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a b s t r a c t 

We consider a two-dimensional continuous noninvertible piecewise smooth map, which 

characterizes the dynamics of innovation activities in the two-country model of trade and 

product innovation proposed in [7]. This two-dimensional map can be viewed as a cou- 

pling of two one-dimensional skew tent maps, each of which characterizes the innovation 

dynamics in each country in the absence of trade, and the coupling parameter depends 

inversely on the trade cost between the two countries. Hence, this model offers a labo- 

ratory for studying how a decline in the trade cost, or globalization, might synchronize 

endogenous fluctuations of innovation activities in the two countries. In this paper, we 

focus on the bifurcation scenarios, how the phase portrait of the two-dimensional map 

changes with a gradual decline of the trade cost, leading to border collision, merging, ex- 

pansion and final bifurcations of the coexisting chaotic attractors. An example of peculiar 

border collision bifurcation leading to an increase of dimension of the chaotic attractor is 

also presented. 

© 2017 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

To investigate how globalization might affect the co-movement of innovation activities across countries, Matsuyama et al.

[7] developed a two-country model of trade and product innovation, and showed that the innovation dynamics of this two-

country model is characterized by a two-dimensional (2D for short) continuous noninvertible piecewise map: F : ( x, y ) �→ F ( x,

y ), where x > 0 and y > 0 measure the variety of products that have been innovated in the past and continue to be

produced in each country. This map has four parameters, one of which, ρ ∈ [0 , 1) , is an inverse measure of the trade cost

between the two countries. At a prohibitively high trade cost, the two countries are isolated from each other and ρ = 0 . In

this case, the dynamics of innovation in each country are independent of each other and characterized by a 1D skew tent

map (i.e., a continuous, noninvertible piecewise linear map: see, e.g., [5,6,13] ). Furthermore, for the permissible values of

the three remaining parameters of this model, each of these two decoupled skew tent maps has a unique attracting fixed

point, an attracting period 2 cycle or a 2 i -cyclic chaotic attractor ( i ≥ 0). In this model, a gradual decline in the trade cost

causes a gradual market integration of the two countries, or globalization, which is captured by a gradual increase in ρ ,

leading to a coupling of innovation dynamics in the two countries. Thus, this 2D map offers an ideal laboratory for studying
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how globalization affects the co-movement of innovation activities across countries. In [7] , the analysis of this 2D map was

restricted to the case where each of the two decoupled 1D skew tent maps has an attracting cycle of period 2. In this case,

the 2D map has at most two coexisting attracting cycles of period 2, “the synchronized 2-cycle” and “the asynchronized

2-cycle”. Along the synchronized 2-cycle, product innovation is active and inactive at the same time in the two countries,

while it is active only in one country along the asynchronized 2-cycle. It was shown that a gradual increase in ρ causes

the basin of attraction of the synchronized 2-cycle to expand and the basin of attraction of the asynchronized 2-cycle to

shrink, and that there exists a critical value ρc < 1, such that the asynchronized 2-cycle is unstable and the synchronized

2-cycle is the only attractor of this 2D system, for ρ ∈ ( ρc , 1). Thus, even a partial market integration would cause a full

synchronization. Furthermore, it was shown that this critical value ρc is lower when the two countries are more unequal in

size, which means that a smaller reduction in the trade cost would cause a full synchronization of the innovation activities

across the two countries of more unequal size. 

In the present paper we continue our investigation of this 2D map by examining the bifurcation scenarios caused by an

increase in ρ , including the case where each of the two decoupled 1D skew tent maps has a 2 i -cyclic chaotic attractor ( i ≥
0). Thus, the decoupled 2D map has 2 i coexisting 2 i -cyclic chaotic attractors, and for increasing ρ some of these attractors

disappear and some new attractors appear. In particular, we present examples of so-called expansion bifurcation leading

to an abrupt increase in the size of a chaotic attractor, merging bifurcation associated with direct pairwise merging of the

pieces of a chaotic attractor, and final bifurcation related to the transformation of a chaotic attractor into a chaotic repellor.

As discussed in [1] , such bifurcations are caused by a contact of the attractor with its immediate basin boundary which can

be regular or fractal. Due to nonsmoothness of map F which is defined by four smooth maps in four subregions of the phase

plane, so-called border collision bifurcation (BCB for short) can also be involved into the bifurcation sequences. Recall that a

BCB occurs when the phase portrait of a piecewise smooth map changes qualitatively due to a contact of an invariant set

with a border, often called switching manifold , along which the system function changes its definition (see [11,13] ). The four

switching manifolds of the considered map F certainly increase the number of various outcomes of a BCB. In particular, we

present an example of a chaotic attractor born due to a BCB, as well as an example of BCB which leads to an increase of

dimension of the colliding attractor, namely, cyclic chaotic intervals bifurcate into a cyclic chaotic attractor with Cantor-like

structure. 

One more important property of the considered map F is its noninvertibility . A powerful tool for the investigation of the

dynamics of a noninvertible map is the theory of critical lines developed in [8] (see also [10] ). Recall that a critical line

of a 2D continuous noninvertible map is defined as the locus of points having at least two coincident rank-1 preimages.

For a 2D smooth noninvertible map an image of a set, associated with a vanishing Jacobian determinant, may possess such

a property. The considered piecewise smooth noninvertible map F has four critical lines each of which is an image of the

related switching manifold. We show how these critical lines and their images are used to determine boundaries of chaotic

attractors 1 of map F . Critical lines may also be responsible for several interesting transformations of basins of attraction. For

example, due to a contact of a basin with a critical line new islands of this basin may appear inside the basin of some other

attractor. Similar transformations are described, e.g. in [9] . Recall that in continuous invertible maps the basins of attraction

are necessarily simply connected sets, while attractors of noninvertible maps may have connected but not simply connected,

or disconnected basins, whose occurrence is related to contact bifurcations with critical lines. 

Discussing chaotic attractors of map F we use more general concepts of synchronized and asynchronized fluctuations

comparing with those used in [7] for the attracting 2-cycles. Namely, chaotic innovation fluctuations are called synchronized

if one observes simultaneous increase or decrease of the values of both variables along the trajectory, and fluctuations are

asynchronized if an increase/decrease of the value of one variable is accompanied by a decrease/increase of the value of the

other variable. 

The paper is organized as follows. In Section 2 we formally introduce map F , briefly explain economics behind it, and

discuss its simplest properties. In Section 3 the results related to the dynamics of the skew tent map are applied to the map

F for ρ = 0 . Considering these results as a starting point, in Section 4 we present several bifurcation sequences associated

with chaotic attractors, which are observed in the coupled map F when the value of ρ is gradually increased. In case of

the countries of equal size discussed in Section 4.1 , map F is symmetric with respect to the main diagonal, so that any

invariant set S (e.g., an attractor) of F is either symmetric itself, or there exist one more invariant set S ′ which is symmetric

to S . As a results, the bifurcations of coexisting chaotic attractors, which are symmetric to each other with respect to the

diagonal, occur simultaneously. In contrast, in the case of the two countries of unequal size, discussed in Section 4.2 , map F

is asymmetric, and the bifurcations of coexisting chaotic attractors do not occur at the same parameters values, leading to

a richer bifurcation scenarios. Section 5 concludes. 
1 Note that chaotic attractors of 2D invertible maps, such as, for example, the well known Henon attractor, have a Cantor-like structure, while 2D nonin- 

vertible maps can have also full measure chaotic attractors. 
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2. Definition of the map 

The family of 2D continuous piecewise smooth maps we study, F : R 

2 + → R 

2 + , is given by the smooth functions F HH , F LH ,

F HL and F LL defined in the regions D HH , D LH , D HL and D LL , respectively, as follows: 

F LL : 

(
x 
y 

)
�→ 

(
f LL (x ) = δ(θs X (ρ) + (1 − θ ) x ) 
g LL (y ) = δ(θs Y (ρ) + (1 − θ ) y ) 

)
for (x, y ) ∈ D LL , 

F HH : 

(
x 
y 

)
�→ 

(
f H (x ) = δx 
g H (y ) = δy 

)
for (x, y ) ∈ D HH , 

F HL : 

(
x 
y 

)
�→ 

(
f H (x ) = δx 
g HL (x, y ) = δ(θh Y (x ) + (1 − θ ) y ) 

)
for (x, y ) ∈ D HL , 

F LH : 

(
x 
y 

)
�→ 

(
f LH (x, y ) = δ(θh X (y ) + (1 − θ ) x ) 
g H (y ) = δy 

)
for (x, y ) ∈ D LH , 

where δ, θ and ρ are real parameters satisfying the following conditions: 

δ ∈ (0 , 1) , θ ∈ (1 , e ) , ρ ∈ (0 , 1) ; (1)

then considering 

S ∈ (0 , 1) , s X = S, s Y = 1 − S;
for fixed values of ρ and S the values s X ( ρ) and s Y ( ρ) are obtained as follows: 

s X (ρ) = min 

{ 

s X − ρs Y 
1 − ρ

, 1 

} 

, s Y (ρ) = 1 − s X (ρ) ; (2)

while the functions h X ( y ) > 0 and h Y ( x ) > 0 are defined from the complementarity slackness conditions 

s X 
h X (y ) + ρy 

+ 

ρs Y 
y + ρh X (y ) 

= 1 and 

s Y 
h Y (x ) + ρx 

+ 

ρs X 
x + h Y (x ) 

= 1 , 

respectively, from which we obtain 

h X (y ) = 

ρ−y (1+ ρ2 )+ 
√ 

( ρ−y (1+ ρ2 ) ) 
2 −4 ρy (ρy −ρ2 s Y −s X ) 

2 ρ for ρ � = 0 , 

h X (y ) = s X for ρ = 0 , 

(3)

and 

h Y (x ) = 

ρ−x (1+ ρ2 )+ 
√ 

( ρ−x (1+ ρ2 ) ) 
2 −4 ρx (ρx −ρ2 s X −s Y ) 

2 ρ for ρ � = 0 , 

h Y (x ) = s Y for ρ = 0 . 

(4)

The regions D LL , D HH , D HL and D LH are defined as follows: 

D LL = { (x, y ) : x < s X (ρ) , y < s Y (ρ) } , D HH = { (x, y ) : x > h X (y ) , y > h Y (x ) } , 

D HL = { (x, y ) : x > s X (ρ) , y < h Y (x ) } , D LH = { (x, y ) : x < h X (y ) , y > s Y (ρ) } . 
In Fig. 1 the partition of the ( x, y )-plane into the regions D HH , D LH , D HL and D LL is illustrated in the symmetric and asym-

metric cases, where the blue lines and arrows indicate how the borders of the regions move if the value of ρ increases in

the range 0 ≤ ρ ≤ s Y / s X ≤ 1. 

The family of the 2D maps F characterizes the dynamics in the two-country model of trade and product innovation

developed by Matsuyama et al. [7] , which may be viewed as a hybrid of the closed economy model of product innovation

dynamics due to [3] and the two-country model of trade due to [4] . Here, we offer a brief economic interpretation of this

map. The reader is referred to [7] for the detailed description of the economic model behind this map as well as for the

derivation of this map. There are two countries, X and Y , whose size is given by s X = S and s Y = 1 − S, respectively. The

states of these economies are summarized by x > 0 and y > 0, which measure the variety of products that have been

innovated and introduced in the past and are still produced in X and Y , respectively. To this, new products may be added

by potential innovators in each country, but they will do so only if they expect to earn enough profit to cover the cost of

innovation by selling their new products in both countries. More existing varieties of products in each country, higher x

and y , discourage new innovations, but innovators in X are discouraged more by a higher x than a higher y , because new

products in X compete directly with the existing products in X but only indirectly with the existing products in Y , due to

the trade cost. Likewise, innovators in Y are discouraged more by a higher y than by a higher x . This effect is captured
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Fig. 1. Partition of the phase plane of map F into the regions D HH , D LH , D HL and D LL in (a) symmetric case ( s X = s Y = 0 . 5 ) and (b) asymmetric case ( s X = 0 . 6 , 

s Y = 0 . 4 ). The blue arrows indicate how the borders of the regions change if the values of ρ increases in the range 0 ≤ ρ ≤ s Y / s X ≤ 1. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

by ρ ∈ [0 . 1) , a degree of globalization , which can be shown to depend inversely on the trade cost. 2 When the trade cost

is prohibitively high, ρ = 0 , and innovation in X is not affected by y , and innovation in Y is not affected by x . When the

trade cost approaches to zero, ρ → 1 and innovation in both countries becomes affected by x and y only through its sum,

x + y . New products also compete with other new products, but the existing products are more discouraging than other new

products because the existing products are sold at lower prices. This effect is captured by θ ∈ (1, e ). 3 Also, any products,

both existing and new, become obsolete and stop being produced with probability equal to 0 < 1 − δ < 1 . 4 The system thus

depends on the four parameters S, ρ , θ and δ. 

Notice that the state space, R 

2 + , is divided into four subregions, within each of which the map is smooth, and some

simple observations about the dynamics of map F can be made by analyzing each individual map defined in each of these

subregions separately. 

For ( x, y ) ∈ D HH , innovation is inactive in both countries, because too many existing products are currently produced in

each country, which makes innovation unprofitable in both countries. With no new products and with the survival rate of

the existing products, 0 < δ < 1, F HH (x, y ) = (δx, δy ) , hence the map is contracting towards its fixed point at the origin.

Given that this fixed point does not belong to the definition region of F HH , it is not a fixed point of F , and any initial point

( x 0 , y 0 ) ∈ D HH leaves this region in a finite number of iterations. 

For ( x, y ) ∈ D LL , innovation is active in both countries, because there are not too many existing products produced in

each country. For the fixed point of map F LL defined as 

(x ∗, y ∗) = 

(
δθs X (ρ) 

1 + δ(θ − 1) 
, 

δθs Y (ρ) 

1 + δ(θ − 1) 

)
, 

it holds that ( x ∗, y ∗) ∈ D LL , thus, it is a fixed point of F . At this fixed point, x and y stay constant because a flow of new

products introduced by innovation is exactly equal to a flow of the existing products that disappear due to obsolescence in

each country. Taking into account the conditions given in (1) , one can state that this fixed point is an attracting node for

0 < δ(θ − 1) < 1 and a repelling node for δ(θ − 1) > 1 . 

For ( x, y ) ∈ D HL , innovation is inactive in X and active in Y , because x is high enough, while y is low enough, and for ( x,

y ) ∈ D LH , innovation is active in X and inactive in Y , because y is high, while x is low enough. The related maps, F LH and F HL ,

are triangular given that one of their variables, namely, y for F LH and x for F HL , is independent on the other variable. Fixed

points of F LH and F HL , which are defined as (x, y ) = (1 , 0) and (x, y ) = (0 , 1) , respectively, do not belong to the definition

regions of F LH and F HL , thus, they are not fixed points of F . It is easy to see that any initial point ( x 0 , y 0 ) ∈ D LH or ( x 0 , y 0 ) ∈
D HL leaves these regions in a finite number of iterations. 

In spite of the trivial dynamics of each map F LL , F HH , F LH and F HL taken separately, the asymptotic behaviors of the

trajectories of map F in the generic case are not easy to be investigated. However, there are some specific parameter values

for which the dynamics of F can be completely described. 
2 In [7] , it was shown that, for innovators, competing against one variety of foreign products is equivalent to competing against ρ variety of domestic 

products. 
3 In [7] , it was shown that, for innovators, competing against one variety of existing products is equivalent to competing against θ variety of new 

products. It was also shown that θ is bounded from above by e . 
4 Hence, δ may be interpreted as the survival rate of each product. 
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A first particular case is ρ = 0 , associated with two countries in autarky, when map F is defined by two decoupled skew

tent maps . Indeed, from (2) to (4) it follows that the borders between the regions are defined by constants, namely, s X (ρ) =
h X (y ) = s X and s Y (ρ) = h Y (x ) = s Y . Moreover, the function f LH ( x, y ) no longer depends on y and function g HL ( x, y ) does

not depend on x : f LH (x, y ) = f LL (x ) =: f L (x ) and g HL (x, y ) = g LL (y ) =: g L (y ) . Thus, map F is defined by decoupled 1D maps,

denoted f and g : 

F : 

(
x 
y 

)
�→ 

(
f (x ) 
g(y ) 

)
, (5)

where f and g are the skew tent maps given by 

f : x �→ 

{
f L (x ) = δ(θs X + (1 − θ ) x ) , x ≤ s X , 
f H (x ) = δx, x > s X , 

(6)

and 

g : y �→ 

{
g L (y ) = δ(θs Y + (1 − θ ) y ) , y ≤ s Y , 
g H (y ) = δy, y > s Y . 

(7)

We will discuss this case of ρ = 0 in greater detail in Section 3 . 

A second particular case is related to the values of ρ satisfying the condition s Y / s X < ρ < 1. In fact, in such a case from

(2) it follows that s X (ρ) = 1 , s Y (ρ) = 0 , so that the regions D LL and D HL are empty, and map F is defined by the maps F LH

and F HH only. Given that δ ∈ (0, 1), it holds that y → 0 under the iterations by F LH and F HH , so that the asymptotic dynamics

of F is restricted to the x -axis, where it is governed by the skew tent map 

f 1 : x �→ 

{
δ(θ + (1 − θ ) x ) , x ≤ 1 , 

δx, x > 1 . 
(8)

Analogous conclusions hold for s X / s Y < ρ < 1 when D LL and D LH are empty. This means that, in a highly globalized world,

innovation in the smaller country is never profitable, and hence becomes inactive. 

A third particular case is associated with the straight line 

D = 

{
(x, y ) ∈ R 

2 
+ : 

y 

x 
= 

s Y (ρ) 

s X (ρ) 

}
(9)

which is invariant for map F . It is easy to see that for any trajectory with an initial point belonging to D , its x - and y -

coordinates are governed by the skew tent maps denoted f d and g d , respectively: 

f d : x �→ 

{
δ(θs X (ρ) + (1 − θ ) x ) , x ≤ s X (ρ) , 
δx, x > s X (ρ) , 

and 

g d : y �→ 

{
δ(θs Y (ρ) + (1 − θ ) y ) , y ≤ s Y (ρ) , 
δy, y > s Y (ρ) . 

Finally, there is another particular case when ρ → 1 and the dynamics of z := x + y is governed in the limit by the skew

tent map of the form (8) . The economic intuition behind this case is quite simple: with no trade cost, the two countries

become completely unified and behave as a single country. 

All the skew tent maps mentioned above have qualitatively the same dynamics because it is determined only by the

slopes of their linear branches which are the same for these maps, namely, a L := δ(1 − θ ) and a R := δ. However, the pa-

rameters s X , s Y and ρ influence the quantitative characteristics of the dynamics (such as, for example, the size of the chaotic

attractors) which are also important from an economic point of view. So, as a basic skew tent map it is worth to consider

the following one: 

q : x �→ 

{
q L (x ) = δ(θs + (1 − θ ) x ) , x ≤ s, 
q H (x ) = δx, x > s, 

(10)

substituting s by the related parameter and considering the corresponding variable when the specific skew tent map is

discussed. 

The dynamics of the skew tent map is well studied (see an overview in [13] ), and in the following we use the related

results as a basis for the description of the dynamics of F in the generic case. In particular, we first give a complete descrip-

tion of the possible attractors and their bifurcations for the decoupled map, i.e., for map F at ρ = 0 . Then we discuss how

the increasing value of ρ influences the dynamics, and compare the symmetric ( s = s ) and asymmetric ( s � = s ) cases. 
X Y X Y 
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3. Decoupled system ( ρ = 0 ) 

As mentioned above, for ρ = 0 the innovation fluctuations in each country are independent on each other, and map F is

determined by the decoupled skew tent maps f and g given in (6) and (7) . Below we first describe the possible attractors

and their bifurcations observed in the generic skew tent map q given in (10) , then apply these results for the description of

the phase portrait of the decoupled map F given in (5) . 

3.1. Skew tent map dynamics 

A generic skew tent map can have an attracting fixed point, an attracting cycle of any period n ≥ 1, or m -cyclic chaotic

intervals for any m ≥ 1. 5 With regards to map q the results are summarized in the following 

Proposition 1. The skew tent map q given in (10) for δ ∈ (0, 1), θ ∈ (1, e ) and any s > 0 has the following attractors: 

• an attracting fixed point 

x ∗ = 

δθs 

1 + δ(θ − 1) 
if 0 < δ < δDF B 1 , 

where at 

δ = 

1 

θ − 1 

=: δDF B 1 (11) 

the fixed point x ∗ undergoes a degenerate flip bifurcation ; 

• an attracting 2-cycle 

{ x 1 , 2 , x 2 , 2 } = 

{
δ2 θs 

1 + δ2 (θ − 1) 
, 

δθs 

1 + δ2 (θ − 1) 

}
if δDF B 1 < δ < δDF B 2 , (12) 

where at 

δ = 

1 √ 

θ − 1 

=: δDF B 2 (13) 

this 2-cycle undergoes a degenerate flip bifurcation ; 

• attracting 2 i -cyclic chaotic intervals G 2 i , i ≥ 1, if 

δ > δDF B 2 and δH2 i < δ < δH2 i −1 , (14) 

where at 

δ = 

( 

1 − ( 1 − θ ) 
(−1) i 

(1 − θ ) 2 m i +1 

) 2 −(i +1) 

=: δH2 i , m i = 

2 

i − (−1) i 

3 

, (15) 

the first homoclinic bifurcation of the harmonic 2 i -cycle occurs, causing the merging bifurcation G 2 i +1 ⇒ G 2 i , and at 

δ = 

√ 

θ

θ − 1 

=: δH1 (16) 

the first homoclinic bifurcation of the fixed point x ∗ occurs leading to the merging bifurcation G 2 ⇒ G 1 ; 

• a chaotic interval 

G 1 = [ δs, δs (θ + (1 − θ ) δ)] if δH1 < δ < 1 . 

As discussed in [1] , the merging bifurcation of a 2 m -cyclic chaotic attractor Q 2 m 

, m ≥ 1, of a continuous map is related to

pairwise merging of the pieces of the attractor, Q 2 m 

⇒ Q m 

, occurring due to the first homoclinic bifurcation of a repelling cy-

cle with negative eigenvalue, located at the immediate basin boundary of Q 2 m 

. For a more detailed description of degenerate

bifurcations we refer to [12] . It is worth to note only that for δ = δDF B 1 any point of the interval [ q H ( s ), s ] \ { x 
∗} is 2-periodic,

and for δ = δDF B 2 any point of the intervals [ q H ( s ), q H ◦q L ◦q H ( s )] \ { x 1, 2 } and [ s, q L ◦q H ( s )] \ { x 2, 2 } is 4-periodic. As one can see,

the boundaries of these intervals are images of the border point x = s =: c −1 . The point x = q (s ) =: c is called critical point

of q , c = δs, and x = q i (s ) =: c i , i ≥ 1, is a critical point of rank i . Critical points of proper ranks define the boundaries

of the chaotic intervals, for example, the one-piece chaotic attractor G 1 mentioned in Proposition 1 can be represented as

G 1 = [ c, c 1 ] . 

In Fig. 2 a the bifurcation curves δ = δDF B 1 , δ = δDF B 2 , and δ = δH2 i , i ≥ 0, are shown in the ( θ , δ)-parameter plane. Note

that the curves δ = δ i for i → ∞ are accumulating to the point (θ, δ) = (2 , 1) . A 1D bifurcation diagram of x versus δ
H2 

5 For the complete description of the bifurcation structure in the skew tent map we refer to [13] (see also [5,6] ). 
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Fig. 2. (a) Bifurcation structure of the ( θ , δ)-parameter plane of map q given in (10) ; recall that the permissible ranges are 0 < δ < 1 and 1 < θ < e ; (b) 

1D bifurcation diagram of x versus δ for 0.6 < δ < 1 at θ = 2 . 5 and s = 0 . 6 , where the inset shows the indicated rectangle enlarged; dashed lines are 

related to repelling fixed point and repelling 2-cycle. (For interpretation of the references to color in the text, the reader is referred to the web version of 

this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

obtained for θ = 2 . 5 , s = 0 . 6 is shown in Fig. 2 b (the related parameter path is indicated in Fig. 2 a by the red arrow). For

increasing value of δ such a value of θ is associated with the following cascade of attractors and their bifurcations: 

x ∗ DBF 1 ⇒ { x 1 , 2 , x 2 , 2 } DBF 2 ⇒ G 8 
H4 ⇒ G 4 

H2 ⇒ G 2 . 

Note that the absorbing interval J = [ c, c 1 ] = [ δs, δθs + (1 − θ ) δ2 s ] of map q shrinks to the point x = s as δ → 1. 

3.2. A 2D view 

The phase portrait of the decoupled map F given in (5) –(7) can be seen as a Cartesian product of the phase portraits

of maps f and g whose dynamics are qualitatively similar to those described in the previous section. In particular, it is

easy to see that if each of the skew tent maps f and g has an n -cyclic attractor (an attracting n -cycle or n -cyclic chaotic

intervals) then map F has n coexisting n -cyclic attractors. Based on Proposition 1 we can state that for the related parameter

conditions the decoupled map F has either an attracting fixed point, or two coexisting attracting 2-cycles, or 2 i coexisting

2 i -cyclic chaotic attractors (of full measure), i ≥ 0. Let us present a few examples of such attractors together with their

basins. 

Consider first the range δDFB 1 < δ < δDFB 2 , where δDFB 1 and δDFB 2 are given in (11) and (13) , respectively, and let the

values of the other parameters satisfy the conditions (1) . Then the unique fixed point p ∗ of F defined by 

(x ∗, y ∗) = 

(
δθs X 

1 + δ(θ − 1) 
, 

δθs Y 
1 + δ(θ − 1) 

)
(17)

is repelling, and F has two coexisting attracting 2-cycles, namely, a cycle 

{ p LL , p HH } = { (x 1 , 2 , y 1 , 2 ) , (x 2 , 2 , y 2 , 2 ) } ∈ D, 

which we call synchronized (innovation in the two countries are active and inactive at the same time), and a cycle 

{ p LH , p HL } = { (x 1 , 2 , y 2 , 2 ) , (x 2 , 2 , y 1 , 2 ) } , 
called asynchronized (innovation is active only in one country). Here the coordinates of the points of the cycles are obtained

from (12) substituting s = s X for the x -coordinates and s = s Y for the y -coordinates. Besides the repelling fixed point and

attracting 2-cycles mentioned above, map F has also two saddle cycles: 

{ p ′ LL , p 
′ 
LH } = { (x ∗, y 1 , 2 ) , (x ∗, y 2 , 2 ) } , 

{ p ′′ LL , p 
′′ 
HL } = { (x 1 , 2 , y 

∗) , (x 2 , 2 , y 
∗) } . (18)

The closure of the stable invariant sets of these saddle cycles constitutes the boundary of the basins of attraction of the

attracting 2-cycles. In Fig. 3 we present an example of such basins where the branches of the local stable invariant sets of

the saddle 2-cycles are also shown. 

Suppose now that δ > δDFB 2 and δH2 i < δ < δH2 i −1 , where δH2 i for i ≥ 1 is defined in (15) and δH 1 in (16) . Each of the

skew tent maps f and g has 2 i -cyclic chaotic intervals and, thus, the decoupled map F has 2 i coexisting 2 i -cyclic chaotic

attractors. Fig. 4 a presents four coexisting 4-cyclic chaotic attractors and their basins whose boundaries are formed by the

closure of the stable invariant sets of the four saddle 4-cycles (their points are indicated by yellow, orange, black and dark

brown circles), and in Fig. 4 b two coexisting 2-cyclic chaotic attractors with their basins are shown, which we consider

below in more details. 
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Fig. 3. Attracting 2-cycles { p LL , p HH } and { p LH , p HL } and their basins separated by the closure of the stable invariant sets of the saddle 2-cycles { p ′ LL , p 
′ 
LH } 

and { p ′′ LL , p 
′′ 
HL } . Here θ = 2 . 7 , δ = 0 . 7 , s X = 0 . 6 , s Y = 0 . 4 . 

Fig. 4. 2 i coexisting 2 i -cyclic chaotic attractors of the decoupled map F and their basins for θ = 2 . 7 , s X = 0 . 6 , s Y = 0 . 4 and (a) δ = 0 . 8 , i = 2 , (b) δ = 0 . 9 , 

i = 1 . (For interpretation of the references to color in the text, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 2-cyclic chaotic attractors shown in Fig. 4 b are denoted Q 

s 
2 

= { Q 

s 
1 , 2 

, Q 

s 
2 , 2 

} and Q 

a 
2 

= { Q 

a 
1 , 2 

, Q 

a 
2 , 2 

} . The upper index s

in Q 

s 
2 

refers to ‘synchronized’ increase or decrease of the x - and y -coordinates along a trajectory belonging to Q 

s 
2 

(i.e. for

an initial point ( x 0 , y 0 ) belonging to Q 

s 
2 
, for the point (x 1 , y 1 ) = F (x 0 , y 0 ) it holds that either x 1 > x 0 , y 1 > y 0 or x 1 < x 0 ,

y 1 < y 0 ), while the index a in Q 

a 
2 

indicates that these values are ‘asynchronized’, that is, an increase of the x -coordinate

corresponds to a decrease of the y -coordinate, and vice versa (i.e., either x 1 > x 0 , y 1 < y 0 or x 1 < x 0 , y 1 > y 0 ). Similar to

the basin boundary of the coexisting 2-cycles shown in Fig. 3 , the basin boundary of the 2-cyclic chaotic attractors Q 

s 
2 

and

Q 

a 
2 

is the closure of the stable invariant sets of the saddle 2-cycles { p ′ 
LL 

, p ′ 
LH 

} and { p ′′ 
LL 

, p ′′ 
LH 

} defined in (18) and indicated by

black and brown circles in Fig. 4 b. 

The boundaries of the chaotic attractors Q 

s 
2 

and Q 

a 
2 

can be determined using critical lines of map F . As we already

mentioned in the Introduction, the theory of critical lines is quite a powerful tool to describe the dynamics of noninvertible

maps (see [8–10] ). With some similarity to a critical point (an extremum) of a 1D continuous noninvertible map, a critical

line C of a 2D continuous noninvertible map G is defined as the locus of points having at least two coincident rank-1

preimages. For a 2D smooth noninvertible map the set C = G (C −1 ) , where C −1 is a set associated with a vanishing Jacobian

determinant, may possess such a property. For a 2D piecewise smooth map the set C = G (C −1 ) , where C −1 (often called

switching manifold ) is related to a change of the definition of the system function and, thus, to a discontinuity of the Jacobian

determinant, is also called critical line. For the considered decoupled map F there are two switching manifolds: 

C 1 −1 = { (x, y ) : x = s X , y > 0 } , C 2 −1 = { (x, y ) : x > 0 , y = s Y } . 
So, the critical lines of F are defined as C 1 = F (C 1 −1 ) and C 2 = F (C 2 −1 ) : 

C 1 = { (x, y ) : x = δs X , y > δs Y } , C 2 = { (x, y ) : x > δs X , y = δs Y } , 
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Fig. 5. (a) Critical lines C i , i = 1 , 4 , of map F , and their preimages C i −1 (critical lines of rank −1 ). The critical lines C i separate regions Z 0 , Z 2 and Z 4 , whose 

points have 0, 2 and 4 distinct preimages; (b) chaotic attractor of map F and its boundary formed by segments of critical lines of indicated ranks. (For 

interpretation of the references to color in the text, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

and the critical lines of rank i are i th images of C 1 and C 2 : C 1 
i 

= F i (C 1 ) and C 2 
i 

= F i (C 2 ) . Indeed, the critical lines of the

decoupled map F are determined by the critical points c 1 = δs X and c 2 = δs Y of the skew tent maps f and g , respectively,

defined in (6) and (7) . 

To obtain the boundaries of the chaotic attractors of map F one has to determine the so-called generating segment(s) (see

[8] ) which are the segments of C 1 −1 and C 2 −1 belonging to the attractors. A suitable number of images of these generating

segments give the boundaries of the chaotic attractors. For example, for the chaotic attractors shown in Fig. 4 b there are

two couples of generating segments (highlighted in red), { J 1 , 1 −1 
, J 1 , 2 −1 

} ∈ C 1 −1 
, and { J 2 , 1 −1 

, J 2 , 2 −1 
} ∈ C 2 −1 

: 

J 1 , 1 −1 
= { (x, y ) : x = s X , c 

2 < y < c 2 2 } , J 1 , 2 −1 
= { (x, y ) : x = s X , c 

2 
3 < y < c 2 1 } , 

J 2 , 1 −1 
= { (x, y ) : y = s Y , c 

1 < x < c 1 2 } , J 2 , 2 −1 
= { (x, y ) : y = s Y , c 

1 
3 < x < c 1 1 } , 

where c 1 
i 

= f i (c 1 ) , c 2 
i 

= g i (c 2 ) , i = 1 , 3 . Using these critical points all the boundaries of the chaotic attractors are easily

determined. 

4. Dynamics of the coupled system ( ρ > 0) 

Let us turn to consider map F for ρ > 0. The variables are now coupled through the maps F LH and F HL , for which in

contrast to the decoupled case, h X ( y ) � = s X and h Y ( x ) � = s Y . Obviously, due to a smooth dependence of map F on ρ , for values

of ρ close to 0 the dynamics of F remains qualitatively similar to the one described in the previous section. In the present

one we investigate how the phase portrait of F changes if the value of ρ is gradually increasing. 

First, let us determine the critical lines of map F for ρ > 0. There are four switching manifolds: 

C 1 −1 = { (x, y ) : x = s X (ρ) , 0 < y < s Y (ρ) } , 
C 2 −1 = { (x, y ) : y = s Y (ρ) , 0 < x < s X (ρ) } , 
C 3 −1 = { (x, y ) : y = h Y (x ) , x > s X (ρ) } , 
C 4 −1 = { (x, y ) : x = h X (y ) , y > s Y (ρ) } , 

(see Fig. 1 b where the sets C i −1 
, i = 1 , 4 , are the boundaries of the regions D LL , D LH , D HL and D HH ). Correspondingly, map F

has four critical lines: 

C 1 = { (x, y ) : x = δs X (ρ) , y > δs Y (ρ) } , 
C 2 = { (x, y ) : y = δs Y (ρ) , x > δs X (ρ) } , 
C 3 = { (x, y ) : y = δh Y (x/δ) , x > δs X (ρ) } , 
C 4 = { (x, y ) : x = δh X (y/δ) , y > δs Y (ρ) } . 

These critical lines separate regions whose points have a different number of rank-one preimages (see Fig. 5 a): each point

of the regions 

Z 4 = { (x, y ) : x > δs X (ρ) , y > δs Y (ρ) } 
and 

Z 2 = { (x, y ) : δh X (y/δ) < x < δs X (ρ) } ∪ { (x, y ) : δh Y (x/δ) < y < δs Y (ρ) } 
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Fig. 6. Coexisting 2-cyclic chaotic attractors and their basins for s X = s Y = 0 . 5 , θ = 2 . 7 ,δ = 0 . 9 and (a) ρ = 0 . 05 , (b) ρ = 0 . 09 . (For interpretation of the 

references to color in the text, the reader is referred to the web version of this article.) 

Fig. 7. Time series associated with synchronised attractor Q s 2 (a) and asynchronized attractor Q a 2 (b), where fluctuations of the values of x and y are shown 

in black and red, respectively. Here parameter values are fixed as in Fig. 6 a. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

has four and two distinct preimages, respectively, and each point of the region 

Z 0 = { (x, y ) : x < δh X (y/δ) , y < δh Y (x/δ) } 
has no preimages. Thus, map F has a so-called Z 0 − Z 2 − Z 4 type of noninvertibility. As one can see, applying F the phase

plane becomes folded along the critical lines, which is a characteristic property of noninvertible maps. 

In Fig. 5 b we present an example of a chaotic attractor of map F whose boundary is formed by segments of the following

critical lines: C i for i = 1 , 4 , C i 
1 

for i = 2 , 4 , C i 
2 

for i = 3 , 4 and C 4 
3 
, which are images of the generating segments highlighted

in red. 

4.1. Increasing ρ in the symmetric case ( s X = s Y ) 

Consider s X = s Y = 0 . 5 , so that map F is symmetric with respect to the main diagonal, and θ = 2 . 7 , δ = 0 . 9 . It is easy to

check that for such values it holds δ > δDFB 2 and δH 2 < δ < δH 1 (see (14) ), so, according to Proposition 1, map F for ρ = 0

has two coexisting 2-cyclic chaotic attractors, a synchronized attractor Q 

s 
2 

= 

{
Q 

s 
1 , 2 

, Q 

s 
2 , 2 

}
and an asynchronized attractor Q 

a 
2 

={
Q 

a 
1 , 2 

, Q 

a 
2 , 2 

}
. Map F has also a repelling fixed point p ∗ and a pair of saddle 2-cycles defined in (17) and (18) , respectively. 

For ρ = 0 . 05 map F still has two coexisting 2-cyclic chaotic attractors, a synchronized attractor Q 

s 
2 

and an asynchronized

attractor Q 

a 
2 

(see Fig. 6 a). Recall that in case of synchronized chaotic fluctuations the values of both variables along the

trajectory increase or decrease simultaneously, and in case of asynchronized fluctuations an increase/decrease of the value

of one variable is accompanied by a decrease/increase of the value of the other variable. In Fig. 7 a we show a time series
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Fig. 8. (a) Two coexisting chaotic attractors of F 2 (corresponding to the 2-cyclic chaotic attractor Q 2 of F ) and their basins before, and close to, an ex- 

pansion bifurcation; (b) an annular chaotic attractor of F after the expansion bifurcation of Q 2 . Blue and dark gray parts of the attractors are associated 

with synchronized and asynchronized dynamics, respectively. Here s X = s Y = 0 . 5 ,θ = 2 . 7 , δ = 0 . 9 and (a) ρ = 0 . 135 , (b) ρ = 0 . 15 . (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

associated with Q 

s 
2 

where one can see simultaneous increase and decrease of x and y shown in black and red, respectively.

Fig. 7 b presents a time series related to Q 

a 
2 
, where an anti-phase movement of the variables is clearly visible. 

Basin boundaries of Q 

s 
2 

and Q 

a 
2 

are formed by the closure of the stable invariant sets of two saddle 2-cycles marked

by black and brown circles. However, note that islands of the basin of Q 

s 
2 

have appeared inside the basin of Q 

a 
2 

. Such a

transformation is caused by two symmetric parts of the basin of Q 

s 
2 

(their boundaries are highlighted in red in Fig. 6 a),

which ‘entered’ the region Z 2 after crossing the critical lines C 3 and C 4 , so that new preimages of these parts have appeared.

In particular, their first preimages (highlighted in blue) are intersected by the critical lines C 3 −1 
and C 4 −1 

, and belong to the

region Z 4 , thus, each of these islands has four preimages. 

For ρ = 0 . 09 (see Fig. 6 b) the attractor Q 

s 
2 

is no longer completely synchronized: relatively small parts of this attractor,

shown in black, have appeared, associated with asynchronized behavior of the trajectory, so now we denote this attractor

as Q 2 = { Q 1 , 2 , Q 2 , 2 } eliminating the index ‘s’. Note also that there are new islands of the basin of the chaotic attractor Q 

a
2

inside the basin of the chaotic attractor Q 2 , which have appeared following the same mechanism as described above: there

are parts of the basin of Q 

a 
2 

(highlighted in red) which ‘entered’ the region Z 2 after crossing the critical lines C 3 and C 4 ,

leading to new preimages, in particular, those intersected by C 3 −1 
and C 4 −1 

(they are highlighted in blue). Note also that the

attractor Q 

a 
2 

is close to a contact with its immediate basin boundary. After this contact called a final bifurcation (see [1,8] ),

caused by the first (one-side) homoclinic bifurcation of the saddle 2-cycles, the former chaotic attractor Q 

a 
2 

is transformed

into a chaotic repellor, and the only attractor of F is the chaotic attractor Q 2 . 

If ρ is further increased, a contact occurs of Q 2 with its immediate basin boundary caused by the (other-side) homoclinic

bifurcation of the saddle 2-cycles: at ρ = 0 . 135 the attractor Q 2 is near to such a contact that can be visualized considering

the second iterate of F , that is, map F 2 , and the basins of its coexisting chaotic attractors Q 1, 2 and Q 2, 2 (see Fig. 8 a). Note

that for increasing ρ the asynchronized parts of Q 2 marked by dark gray become larger, however, the synchronized behavior

still dominates. After the contact of Q 2 with its immediate basin boundary the former chaotic repellor, appeared after the

final bifurcation of Q 

a 
2 
, reveals itself becoming a part of the new one-piece chaotic attractor Q , so that we observe a sudden

increase in size of the attractor called an expansion bifurcation (see [1] ). In Fig. 8 b we present the attractor Q for ρ = 0 . 15 ,

after the expansion bifurcation of Q 2 . Note that it has an annular shape that can be verified considering the proper number

of images of the generating segments (the boundaries of the attractor shown in Fig. 8 b are formed by four images of the

generating segments highlighted in red). The synchronized and asynchronized behavior of the trajectory belonging to Q is

indicated by blue and dark gray, respectively. 

In order to describe further transformations of the attractors and their basins it is more convenient first to consider

ρ = 0 . 35 , and then we decrease ρ gradually back to ρ = 0 . 15 . Map F at ρ = 0 . 35 again has two coexisting attractors, Q 2

and Q 

a 
2 
, shown in Fig. 9 a together with their basins. In this case the basin boundary is formed by the closure of the stable

invariant sets of two saddle 4-cycles (shown by black and brown circles) located on the immediate basin boundary. These

cycles are born due to a flip bifurcation of the former saddle 2 -cycles, which are now repelling nodes. Decreasing the value

of ρ at first the attractor Q 2 has a contact with its immediate basin boundary (at ρ ≈ 0.338) and is transformed into a

chaotic repellor, then the attractor Q 

a 
2 

has a contact with its immediate basin boundary (at ρ ≈ 0.295) causing an expansion

bifurcation and leading to a one-piece simply-connected chaotic attractor Q . If we continue to decrease ρ then the attractor

Q is transformed into the annular attractor 6 shown in Fig. 8 b for ρ = 0 . 15 . 
6 Recall that a transition from a one-piece annular chaotic attractor to a one-piece simply-connected attractor is associated with a snap-back repellor 

bifurcation of the unstable fixed point located in the center of the annular attractor (see, e.g., [2] ). 
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Fig. 9. (a) 2-cyclic chaotic attractors Q 2 and Q a 2 and their basins; (b) 4-cyclic chaotic attractor Q 4 and 2-cyclic chaotic attractor Q a 2 and their basins. The 

synchronized and asynchronized parts of the attractors Q 2 and Q 4 are shown in blue and dark gray, respectively. Here s X = s Y = 0 . 5 , θ = 2 . 7 , δ = 0 . 9 and 

(a) ρ = 0 . 35 , (b) ρ = 0 . 38 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. (a) Four coexisting chaotic attractors Q i , 4 , i = 1 , 4 , of map F 4 (related to the 4-cyclic chaotic attractor Q 4 of F ), and their basins; (b) two coexisting 

chaotic attractors Q 1, 2 and Q 2, 2 of map F 2 (related to the 2-cyclic chaotic attractor Q 2 of F ), and their basins. The parts of the attractors of F related to the 

asynchronized behavior are shown in dark gray. Here s X = s Y = 0 . 5 , θ = 2 . 7 , δ = 0 . 9 and (a) ρ = 0 . 665 , (b) ρ = 0 . 95 . 

 

 

 

 

 

 

 

 

 

 

 

 

Now let us continue to increase ρ from ρ = 0 . 35 (see Fig. 9 a). At ρ ≈ 0.3563 a fold border collision bifurcation 7 occurs

leading to a 4-cyclic annular chaotic attractor Q 4 = { Q i, 4 } 4 i =1 
. In Fig. 9 b, where ρ = 0 . 38 , the attractor Q 4 coexists with the

2-cyclic chaotic attractor Q 

a 
2 
, which is close to a contact with its immediate basin boundary. Two parts of Q 4 shown in

blue and two parts of Q 4 shown in dark gray are related to the synchronized and asynchronized behavior of the trajectory,

respectively. Note that at the BCB mentioned above a pair of 4-cycles is also born, and the points of one 4-cycle are located

in the centers of the annular pieces of Q 4 , while the points of the other 4-cycle are located at the immediate basin boundary

of Q 4 . 

Increasing ρ further, the attractor Q 

a 
2 

undergoes its final bifurcation, while the attractor Q 4 increases in size. In Fig. 10 a,

where ρ = 0 . 665 , the coexisting attractors Q i , 4 , i = 1 , 4 , of F 4 are shown, associated with the 4-cyclic attractor Q 4 of F . It

can be seen that the attractor Q 4 is close to a contact with the immediate basin boundary, and the whole boundary has a

fractal structure . After the contact (causing an expansion bifurcation) map F has a 2-cyclic chaotic attractor Q 2 = { Q 1 , 2 , Q 2 , 2 } :
in Fig. 10 b where ρ = 0 . 95 , two coexisting attractors, Q 1, 2 and Q 2, 2 , of F 2 (related to the 2-cyclic attractor Q 2 of F ) are

shown together with their basins. Further increase of ρ up to the limit value ρ = 1 , does not lead to qualitative changes of

the phase portrait of F . 
7 Recall that a fold BCB, similar to a ‘smooth’ fold bifurcation, is associated with a couple of cycles, however, it is related not to an eigenvalue equal to 1, 

but to a collision of two cycles with a switching manifold. These cycles merge at the moment of collision and disappear (or appear) after. Differently from 

the smooth fold bifurcation, leading to node and saddle cycles, a fold BCB may lead to two repelling cycles. 
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Fig. 11. (a) Four and (b) three coexisting 4-cyclic chaotic attractors of map F and their basins. Here θ = 2 . 7 , δ = 0 . 8 , s X = 0 . 6 , s Y = 0 . 4 and (a) ρ = 0 . 01 , 

(b) ρ = 0 . 02 . (For interpretation of the references to color in the text, the reader is referred to the web version of this article.) 

Fig. 12. Coexisting one 2-cyclic and two 4-cyclic chaotic attractors of map F and their basins for θ = 2 . 7 , δ = 0 . 8 , s X = 0 . 6 , s Y = 0 . 4 and (a) ρ = 0 . 03 , (b) 

ρ = 0 . 2 . (For interpretation of the references to color in the text, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Increasing ρ in the asymmetric case ( s X � = s Y ) 

Let the symmetry of map F be broken, that is, let s X � = s Y , for example, s X = 0 . 6 , s Y = 0 . 4 . To describe some peculiarities

of the bifurcation sequences observed in map F in the asymmetric case for ρ increasing in the range 0 < ρ < s Y /s X = 2 / 3 ,

we consider, as a starting point, four coexisting 4-cyclic chaotic attractors shown in Fig. 4 a, where θ = 2 . 7 , δ = 0 . 8 , ρ = 0 .

Note that two of these attractors, namely, those shown in light blue and magenta, are synchronized (in the sense defined

before), and two other attractors (shown in dark blue and black) are asynchronized. 

At ρ = 0 . 01 map F still has four coexisting 4-cyclic chaotic attractors: we show them in Fig. 11 a together with their

basins whose boundaries are formed by the closure of the stable invariant sets of the related saddle 4-cycles. Increasing ρ
further, one of the asynchronized 4-cyclic attractors (shown dark blue in Fig. 11 a) has a contact with its immediate basin

boundary and is transformed into a chaotic repellor, so that three coexisting 4-cyclic chaotic attractors are left (see Fig. 11 b

where ρ = 0 . 02 ). At ρ ≈ 0.024 the asynchronized attractor shown in black in Fig. 11 b also has a contact with its immediate

basin boundary and undergoes an expansion bifurcation becoming a 2-cyclic annular chaotic attractor (see Fig. 12 a where

ρ = 0 . 03 ). 

Fig. 12 b presents the attractors of F for ρ = 0 . 2 : the 2-cyclic asynchronized chaotic attractor, which has no longer an

annular shape, is decreased in size while one of the 4-cyclic chaotic attractors (shown in magenta) is increased in size. Note

that there are islands of the basins of the synchronized 4-cyclic chaotic attractors (shown in light blue and magenta) inside

the basin of the asynchronized 2-cyclic chaotic attractor (shown in black). These islands are created due to the part of the

basins (highlighted in red in Fig. 12 b) of the 4-cyclic attractors, which ‘entered’ the region Z 4 after crossing the critical line

C 2 , leading to the appearance of new preimages of this part. In particular, one of these preimages (highlighted in blue) is

intersected by C 2 −1 
. 
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Fig. 13. (a) Two 4-cyclic chaotic attractors coexisting in with the asynchronized 6-cyclic chaotic attractor; (b) two 4-cyclic chaotic attractors. The 4-cyclic 

chaotic attractor shown in light blue is synchronized; the parts of the other 4-cyclic chaotic attractor, shown in magenta and dark gray are associated with 

the synchronized and asynchronized behavior, respectively. Here θ = 2 . 7 , δ = 0 . 8 , s X = 0 . 6 , s Y = 0 . 4 and (a) ρ = 0 . 26 , (b) ρ = 0 . 29 . (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 14. (a) Coexisting synchronised 4-cyclic chaotic attractor and 4-cyclic chaotic intervals I 4 = { I i, 4 } 4 i =1 
and their basins; (b) additionally, map F has a 

4-cyclic annular chaotic attractor. Here θ = 2 . 7 , δ = 0 . 8 , s X = 0 . 6 ,s Y = 0 . 4 and (a) ρ = 0 . 4 , (b) ρ = 0 . 49 . (For interpretation of the references to color in the 

text, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Increasing ρ , the asynchronized 2-cyclic chaotic attractor decreases in size and is transformed via a reverse expansion

bifurcation into a 6 -cyclic chaotic attractor (see Fig. 13 a where ρ = 0 . 26 ). Then this 6-cyclic attractor is transformed (via an

expansion bifurcation) back to a 2-cyclic attractor which continues to decrease in size and then disappears due to a BCB, so

that at ρ = 0 . 29 map F has only two 4-cyclic chaotic attractors (see Fig. 13 b). 

Increasing ρ further the 4-cyclic chaotic attractor shown magenta in Fig. 13 decreases in size and at ρ ≈ 0.375 it is

transformed into 4-cyclic chaotic intervals I 4 = { I i, 4 } 4 i =1 
(see an example in Fig. 14 a where ρ = 0 . 4 ). To explain a mechanism

of such a transformation note that interval I 1, 4 intersects the switching manifold C 4 −1 , so, it has parts in both regions D HH and

D LH ; interval I 2 , 4 = F (I 1 , 4 ) is folded along C 4 and I 2, 4 ⊂ D LH ; I 3 , 4 = F (I 2 , 4 ) ⊂ D HH and I 4 , 4 = F (I 3 , 4 ) ⊂ D LL . Thus, map G = F 4

associated with attractor I 4 is a composition of the maps F LL , F HH and F LH only, for which the dynamics of the variable y is

independent on x , being defined by the functions g LL (y ) = δ(θs Y (ρ) + (1 − θ ) y ) and g H (y ) = δy . Thus we can define map G

as follows: 

G : 

(
x 
y 

)
→ 

(
f (x, y ) 
g(y ) 

)
, 

which is a triangular map . Recall that g ( y ) and f ( x, y ) are called driving and driven maps, respectively. 

Let us show that in the considered case the driving map g has an attracting fixed point. Consider an initial point ( x 1 ,

y 1 ) ∈ D HH ∪ D LH . Then for the y -coordinates of its images the following holds: y 2 = δy 1 ; if ( x 2 , y 2 ) ∈ D LH then y 3 = δ2 y 1 ; if

( x 3 , y 3 ) ∈ D HH then y 4 = δ3 y 1 ; if ( x 4 , y 4 ) ∈ D LL then y 5 = δ(θs Y (ρ) + (1 − θ ) δ3 y 1 ) , and if ( x 5 , y 5 ) ∈ D HH ∪ D LH , that is, if the

trajectory is back to the starting region (all the conditions listed above are satisfied for ( x 1 , y 1 ) ∈ I 1, 4 ), one can consider the
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Fig. 15. One of the pieces of the 4-cyclic chaotic attractor of F undergoing a collision with the switching manifold C 3 −1 and increasing its dimension. Here 

θ = 2 . 7 , δ = 0 . 8 , s X = 0 . 6 , s Y = 0 . 4 and (a) ρ = 0 . 375 , (b) ρ = 0 . 3745 and (c) ρ = 0 . 374 . An inset in (c) shows the indicated rectangle enlarged. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

map 

g : y �→ g(y ) = g LL ◦ g 3 H (y ) = δθs Y (ρ) + (1 − θ ) δ4 y. 

It has a fixed point y ∗ = δθs Y (ρ) / (1 − (1 − θ ) δ4 ) which is attracting for 
∣∣(1 − θ ) δ4 

∣∣ < 1 , that is, for 0 < θ < 1 + 1 /δ4 . For the

considered parameter values, that is, for θ = 2 . 7 , δ = 0 . 8 , ρ = 0 . 4 and s Y = 0 . 4 , it holds that the fixed point y ∗ = y 1 ≈ 0 . 3396

is attracting. Thus, map G has a transversely attracting layer defined by y = y 1 , the dynamics on which is governed by the

driven map f ( x, y 1 ) � f 1 ( x ) which is the skew tent map defined as follows: 

f 1 : x �→ 

{
f 1 L (x ) = f LL ◦ f H ◦ f 1 LH ◦ f H (x ) , x ≥ h 1 (y 1 ) , 
f 1 H (x ) = f LL ◦ f H ◦ f 2 1 LH (x ) , x < h 1 (y 1 ) , 

where f LH ( x, y 1 ) � f 1 LH ( x ). The slopes of the linear branches of f 1 are a L = δ4 (1 − θ ) 2 > 0 and a H = δ4 (1 − θ ) 3 < 0 . It is

known that the skew tent map has a one-piece chaotic attractor (interval) if 

a L a H + a L − a H > 0 and a L a 
2 
H + a H − a L > 0 . 

That is, for map f 1 it must hold that 

δ8 (1 − θ ) 6 − θ > 0 and δ4 (1 − θ ) 3 + θ > 0 . 

It is easy to check that for the considered parameter values these inequalities are satisfied, thus, map f 1 has a one-piece

chaotic attractor, which is the interval I 1, 4 . Coming back to the map F , it holds that it has 4-cyclic chaotic intervals I i , 4 ,

i = 1 , 4 , each of which is located on the related transversely attracting layer defined by y = y i (see Fig. 14 a). 

The mechanism of appearance of the 4-cyclic chaotic intervals I 4 can be commented for decreasing ρ: At ρ = 0 . 375 the

interval I 3, 4 is near to a contact with the switching manifold C 3 −1 
(see Fig. 15 a), at ρ ≈ 0.3745 this interval contacts C 3 −1

(see Fig. 15 b) and then the attractor intersects C 3 −1 
(see Fig. 15 c where ρ = 0 . 374 ), that is, the 4-cyclic chaotic attractor has

already a part belonging to D HL , thus, map F HL becomes also involved into the asymptotic dynamics associated with this

attractor. The related map F 4 is no longer triangular, and the attractor increases its dimension having at first a Cantor like

structure (as, e.g., in Fig. 15 c), and then it becomes a full measure chaotic attractor (as, e.g., the one shown in magenta in

Fig. 13 ). 

In Fig. 14 b ,where ρ = 0 . 49 , we present the 4-cyclic chaotic intervals I 4 coexisting with the synchronized 4-cyclic chaotic

attractor (shown in blue) which is near to its final bifurcation, and a 4-cyclic annular chaotic attractor (shown in black)

born after a sequence of bifurcations initiated by a fold BCB. For increasing ρ first the attractor shown in blue and then the

attractor shown in black are transformed into chaotic repellors due to a contact with their immediate basin boundaries, and

the only attractor of map F , up to the limit value ρ = 2 / 3 , is the 4-cyclic chaotic intervals I 4 . 

5. Conclusions 

We considered a 2D continuous noninvertible piecewise smooth map, which characterizes the dynamics of innovation

activities in the two-country model of trade and product innovation proposed by Matsuyama et al. [7] , in which this map

was derived from the underlying economic model, but also the case of two coexisting attracting 2-cycles was considered in

detail, and it was shown that a gradual reduction in the trade cost, or globalization, causes a synchronization of endogenous

innovation cycles across the two countries, in the sense that the basin of attraction of the synchronized 2-cycle expands and

the basic of attraction of the asynchronized 2-cycle shrinks and eventually disappears. In the present paper we discussed

a few bifurcation scenarios associated with chaotic attractors, which are interesting from the point of view of nonlinear

dynamics theory. These scenarios involve border collision, merging, expansion and final bifurcations of various coexisting

chaotic attractors, accompanied by transformations of their basins of attraction. We have seen that such peculiarities of map

F as its nonsmoothness and noninvertibility essentially enrich the dynamics of the map. We have recalled the concept of
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critical lines which are helpful in determining the boundaries of chaotic attractors, as well as in explaining some transfor-

mations in the structure of the basins. We have also unfolded a mechanism of peculiar border collision bifurcation of a

chaotic attractor leading to an increase of its dimension. 

Needless to say, this paper is just a first step towards a full characterization of the map developed in [7] and many

important problems still remain to be addressed. Our analysis here already revealed that the map has a richer set of bifur-

cation scenarios than our earlier analysis of the 2-cycle case had identified. But, what has been reported in this paper is

merely tips of the iceberg. There might still be many alternative “routes to synchronization” that we have not discovered. To

be able to address this issue in a fully satisfactory manner, it is necessary to understand the properties of this map for the

full set of the parameter space. We hope to address this and other remaining issues related to this map in our future work.
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