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Abstract. This article deals with a two-parameter family of piecewise smooth
unimodal maps with one break point. Using superstable cycles and their sym-
bolic representation we describe the structure of the periodicity regions of the
2D bifurcation diagram. Particular attention is paid to the bistability regions
corresponding to two coexisting attractors, and to the border-collision bifurca-
tions.

1. Introduction. The theory of one-dimensional (1D henceforth) smooth discrete
dynamical systems is well developed since many years. Regarding to the deter-
ministic approach we refer to [3], [8], [9], [20], [25] (to cite a few). Particularly
developed is the bifurcation theory of smooth unimodal maps, based on the study
of the logistic map g : x 7→ g(x) = ax(1−x) as the parameter a varies in the interval
[3, 4].

However, in the investigation of the dynamic properties of applied models the
corresponding functions are often only piecewise smooth (or piecewise linear). Ex-
amples of the relevant models coming from economics can be found in [6], [7], [13],
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[23], [24]. See also [27] with examples and references related to piecewise smooth
dynamical systems coming from biology, engineering and other sciences.

The bifurcation theory of piecewise smooth dynamical systems is less developed.
For such systems we can in general distinguish between two types of bifurcations:
One includes the bifurcations which occur in smooth dynamical systems (either
local, associated with the eigenvalues +1 or −1, or global, associated with the ho-
moclinic bifurcation of some cycle, or to the limit set of some sequence of bifurcation
values), while the other is the so-called border-collision bifurcation [21]. This bifur-
cation, specific for piecewise smooth maps, occurs when a trajectory collides with
one of the break points, separating intervals in which the map changes its definition.
In general, crossing such a point, there is a discontinuous change in the derivative,
and this may cause an abrupt transition in the structure and stability of attracting
and repelling invariant sets. The effect of the merging of a periodic point with a
border point, i.e. the effect of the border-collision bifurcation, is not unique. We
may have the abrupt transition from an attracting cycle to another attracting cy-
cle of any period (which may also appear with several or infinitely many repelling
cycles), or to cyclical chaotic intervals of any period.

It is now known that the study of the bifurcations associated with piecewise
smooth systems started in the Russian literature with the works by Feigen (in
the decade 1970-1980), however they came to the knowledge of a wide public only
recently, by the translation of his main results in [4]. In this paper some analyt-
ical conditions are given related to the possible consequences of a border-collision
bifurcation in n-dimensional piecewise smooth systems. In that literature the bifur-
cations associated with the border points are called C-bifurcations (see also [11]).
While the term border-collision bifurcation was introduced by Nusse and Yorke [21],
[22]. In these papers the authors examine bifurcation phenomena for 1D and 2D
piecewise smooth maps and state explicitly which border-collision bifurcation does
occur depending on parameters. Their approach was developed in later papers (see,
for example, [1], [2]) in which the possible border-collision bifurcations are classified
according to the parameters of corresponding normal form which is the piecewise
linear approximation of the map in the neighborhood of the break point.

At the same time, a different kind of analysis of the bifurcation sequences, allowed
in piecewise linear maps, has been performed in [16], [17] (for a unimodal map
with one break point), and in [18] (for a bimodal map with two break points). It
was shown that for piecewise linear maps one of the most relevant characteristics
is the absence of cascade of period-doubling bifurcations of periodic orbits. The
transitions are reduced to a few cascades of band merging bifurcations of cyclical
chaotic intervals, while periodic orbits are organized in a period-adding sequence.
This is mainly due to the vanishing of second and higher order derivatives causing
the collision in one bifurcation point of several bifurcations which for smooth maps
occur at separate bifurcation values.

Typical for piecewise smooth dynamical systems is the so-called “sausage” struc-
ture of the periodicity tongues in the parameter space, first described in [12] in the
case of a piecewise linear 1D map, and then generalized for higher dimensions in
[27], see also [24].

The object of the present paper is to investigate the dynamic properties of a
particular two-parameter family of piecewise smooth unimodal maps with one break
point. Following the economic model proposed in [5], we consider the map f defined
by a piecewise smooth function f(x) which consists on a linear function joined with
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the logistic in a break point x, namely,

f : x 7→ f(x) =
{

f1(x) = rx, if 0 ≤ x < x;
f2(x) = ax(1− x), if x ≤ x ≤ 1; x = 1− r

a
, (1)

where a and r are real parameters varying in the ranges a > 3 and 1 < r < a. We
shall see that the complexity of the two-dimensional (2D henceforth) bifurcation
diagram in the (r, a)-parameter plane is associated with local and global bifurcations
due to the smooth part of the function f(x), combined with the border-collision
bifurcations due to the existence of the break point x at which the function f(x)
changes definition.

Figure 1. The function f(x) at r = 3.268, a = 3.8406, in case of
coexisting attracting 3-cycle and attracting 6-cycle.

The peculiar property of this unimodal map is the existence of infinitely many
regions of bistability in the (r, a)-parameter plane, corresponding to two coexisting
attractors (cycles or chaotic intervals), although the shape of the function f(x)
seems not suggest this peculiarity: See Fig.1 where f(x) is shown in a case of
coexisting attracting 3-cycle and attracting 6-cycle (this case is commented in detail
in Section 4).

We recall that for smooth maps g (such as the logistic), the bifurcation scenario
is related to the curvature of the function g(x), and since Singer [26] relevant results
are associated with the notion of Schwarzian derivative Sg(x) 1. It is proved (see
also [8], or [3]) that for unimodal C3 maps with one critical (turning) point and
negative Schwarzian there exists at most one attractor which attracts the critical
point, plus possibly a stable fixed point attracting a boundary point of I. This
result holds also for unimodal C1 maps with piecewise monotone first derivative and
negative Schwarzian for each monotone branch (see [3] with an example of such a
map with two coexisting attractors). An analogous result is proved for unimodal C1

maps consisting of pieces of linear-fractional functions which have zero Schwarzian
[25] (it can be shown that unimodal maps with positive or zero Schwarzian cannot
be differentiable at the extremum point). Other examples of unimodal maps with

1Sg(x) =
g′′′(x)
g′(x)

− 3
2
(

g′′(x)
g′(x)

)2
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two coexisting attractors are given in [26], [19]. The Schwarzian derivative of the
function f(x) given in (1) is Sf(x) = 0 for x < x and Sf(x) < 0 for x > x. It can
be shown that also the map f can have at most two attractors: In case of bistability
the critical point (the local maximum) is attracted by one attractor while the break
point is attracted by the other one (an example, studied in details in Section 4, is
shown in Fig.6).

The next sections are devoted to the investigation of the structure of the 2D
bifurcation diagram of the map f in the (r, a)-parameter plane. The plan of the
paper is as follows. In Section 2 we first present some simple properties of the map
f . Then we recall briefly what is known for the logistic map about its attractors
and bifurcation structure of the interval [3, 4], in which the parameter a varies, and
give the conditions under which these results are applied for the map f . In Section
3, using the symbolic representation of the superstable n-cycle of the map f , we
describe a sequence of collisions with x (i.e., the sequence of BC), followed by a
border-collision bifurcation (BCB), related to this cycle under specified parameter
variation. Bistability regions in the (r, a)-parameter plane are described in Section
4. We show that the boundaries of the bistability regions in the (r, a)-parameter
plane are formed by fold, period-doubling and border-collision bifurcation curves.

2. “Logistic” Part of the Bifurcation Plane. Let us derive some simple prop-
erties and propositions for the map f defined in (1). In the considerations given
below we assume (r, a) ∈ R = {(r, a) : a > 3, 1 < r < a} .

Property 1. The map (1) has two fixed points x = 0 and x∗ = 1 − 1/a, both
unstable for (r, a) ∈ R.

The notion of critical (turning) point is usually associated with a local extremum
of the function: In the smooth case f ′(x) = 0 at such a point, while in the piecewise
smooth case the local extremum can be in a break point in which the derivative is
not defined. For the map (1) we have the two possibilities, as stated in the following
property:

Property 2. The local extremum (maximum) of the function (1) is at the break
point x for r ≤ a/2, and at the critical point xc = 1/2 for r ≥ a/2.

Using the above property we can easy get the condition for the interval I = [0, 1]
to be trapping for the map f (i.e., f(I) ⊆ I):

Proposition 1. If (r, a) ∈ D ⊂ R, where

D =
{
(r, a) : r < 2, a ≤ r2/(r − 1)

} ∪ {(r, a) : r ≥ 2, a ≤ 4} ,

then the interval I is trapping for f .

In the (r, a)-parameter plane the curves a = r2/(r − 1) (for r < 2) and a = 4
(for r ≥ 2), at which the interval I is invariant (i.e., f(I) = I), correspond to the
so-called boundary crisis bifurcation (homoclinic bifurcation of the origin). If the
(r, a)-parameter point is taken above these curves then almost all the trajectories
of the map f go to infinity, and the surviving set is a Cantor set Λ ⊂ I which is
invariant, also called a chaotic repellor.

We shall investigate the parameter range in which the interval I is trapping, i.e.,
we take the parameter values (r, a) ∈ D and, thus, f : [0, 1] → [0, 1] .

First of all we recall that a compact invariant set A is said attracting set of a 1D
map f if a neighborhood U(A) exists such that for any x ∈ U(A), fn(x) ∈ U(A) for
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any n, and fn(x) → A as n →∞. An attractor A is an attracting set with a dense
trajectory. The attractor of a 1D map can be either an attracting k-cycle (i.e., a
periodic orbit of period k) or an attracting k-cyclic chaotic interval (i.e., a cycle of
chaotic intervals of period k).

To proceed it is worth to recall briefly what is known for the logistic map g :
x 7→ g(x) = ax(1− x) about the bifurcation structure of the interval [3, 4] in which
the parameter a varies. It is known that

1) the set P = {a : A is a periodic orbit} is dense and consists of countably many
nontrivial intervals [10]. Moving inside one connected component of P we see the
period-doubling scenario;

2) the set I = {a : A is a cycle of chaotic intervals} is a completely disconnected
set of positive Lebesgue measure [14];

3) the complementary set C = [3, 4]\P\I is a completely disconnected set of zero
Lebesgue measure [15];
(see also [8] for the details and more references).

These results refer to the well-known 1D bifurcation diagram for the logistic map
with countably many windows of periodicity (the set P), limit points for period-
doubling cascades (belonging to the set C together with limit points for other bi-
furcation values) and values of a corresponding to cycles of chaotic intervals (the
set I). Each new periodicity window is originated by a fold (or tangent) bifurcation
followed by a cascade of period-doubling bifurcations up to the Feigenbaum accumu-
lation point. From the opposite side this point is the accumulation point for other
cascades of bifurcations, among which we indicate homoclinic bifurcations giving
rise to band-merging of chaotic intervals.

Recall now that an interval J ⊂ I is said to be absorbing for a 1D continuous
map f if a) f(J) ⊆ J ; b) a neighborhood U(J) exists such that for any x ∈ U(J) a
finite integer m exists such that fn(x) ∈ J for any n > m; c) the boundary of J is
made up by images of a critical point. In other words, the absorbing interval J is
such that after a finite number of iterations the forward images of a point x ∈ U(J)
enter J and cannot escape from it. So, an attractor of the map f must belong to
its absorbing interval.

The absorbing interval J of the logistic map is bounded by two images of the
critical point xc = 1/2, namely, J = [g2(xc), g(xc)].

Regarding the map f given in (1) the results known for the logistic map are
applied (for some fixed r) if the absorbing interval J of the map f is included in the
interval where this map is defined by the logistic function only, i.e., if J ⊆ [x, 1],
that is if f2(xc) ≥ x. The last inequality is satisfied under the condition stated in
the following

Proposition 2. If

r ≥ rl(a)
def
= a4/16− a3/4 + a (2)

then the absorbing interval J = [f2(xc), f(xc)] of the map (1) is included in [x, 1].

Thus, a parameter region Dl ⊂ D, for which (2) is satisfied (see Fig.2), has the
“logistic” bifurcation structure in the following sense: In order to comment a 1D
bifurcation diagram, if we fix a parameter point (r, a) = (r∗, a∗) ∈ Dl and move
it increasing a, up to the point (r∗, a∗∗) ∈ rl(a), then we get the 1D bifurcation
diagram of the logistic map for a ∈ [a∗, a∗∗].
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Answer to the questions of how the different attracting cycles of the logistic map
are ordered on the parameter a, and how many attracting cycles of the same period
n exist, can be get from the theory of symbolic dynamics (see [19], [12]), or from
the description of the “box-within-a-box” bifurcation structure (see [20]). Now we
recall only that the logistic map has k attracting cycles of the same period n for
different values of a, where the corresponding values of the pair (k, n) are (1, 2),
(1, 3), (2, 4), (3, 5), (5, 6), (9, 7), (16, 8), ... . These k different attracting n-cycles
are ordered on a according to the order of their symbolic sequences.

Figure 2. Two-dimensional bifurcation diagram of the map f in
the (r, a)-parameter plane. The regions Pn corresponding to at-
tracting cycles of period n, n ≤ 24, are shown by different gray
tonalities for different n.

Let Pn denote a region in the (r, a)-parameter plane such that for (r, a) ∈ Pn the
map (1) has an attracting cycle of period n (note that we use the same notation Pn

for different regions of the same periodicity, that is, there exist k different regions
Pn). Fig.2 presents a 2D bifurcation diagram of the map f in the (r, a)-parameter
plane where the regions Pn are shown by different gray tonalities for different n,
n ≤ 24. Obviously, the lower boundary of the periodicity region Pn∩Dl corresponds
to either a fold bifurcation (giving rise to a new periodicity “box”), or a period-
doubling bifurcation, while its upper boundary is a period-doubling bifurcation
curve.

3. Superstable Cycles and “Skeleton” of the Bifurcation Plane. Denote
by Db a region in the (r, a)-parameter plane such that xc ≥ x and x ∈ J, that is

Db = {(r, a) : a/2 ≤ r ≤ rl(a), 3 < a < 4} ,

where rl(a) is given in (2) (see Fig.2). In this section we investigate the structure
of the periodicity regions Pn ∩Db.

Let γi,j denote an attracting cycle of period n = i + j, i ≥ 0, j > 0, of the map
f, such that i points of the cycle belong to the segment [0, x) (where the map f
is defined by the linear function f1(x)) and j points belong to [x, 1] (where f is
defined by the logistic function f2(x)).
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If a point of the n-cycle of the map f collides with the break point under the
change in the parameters, we say that a border-collision (BC henceforth) occurs for
this cycle. It is in general accompanied with discontinuous change in the derivative
of f(x) at this point. Moreover, if after such a collision the orbit index [22] of the
border-crossing cycle changes, i.e., there is a qualitative change in the dynamics of
the map, we say that a border-collision bifurcation (BCB henceforth) occurs for the
cycle. (Recall that a cycle has orbit index 1 if its eigenvalue |λ| < 1, −1 if λ > 1
and 0 if λ < −1).

The considerations given in this section are based on the study of superstable
cycles γi,j (i.e., such that xc is a point of the cycle). We use the superstable cycles
because the (r, a)-parameter values corresponding to such cycles form the “skeleton”
of the 2D bifurcation diagram, in the same way as the values of a corresponding
to the superstable n-cycles of the logistic map characterize periodic windows of
the 1D bifurcation diagram. And as for the logistic map, also for the map (1)
the description of the bifurcation structure, based on the superstable cycles, can
be extended by continuity to some neighborhood corresponding to other attracting
cycles inside the periodicity region. An attracting (not superstable) cycle is denoted
γ̃i,j .

As a starting point it is reasonable to consider the cycle γ0,n, n > 2, existing for
(r, a) ∈ (Pn ∩ Dl), that is, the superstable n-cycle of the logistic map. Then we
decrease r until the left-hand (minimal) point of the cycle collides with the break
point x. In such a way the first BC for the cycle γ0,n occurs resulting in the cycle
γ1,n−1 which is obviously also superstable. We write γ0,n ⇒ γ1,n−1 to denote this
collision. Then we continue to decrease the parameter values in such a way that the
(r, a)-parameter point follows the superstable cycle γ1,n−1, until one more periodic
point undergoes the BC: γ1,n−1 ⇒ γ2,n−2. And so on, up to the BC which occurs
for the critical point xc. Obviously, this is the last BC for the superstable n-cycle,
occurring when xc = x, which holds for a = 2r (the left boundary of the considered
region Db).

To see that the last border-collision leads to a bifurcation of the superstable n-
cycle, we can apply to the map f at a = 2r the classification criterion stated in [1].
In this paper it is shown that to classify the BCB of the border-crossing fixed point
of a 1D piecewise smooth map, one has to analyze the parameters of the normal
form, which is the piecewise linear approximation of the map in the neighborhood of
the break point. For the superstable n-cycle of the map f one of these parameters is
obviously zero, thus, depending on the second parameter, there can be two results
of the bifurcation: 1) The superstable n-cycle looses its stability while an attracting
cycle of double period 2n appears (an analog of the period-doubling bifurcation for
smooth maps); 2) A border-collision pair bifurcation occurs when a point of the
superstable n-cycle and a point of the repelling n-cycle collide with the break point,
and these cycles disappear (an analog of the fold bifurcation).

It is obvious that under the parameter variation described above, only periodic
points which are on the left of xc can collide with x before xc itself collides with x.
Here we can make use of the symbolic representation2 of the cycle γ0,n and state
that the total number of admissible BC for γ0,n is equal to the number b of the

2We refer to the symbolic representation of the superstable n-cycles {xi}n
i=1 (see [19]), which

starts from the first iterate of the critical point xc, i.e., from x1 = f(xc). We write R if xi > xc,
or L if xi < xc, or C if xi = xc, for i = 1, ..., n.



888 IRYNA SUSHKO, ANNA AGLIARI AND LAURA GARDINI

symbols L in the symbolic sequence of γ0,n, plus the BCB occurring for the critical
point xc. Before giving the corresponding proposition let us present some examples.

Consider the periodicity regions P3, P6, P12, ..., (related to the period-doubling
cascade of the attracting 3-cycle) included in the so-called “ 3-box”. Fig.3 presents
the enlarged window I of the bifurcation diagram shown in Fig.2. In this figure
border-collision, period-doubling and fold bifurcation curves are shown by thin,
thick and dashed lines, respectively. The white curves correspond to the superstable
cycles.

Figure 3. The enlarged window I of the bifurcation diagram
shown in Fig.2.

Let the (r, a)-parameter point move from the right to the left inside P3 following
the superstable 3-cycle. The curve in the (r, a)-plane corresponding to the super-
stable cycle γ0,3 satisfies

f3
2 (xc) = xc, (3)

from where we get a = a1 ≈ 3.8319, while the curve of γ1,2 satisfies

f1 ◦ f2
2 (xc) = xc. (4)

The BC γ0,3 ⇒ γ1,2 occurs at (r1, a1) ≈ (3.2408, 3.8319) satisfying both the condi-
tions (3) and (4).

To see the left-hand part of the “3-box” we show in Fig.4 the enlarged window
II of Fig.2. The BCB of the superstable 3-cycle occurs for xc at a = 2r. Using this
equality and the condition (4) we get the BCB parameter values (r, a) = (r2, a2) ≈
(1.8393, 3.6786). The result of this bifurcation is a repelling cycle γ′2,1 of period 3
and an attracting cycle γ̃3,3 of period 6.

Similarly, moving the (r, a)-parameter point from the right to the left inside
P6, following the superstable 6-cycle, one can observe a BC sequence of this cycle
(see Figs 3, 4). The symbolic representation of the considered cycle γ0,6 is

∑
=

(RL2RLC)∞, with three symbols L, thus, this cycle can undergo three BC, namely,
γ0,6 ⇒ γ1,5 ⇒ γ2,4 ⇒ γ3,3, and the BCB occurring for xc at a = 2r.

The superstable cycle γ0,6 satisfies

f6
2 (xc) = xc. (5)
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Figure 4. The enlarged window II of Fig.2.

To write down the conditions corresponding to the cycles γ1,5, γ2,4 and γ3,3 we need
to know 1) the location of the periodic points on the x-axis to see for which point
the next BC occurs; 2) the corresponding composition of the functions f1(x) and
f2(x) in the condition f6(xc) = xc.

This information can be get using again the symbolic sequence
∑

of the cycle
γ0,6. First we write down the sequences corresponding to each point of the cycle
by shifting one symbol, then use the ordering rule3 for these symbolic sequences,
which gives also the order of coordinates of the periodic points (see Table 1).

k
∑

k order
1 RLLRLC 6
2 LLRLCR 1
3 LRLCRL 3
4 RLCRLL 5
5 LCRLLR 2
6 CRLLRL 4

Table 1. The shift sequences of (RL2RLC)∞ and their order.

Now let us introduce the symbolic representation
∑′

of the superstable cycle
γi,j = {xk}n

k=1 , i ≥ 1, j = n− i. We start from the first iterate of the critical point
xc, i.e., x1 = f(xc), and write the symbol

L1 if xk < x;
L2 if x ≤ xk < xc;
C if xk = xc and

3Recall that the ordering rule says, that given to symbolic sequences
P

1 =
P

µ... and
P

2 =P
ν... with common string

P
and next symbol µ 6= ν, the order of µ and ν (in the sence of the

natural order L < C < R) is the order of
P

1 and
P

2 if
P

is even, and the order is opposite if
P

is odd. Recall also that
P

is even (odd) if the number of R in
P

is even (odd) (see [12]).
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R if xk > xc,
for k = 1, ..., n. Here L1 denotes that the function f1(x) is to be applied while the
symbols L2, R and C are related to the function f2(x).

From Table 1 we see that the first (ordered on coordinates) periodic point has
the symbolic sequence

∑
2 = LLRLCR. Thus, the first BC γ0,6 ⇒ γ1,5 (under the

parameter variation described above) occurs for this point. After the collision this
point is on the left of the break point and, thus, the first symbol L is related to the
function f1(x). So, we can write down the symbolic sequence of the resulting cycle
γ1,5, which is

∑′

2 = L1L2RL2CR. Using
∑′

2 we get the condition which has to be
fulfilled for the cycle γ1,5:

f3
2 ◦ f1 ◦ f2

2 (xc) = xc. (6)
The BC γ0,6 ⇒ γ1,5 occurs when both the conditions (5) and (6) hold.

Similarly, from the Table 1 we can see that the second (ordered on coordinates)
periodic point has the symbolic sequence

∑
5 = LCRLLR. Thus, the second BC

γ1,5 ⇒ γ2,4 occurs for this point, after which we have two periodic points on the
left of the break point and, thus, two symbols L are related to the function f1(x).
So, the symbolic sequence of the resulting cycle γ2,4 is

∑′

5 = L1CRL1L2R, using
which we get the corresponding condition

f1 ◦ f2
2 ◦ f1 ◦ f2

2 (xc) = xc. (7)

Thus, the BC γ1,5 ⇒ γ2,4 occurs when the conditions (6) and (7) are satisfied.
The third (ordered on coordinates) periodic point (see Table 1) has the symbolic

sequence
∑

3 = LRLCRL. Thus, the third BC γ2,4 ⇒ γ3,3 occurs for this point, so
that after the collision three periodic points are on the left of the break point and,
thus, three symbols L are related to the function f1(x). So, the symbolic sequence
of the resulting cycle γ3,3 is

∑′

3 = L1RL1CRL1, and the corresponding condition
which has to be satisfied is

f1 ◦ f2 ◦ f2
1 ◦ f2

2 (xc) = xc. (8)

The BC γ2,4 ⇒ γ3,3 occurs when the conditions (7) and (8) hold.
Finally, the BCB occurs for xc when the conditions a = 2r and (8) hold. We

have numerically verified that, besides the critical point, one more point of γ3,3

collides with the break point, as well as a point of the repelling 3-cycle γ′2,1, and
the result of this BCB is an attracting 3-cycle γ̃1,2 (an analog of the period-halving
bifurcation for the smooth maps).

Using the above procedure we can describe the BC sequence for the superstable
cycle of any period. The considerations can be summarized in the following

Proposition 3. If the (r, a)-parameter point moves continuously from the right to
the left inside Pn, starting from a point (r, a) ∈ (Pn ∩Dl), following the superstable
n-cycle, then this cycle undergoes b border-collisions

γ0,n ⇒ γ1,n−1 ⇒ ... ⇒ γb,n−b,

and the border-collision bifurcation occurs at a = 2r when the critical point xc

collides with x. Here b is equal to the number of symbols L in the symbolic repre-
sentation of γ0,n.

Let us give an example. It is known for the logistic map, that the symbolic
sequence of the last (ordered on a) superstable n-cycle is (RLn−2C)∞, i.e., b = n−2,
thus, under the parameter variation described above, such a cycle undergoes n− 2
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BC γ0,n ⇒ γ1,n−1 ⇒ ... ⇒ γn−2,2, plus the BCB occurring for xc. Let the map f
have an attracting cycle γ̃n−2,2 existing for the parameter values taken from some
neighborhood of those corresponding to the superstable cycle γn−2,2. Obviously,
the cycle γ̃n−2,2 has the symbolic representation (RLn−2

1 R)∞ or (RLn−2
1 L2)∞. The

BCB occurs for such a cycle if the condition fn−2
1 ◦ f2

2 (x) = x is satisfied, from
which we get the following BCB curve:

a = an(r)
def
=

1
rn−1

n∑

i=0

ri.

Thus, for instance, the BCB curve of the attracting cycle γ̃0,2 is

a2(r) =
1 + r + r2

r
, (9)

so that the boundaries of the region P2 are the curves a = 3 (corresponding to the
period-doubling bifurcation of the fixed point x∗), a = 1 +

√
6 (period-doubling

bifurcation of γ0,2), a = a2(r) (the BCB of γ0,2) and a = r (see Fig.2). One more
example is the curve of the BCB of γ̃1,2:

a3(r) =
1 + r + r2 + r3

r2
(10)

(see Fig.4). Obviously, the BCB of the superstable n-cycle with symbolic sequence
(RLn−2C)∞ occurs at the (r, a)-parameter point which is the intersection of two
curves: a = an(r) and a = 2r.

To end this section we emphasize that any periodicity region Pn, with its core
corresponding to the superstable n-cycles, has continuation through the whole re-
gion Db and crosses its left boundary a = 2r. The boundaries of Pn∩Db are formed
by curves corresponding to fold, period-doubling and border-collision bifurcations.
Moreover, there are infinitely many regions of bistability which we discuss in the
next section.

4. Bistability Regions. We recall that under the condition (2) the break point x
does not belong to the absorbing interval J but maps into it after a finite number
of iterations and is attracted to the unique attractor A of the map f2. We can say
that in this case x plays no role for the dynamics of the map f . While if x ∈ J, this
break point becomes an additional separator inside J so that there can exist two
disjoint sets of absorbing intervals (related to the images of x and xc, respectively)
which give rise to the existence of two different attractors, i.e., bistability.

In order to see how the images of both the critical point xc and the break point
x can be involved in the construction of an absorbing set we first recall that set
Jk = {J1, J2, ...Jk} of disjoint intervals is called cyclic absorbing interval of period
k if

a) each Ji, i = 1, ..., k, is bounded by images of the critical point;
b) f(Ji) = Ji+1, i = 1, ..., k − 1, f(Jk) ⊆ J1;
c) each Ji, i = 1, .., k, is an absorbing interval for the map fk.
For the map (1) besides the above set it is possible to have an analogous cyclic

absorbing interval Gm = {G1, G2, ..., Gm} , where each Gi, i = 1, .., m, is bounded
by the images of the break point x. It may happen, as we show below, that for
some parameter values Jk ∩ Gm = ∅. In this case the map (1) has two different
attractors A1 and A2, one of period k and another of period m. The sets Jk and
Gm are strictly included in the basins of attraction of A1 and A2, respectively.
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Figure 5. The functions f(x) and f4(x) at a = 3.41, r = 1.9.

Figure 6. The enlarged window of Fig.5. Black circle indicates a
point of the attracting cycle γ0,2, gray circles indicate points of the
attracting cycle γ1,3 and white circles are points of repelling cycle
γ′1,3.

Figs 5 and 6 present an example of the map (1) for which two disjoint sets of
cyclic absorbing intervals J4 and G2 exist: Fig.5 shows f(x) and f4(x) for a = 3.41,
r = 1.9, and Fig.6 is the enlarged window of Fig.5 with intervals J2, J4, G2 and
some points of the coexisting attracting 4-cycle γ1,3 and attracting 2-cycle γ0,2 of
the map f . Note that their immediate basins of attraction, shown in Fig.6 by light
gray and dark gray, respectively, are separated by the repelling 4-cycle denoted γ′1,3

and its first preimage, born due to a fold bifurcation together with the attracting
4-cycle γ1,3. Here and below γi,j denotes any attracting cycle of period i + j (not
only a superstable one).
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To see which regions in the (r, a)-parameter plane correspond to bistability let us
return to Fig.3 and consider in detail two bistability regions: The first one denoted
B1 is related to the coexisting cycles γ0,3 and γ1,5, and the second one denoted B2

corresponds to coexisting γ0,6 and γ1,5.
In the region B1 the break point x is attracted to the cycles γ0,3, while the

critical point xc is attracted to the cycle γ1,5. In the region B2 x is attracted to
γ0,6, and xc is attracted to γ1,5. The attracting 6-cycle γ1,5 is born due to a fold
bifurcation together with a repelling 6-cycle γ′1,5. The curve corresponding to this
fold bifurcation is shown by dashed line in Fig.3. It can be seen that the boundaries
of the region B1 are curves corresponding to the fold bifurcation of γ1,5, and to the
period-doubling and border-collision bifurcations of γ0,3. The boundaries of B2 are
curves corresponding to the period-doubling bifurcation of γ0,3, the BCB of γ0,6

and the fold bifurcation of γ1,5.
To illustrate the bistability and the bifurcations related to the cross-section of

different boundaries of B1 and B2, we present two 1D bifurcation diagrams (see
Fig.3 in which the corresponding parameter values are indicated by two vertical
straight lines with arrows). In Fig.7 one of the three branches of the 1D diagram is
shown for r = 3.268 and a ∈ [3.8404, 3.841] .

Figure 7. One of the three branches of the 1D bifurcation diagram
of the map f at r = 3.268 and a ∈ [3.8404, 3.841] .

Increasing a in the indicated range the parameter point crosses the region B1 :
There is at first only the attracting cycle γ0,3, then the fold bifurcation gives rise
to the cycles γ1,5 and γ′1,5 (and, thus, to the bistability). Then the BCB occurs
for a point of γ0,3 and for two points of γ′1,5 at the same time, resulting in the
repelling cycle γ′1,2. After the bifurcation the only attractor of the map is the cycle
γ1,5. The parameter values used in Fig.1 belong to the region B1. The repelling
cycle γ′1,5 and all its preimages of any rank are the separator of the two basins of
attraction, say B(γ0,3) and B(γ1,5). Clearly, besides the two attracting cycles there
exist infinitely many repelling cycles in I, constituting a chaotic repellor, thus the
basins B(γ0,3) and B(γ1,5) have a fractal structure in I. It is also clear that two
disjoint cyclical absorbing intervals J3 and G6, bounded, respectively, by the images
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Figure 8. One of the three branches of the 1D bifurcation diagram
of the map f at r = 3.2714, a ∈ [3.841, 3.842] .

of x and xc exist. The sets J3 and G6 belong to the immediate basins of γ0,3 and
γ1,5, respectively, included in B(γ0,3) and B(γ1,5).

In Fig.8 one of the three branches of the 1D diagram is shown for r = 3.2714,
a ∈ [3.841, 3.842] . Increasing a in the indicated range the parameter point crosses
both the regions B1 and B2 : We see at first the cycle γ0,3, then the fold bifurcation
occurs resulting in the cycles γ1,5 and γ′1,5 (and bistability, entering B1), then period
doubling bifurcation of γ0,3 gives rise to the cycle γ0,6 (entering B2) and, finally,
the BCB occurs for a point of γ0,6 and a point γ′1,5 resulting in disappearance of
these cycles, so that after the bifurcation the only attractor is the cycle γ1,5.

Indeed, there are infinitely many bistability regions of such a kind as the regions
B1 and B2 described above, which we call of 1st kind, in each “m-box”, m ≥ 3,
(some of them are indicated by circles in Fig.3). Briefly, a bistability of 1st kind is
related to the coexistence of attracting cycles of period 2i−1m and 2im, i ≥ 1, or
two attracting cycles of the same period 2im.

But there are also infinitely many more complicated cases called bistability re-
gions of 2nd kind related to the coexistence of an attracting cycle with an attracting
cycle of other period, or with cyclic chaotic intervals. As an example of such a re-
gion, we present in Fig.9 the enlarged window III of Fig.2 where the largest of
the shaded regions corresponds to coexistence of the attracting cycle γ0,2 with the
attracting cycle γ1,3, or with cycles related to the period-doubling cascade of this
cycle, or with other attractors following the logistic bifurcation scenario including
coexistence with cyclic chaotic intervals. The other shaded region in Fig.9 is related
to a similar kind of bistability but for the cycle γ0,4. In the figure the dashed line
corresponds to the fold bifurcation giving rise to the attracting and repelling cycles
γ1,3 and γ′1,3. Thick line corresponds to the period-doubling bifurcation of γ0,2, and
thin lines are the BCB curves.

To illustrate the bistability of 2nd kind we present in Fig.10 one of the two
branches of the 1D bifurcation diagram for the parameter values r = 1.9312,
a ∈ [3.4, 3.46] indicated in Fig.9 by the vertical straight line with an arrow. In-
creasing a in the indicated range we see that the attracting cycle γ0,2 (thick line)
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Figure 9. The enlarged window III of the 2D bifurcation diagram
of the map f shown in Fig.2. Shaded regions correspond to bista-
bility of the 2nd kind.

Figure 10. One of the two branches of the 1D bifurcation diagram
of the map f at r = 1.9312, a ∈ [3.4, 3.46] .

coexists at first with the attracting cycle γ1,3 (thin lines) born due to the fold bifur-
cation together with the repelling cycle γ′1,3 (dashed lines), and then γ0,2 coexists,
consecutively, with all the cycles related to the period-doubling cascade of γ1,3, and
after with all other attractors, following the logistic bifurcation scenario. One can
see also that the first homoclinic bifurcation for γ′1,3 gives rise to a boundary crises
for 4-cyclic chaotic interval, and surviving chaotic repellor reveals itself after the
BCB of γ0,2 occurring simultaneously with the BCB of γ′1,3.
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One more example of the 2nd kind bistability is indicated in Fig.4 as a shaded
region in which the cycle γ1,2 coexists either with γ3,3, born due to the fold bifur-
cation (thin dashed line), or with the cycles related to the period-doubling cascade
of γ3,3, or with other attractors following the logistic bifurcation scenario.

5. Concluding remarks. In the present paper we have discussed the structure
of the 2D bifurcation diagram of the unimodal piecewise smooth map f given in
(1), in the case xc ≥ x. Particular attention has been paid to the border-collision
bifurcation of the superstable n-cycle of the map f , as well as to the bistability
regions in the (r, a)-parameter plane. To end our considerations we add the following
conjecture: Varying the parameter values in the region Db one can observe three
types of the BCB of an attracting cycle: 1) the attracting cycle becomes repelling
while an attracting cycle of double period appears; 2) the attracting cycle merges
with a repelling cycle of double period, and becomes repelling (see, for example,
Fig.7); 3) the attracting cycle merges with a repelling cycle of the same period
and they disappear (see Fig.8). The BCB of an attracting cycle to a cyclic chaotic
interval can occur for (r, a) ∈ Dr, as well as other types of BCB. We leave the
detailed investigation of the bifurcation structure of the region Dr as a subject for
a future work.
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