written

xt = xt−1

yt−1
+ a

(
1 − 1

yt−1

)
, (17)

yt = c + a

(
1 − 1

yt−1

)
. (18)

Suppose that, on the contrary,

xt−1(a(yt−1 − 1) + rxt−1) < 0.

This obviously corresponds toRegion II in the original model. Then(17)–(18) are replaced
by

xt = (1 − r)
xt−1

yt−1
, (19)

yt = c − r
xt−1

yt−1
. (20)

3.1. Fixed growth points

Written as relative dynamics(17)–(20), the new system has fixed points as well. In terms
of economics they represent equilibrium growth rates. Consider firstRegion I. Putting
xt = xt−1 = x, yt = yt−1 = y in (17)–(20), we obtain

x = a (21)
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and

y2 − (a+ c)y + a = 0. (22)

According to (21) the equilibrium capital/output ratiox equals the optimal one as
indicated by the acceleratora, which intuitively seems most reasonable. As for(22), it
determines either two real or two complex conjugate equilibrium values for the relative
income growth rate

y1,2 = 1
2(a+ c) ± 1

2

√
(a+ c)2 − 4a. (23)

We may observe that(22) is equal in form to the characteristic equation for the orig-
inal Samuelson–Hicks model, so the growth rate equilibria exist whenever the original
multiplier-accelerator model has solutions with tworeal roots.

A saddle-node bifurcation resulting in the appearance of the fixed points (x, y1) and
(x, y2) obviously occurs when

(a+ c)2 = 4a.

For(a+ c)2 < 4ano fixed point exists for the income growth rate, whereas for(a+ c)2 >
4a there are two fixed points, one stable and one saddle. This is easy to see from(18), as
the derivative (puttingyt−1 = y at equilibrium) is

∂yt

∂yt−1
= a

y2
.

Using the larger root according to(23), we get

a

y2
1

= a+ c −
√

(a+ c)2 − 4a

a+ c +
√

(a+ c)2 − 4a
< 1,

and, using the smaller

a

y2
2

= a+ c +
√

(a+ c)2 − 4a

a+ c −
√

(a+ c)2 − 4a
> 1.

So far we only checked the stability of(23). We should complete the discussion by
differentiating(17)–(18) and again deleting the index in the right-hand side,

∂xt

∂xt−1
= 1

y
,

so stability for the capital variable at the fixed point depends on the equilibrium value of
y. From(23)we see that if the roots are real, then both are positive (due to the minus term
under the root sign). Further, wheneverc < 1, which it must be to make any sense, we have
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1< y2 < y1 according to(23). Hence,

1

y1
< 1

and

1

y2
< 1.

Thus, the fixed point (x, y1) is a stable node while (x, y2) is a saddle. This is a somewhat
pedestrian way of checking stability, for income and capital separately, but quite as in the
original model, the Jacobian matrix of the system(17)–(18) is triangular, making the main
diagonal derivatives actually the eigenvalues.

3.2. Fixed decline points

As was the case before the reduction to relative dynamics, the model also has fixed
points inRegion II (i.e., where(19)–(20) hold). Put againxt = xt−1 = x, yt = yt−1 = y

in (19)–(20). The system obviously has the fixed point

x = 1 − r

r
(c + r − 1),

and

y = 1 − r.

If we recall that the newy-variable is the income ratio for one period to the previous,
then we realize that the fixed point means income change at the constant rate(1 − r),
which is the rate of capital depreciation. The accelerator then gives the same investment as
the floor condition, and capital is just depreciating at the same rate. When the system is in
this new fixed point, corresponding to a negative constant growth rate−r, then the system
is on its way towards the zero equilibrium for capital and income according to the original
setup inRegion II. The eigenvalues in the fixed point are 0 andc/ (1 − r). It is stable if
r < 1 − c, but for the same condition this fixed point does not belong toRegion II. Thus,
the system switches between the two definition regions, so the attractivity of the new fixed
point does not really matter.

There is an additional fixed point inRegion II:

x = 0

and

y = c.

The eigenvalues are 0 and(1 − r) /c, so as the second eigenvalue is the reciprocal of
the corresponding one in the previous case, it exchanges stability with the aforementioned



342 T. Puu et al. / J. of Economic Behavior & Org. 56 (2005) 331–348

Fig. 2. The 23-period cycle in the relative dynamics system (same as inFig. 1).

fixed point. The economics of this fixed point is a classical multiplier process converging
to equilibrium, with zero capital. In a sense the two fixed points are the same. They both
eventually lead to zero income (deviation from equilibrium due to autonomous expenditures)
and zero capital. However, the paths of approach are different, and we now focus on growth
rates, not the income and capital variables themselves.

3.3. Periodicity

So far we studied the fixed points of the relative dynamics system. Numerical experi-
ment indicates cycles in the growth rates. For instance, as we see inFig. 2, the parameter
combinationa = 2.25, c = 0.65, r = 0.01 results in a 23-period growth cycle. The case
was illustrated inFig. 1, though it was difficult to see any regular pattern of oscillation in
that picture. On the white income growth trace inFig. 2we marked the successive iterates
with little circles, so it is easy to identify the periodicity. The black trace is for the capital to
income ratio. It is worth noting that the long horizontal sections coincide with the level of the
accelerator coefficient, which seems to catch the trajectory for considerable periods of time.

To see some more possibilities, we show a bifurcation diagram inFig. 3. It represents
the parameter planea (horizontal),c (vertical). The third parameterr is fixed at 0.01.
Changing this parameter, the rate of depreciation, changes little in the picture. The changes
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Fig. 3. Bifurcation diagram. Tongues of periodicity and stable equilibrium region.

mainly concern the structure of white streaks that seem to run through the points where the
periodicity tongues look twisted.

The tongues were computed for the relative dynamics model(17)–(20), for periodicities
1–45. However, the starting points for the periodic tongues were computed in the first
model in(14), as explained above. On the bifurcation line, the original systemis periodic
(for rational rotation numbers), so this is not surprising. To the left of the vertical line at
a = 1, the zero fixed point of the original system is stable.

In Fig. 3, we also see a parabola turned upside down. It is the locus of points(a+ c)2 =
4a, the borderline between complex (below) and real (above) roots to the characteristic
equation. To the left of the linea = 1, the attracting zero fixed point is a focus below
the parabola and a node above it. To the right of the linea = 1, we have the tongues of
periodicity drawn below the parabola. Above it there is the area where the roots(23) are
real, and there is an attractive fixed point for the relative dynamics system. The original
system then goes to a stable growth rate at the larger value of(23).

4. Absolute and relative variables

We should now clarify a little more the relation between the 3D map in original absolute
variables (Kt−1, Yt−1, Yt−2) �→ (Kt, Yt, Yt−1) and the derived 2D map in relative variables
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(xt−1, yt−1) �→ (xt, yt). The need for the relative system arises in the case when the acceler-
ator generated motion is explosive (i.e. whena > 1 holds). If so, then the absolute variables
always explode to infinity. This can occur in two ways: when growth ratesy1,2 according
to (23) are real, then asymptotically the absolute system settles to exponential growth at
the higher (stable) rate. If they are conjugate complex, which is the more interesting case,
then the relative system settles at oscillatory motion in the growth rates. As we saw in the
bifurcation diagramFig. 3, this oscillatory motion is predominantly periodic. The location
of the parameter point that our example displayed inFigs. 1 and 2, is within the 23-period
tongue and may be difficult to detect because the tongue is so tiny and stuffed among other
tongues. Easier to find are parameter points such asa = 1.25, c = 0.05, which is located in
the six-period tongue, ora = 1.25, c = 0.25, which is located in the seven-period tongue,
both leading to regular motion of low periodicity. Unfortunately these low periodicities
correspond to parameter points for which the propensity to consume is unrealistically low,
but they may yet be useful for further numerical studies.

The periodicities are a novel feature of the present model when the floor is tied to
the stock of capital. In the original Samuelson–Hicks model,Yt = (c + a)Yt−1 − aYt−2,
periodic solutions donot occur. The closed form solution is a product of a growth factor
ρt , whereρ = √

a, and an oscillatory factor, cos(θt), whereθ = arccos((a+ c)/(2
√
a)).

As it is most unlikely thatθ = 2πm/n (i.e., that the oscillation frequency is a rational
multiple of 2π), oscillatory motion is alwaysquasiperiodic. In the (a, c)-parameter plane,
cos(2πm/n) = (a+ c) /

(
2
√
a
)

for m, n integers results in a set of thincurves, not in a set
of thick tongues with nonzero area measure.

As we saw, the growth factor for this original model is
√
a. Numerical studies indicate

that when the floor is activated in periodic solutions to our model, the growth factors are
considerably smaller, even if there still is exponential growth as long asa > 1 holds (see
below for a numerical example.)

For the contrary casea < 1, with a stable zero fixed point for income, we still need the
model in absolute variables because the relative system then makes no sense.

However, even with explosive motion we are still primarily interested in the absolute
variables, income rather than its growth rate (note that motion of the relative variables is
always bounded, even when the absolute variables explode.) It is then worth noting that
the original system for the evolution of capital and income can always be retrieved from
any solution to the relative system. One could arbitrarily put income in the first time period
equal to unity and then obtain its evolution as a continued product of the growth factors
calculated from the relative model. A different initial first period income would then just
scale the entire time series obtained (up or down) in proportion.

If the solution for the growth rates is periodic, then the continued product over a complete
cycle takes a givenconstantvalue, no matter at which observation we start. This constant
for our exemplificatory 23-period cycle is for instance 7.400966. . ., which, averaging ge-
ometrically over a complete cycle, yields a growth factor of 1.0909. . . per period for the
income variable. This can be compared to the growth factor for the original Samuelson–
Hicks model, which equals

√
2.25 = 1.5 per period, as we hada = 2.25, and a growth

factor exceeding 11,200 over one complete cycle!
What has been said also means that we can regenerate all further cycles in the time series

from the values for just one cycle through multiplication by this continued product over
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one cycle. Note how this lowering of growth rates in the present model, as compared to
the original Samuelson–Hicks model, strengthens the Duesenberry argument, as it is now
much less likely that the present moderate growth rates will hit any “ceiling” growing with
labour force or the like.

5. Conclusion

Above we suggested a business cycle model, consisting of about half of the bits and
pieces proposed by Hicks in his classical work. In particular, the “floor” was retained, but
the “ceiling” omitted, in concordance with Duesenberry’s argument.

As a new element, the floor was tied to actual capital stock through a fixed depreciation
factor. Hence, in the process of growth with capital accumulation, the level of the “floor”
changes, thus allowing increasing amplitude oscillations around the growing trends for
income and capital. Further, the secular growth trends are created within the model and
need not be introduced in terms of exogenous growing expenditures.

In order to analyze the oscillating growth rates around the rising trends, a transformed
system of relative dynamics, in terms of the income growth rate and the capital/income
ratio, was proposed. This reduced the system from three to two dimensions, though it also
introduced new complexity through transforming linear relations to nonlinear with possibly
vanishing denominators.

The relative dynamics system and the detailed structure we see inFig. 3 have some
intricacy of a mathematical nature, which the authors intend to study more closely in a
coming publication.

Appendix A

Let us rewrite the system ofEqs. (1)–(4)in the form of an iterated map. We introduce
the following variables:

xt = Yt−1,

yt = Yt,

zt = Kt.

For convenience we skip the index and use a dash to denote the one period advance-
ment operator. Then the system(1) can be written as a three-dimensional piecewise linear
continuous mapF given by two linear mapsF1 andF2 which are defined, respectively, in
Region I (denotedR1) andRegion II (denotedR2):

F :

{
(x′, y,′ z′) = F1(x, y, z), if (x, y, z) ∈ R1,

(x′, y,′ z′) = F2(x, y, z), if (x, y, z) ∈ R2,
(A.1)
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where

F1 :



x′ = y

y′ = −ax+ (c + a)y,

z′ = a(y − x) + z

R1 =
{
(x, y, z) : z ≥ a

r
(x− y), z > 0

}

F2 :



x′ = y

y′ = cy − rz,

z′ = z(1 − r)

R2 =
{
(x, y, z) : 0< z <

a

r
(x− y)

}
.

Herea,candr are real parameters: 0< c < 1,a > 0, 0< r < 1;x,y andzare real variables:
z > 0 (one can check that if an initial value ofz is positive, then it remains positive under
the iterations).

The purpose of this consideration is to give conditions and explain a mechanism of
constant shifting between the two regions that keeps the process going fora > 1 without
converging to zero equilibrium.

To proceed we need to reformulate some results described inSection 2.2.
The fixed point (x∗, y∗, z∗) of F1 is any point of thez-axes: (x∗, y∗, z∗) = (0,0, z∗)

wherez∗ ≥ 0. The eigenvalues ofF1 are

λ1 = 1, λ2,3 = 1
2(a+ c) ± 1

2

√
(a+ c)2 − 4a

and the corresponding eigenvectors are

v1 = (0,0,1), v2,3 = (1, λ2,3, a).

The fixed point (0,0, z∗) is stable iff|λ2,3| < 1, which holds fora < 1. It is a stable node
for (a+ c)2 > 4a and a stable focus for (a+ c)2 < 4a. Fora > 1 the fixed point (0,0, z∗)
is unstable.

The fixed point (x∗, y∗, z∗) of the mapF2 is at the origin: (x∗, y∗, z∗) = (0,0,0). The
eigenvalues ofF2 are

µ1 = 0, µ2 = c, µ3 = 1 − r

and the corresponding eigenvectors are

w1 = (1,0,0), w2 = (1, c,0), w3 = (−1, r − 1, (c − 1 + r)(r − 1)/r)

The fixed point ofF2 is always stable for the parameter range considered.
Thus, fora < 1 the whole system is stable.
Let us denote the plane, which separates the two regionsR1 andR2, by LC−1 :

LC−1 =
{
(x, y, z) : z = a

r
(x− y)

}
.
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If we apply eitherF1 or F2 to this plane, we get a new plane, denoted LC0, which is the
same frombothapplications:

LC0 = F (LC−1) =
{

(x, y, z) : z = 1 − r

r
(cx− y)

}
.

Its consecutive images byF are

LCi = F (LCi−1), i = 1, . . .

We call these setscritical planes, emphasizing the fact that they play an important role, as
critical lines, or critical surfaces, for noninvertible maps(Gumowski and Mira, 1980).

Proposition.Let a > 1, (a+ c)2 < 4a, c < 1 − r. Then any point (x0, y0, z0) ∈ R1
is mapped toR2 in a finite number of iterations while any(x0, y0, z0) ∈ R2 is mapped to
R1 also in a finite number of iterations.

The first part of the Proposition is obvious: for (a+ c)2 < 4a, a > 1, any point of the
z-axis is an unstable focus, thus, any point (x0, y0, z0) ∈ R1 rotates under iterations byF1
around thez-axis away from it. Note that in the direction of the eigenvectorv1 = (0,0,1)
we haveλ1 = 1; thus, all points (xi, yi, zi) = F1(xi−1, yi−1, zi−1), i = 1, . . . , j, belong to a
rotation planez = ax+ z∗ corresponding to the eigenvectorsv2 andv3 and passing through
the fixed point (0,0, z∗). Any such a rotation plane obviously intersects the critical plane
LC−1. Thus, after a finite number of iterations the trajectory enters the regionR2: there
existsj > 0 such that (xj, yj, zj) ∈ R2.

Let now (x0, y0, z0) ∈ R2. First note that, as the mapF2 does not depend onx (a fact
that causes one eigenvalue to be zero), any point (x0, y0, z0) ∈ R2 is mapped byF2 on the
plane LC0 in one step: (x1, y1, z1) = F2(x0, y0, z0) ∈ LC0. Obviously, as long as iterated
points are inR2, they all belong to LC0 and approach the stable zero fixed point of the map
F2 in the eigendirectionsw2 andw3.

For c < 1 − r the eigenvaluesµ2, µ3 of the mapF2 are such thatµ2 < µ3 (i.e., the
iterated points move more quickly to the zero fixed point in thew2 direction and asymp-
totically become tangent tow3), but for the same conditionc < 1 − r we havew3 ∈ R1.

Thus, approaching the zero fixed point, the trajectory necessarily enters the regionR1 :
there existsk > 0 such that (xk, yk, zk) = F2(xk−1, yk−1, zk−1) ∈ R1.

Appendix B

It is also interesting to describe the dynamics of the mapF given in(A.1) ata = 1. It is a
bifurcation value for the mapF1 when two of its eigenvalues, being complex-conjugate, are
on the unit circle:|λ2,3| = 1. It means that the fixed point (0,0, z∗) is a center. Any point in
its neighborhood, denotedP, is either periodic with rotation numberm/n, or quasiperiodic,
depending on the parameters. The value of the parameterc that corresponds to the rotation
numberm/n is given in (14). What is this neighborhoodP? Obviously,P ∈ R1, and it
belongs to the rotation planez = ax+ z∗ passing through (0,0, z∗) corresponding to the
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eigenvectorsv2 andv3. Without going into details we just say that in the case of a periodic
rotation the setP is a polygon whose boundary is made up by segments of critical lines
that are intersections of LCi, i = 0, . . . , m− 1, with the rotation plane (see Sushko et al.
where an analogous consideration is provided in detail for a two-dimensional piecewise
linear map). In the case of quasiperiodic rotation the setP is an ellipse, each point of which
is tangent to some critical line.

We can consider a unionU of such setsP constructed for each fixed point (0,0, z∗). This
union is either a polygonal cone withm sides (in the case ofm-period rotation), or a cone
(quasiperiodic case), that issue from the origin. Any point (x, y, z) ∈ U is eitherm-periodic,
or quasiperiodic, while any point (x, y, z) /∈ U is mapped to the boundary ofU in a finite
number of iterations.
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