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a b s t r a c t 

We consider a family of one-dimensional continuous piecewise smooth maps with monotone increasing 

and monotone decreasing branches. It is associated with a credit cycle model introduced by Matsuyama, 

under the assumption of the Cobb-Douglas production function. We offer a detailed analysis of the dy- 

namics of this family. In particular, using the skew tent map as a border collision normal form we obtain 

the conditions of abrupt transition from an attracting fixed point to an attracting cycle or a chaotic at- 

tractor (cyclic chaotic intervals). These conditions allow us to describe the bifurcation structure of the 

parameter space of the map in a neighborhood of the boundary related to the border collision bifurca- 

tion of the fixed point. Particular attention is devoted to codimension-two bifurcation points. Moreover, 

the described bifurcation structure confirms that the chaotic attractors of the considered map are robust, 

that is, persistent under parameter perturbations. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

The one-dimensional (1D for short) piecewise smooth (PWS for

hort) map considered in the present paper defines an important

redit cycle model first introduced by Matsuyama in [20] . This

odel generates endogenous fluctuations of borrower net worth

nd aggregate investment, following the same trend as several

icro-founded, dynamic general equilibrium models of financial

rictions, in which the steady state is unstable , and persistent fluc-

uations occur without exogenous shocks (see, for example, [1,3,21] ).

uch an approach differs from the basic ideas of a vast majority

f the macroeconomics literature on financial frictions that follows

he seminal works [6] and [18] , and continues to study amplifica-

ion effects of financial frictions within a setting that ensures the

xistence of a stable steady state toward which the economy would

ravitate in the absence of recurring exogenous shocks. In fact, the

dea that market mechanisms are inherently dynamically unstable

an be traced back at least to Goodwin [12] . Recent events have
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lso renewed interest in the hypothesis that financial frictions are

esponsible not only for amplifying the effects of exogenous shocks

ut also for causing macroeconomic instability (see, e.g., [17] and

25] ). 

A detailed description of the Matsuyama model can be found

n [20] and [22] (see also [23] ). It is defined by a 1D map which

onsists of upward, downward, and flat branches. Furthermore, as

iscussed in [23] , when the production function is Cobb-Douglas,

he map depends on four parameters. The bifurcation structure of

he parameter space of this map significantly depends on whether

he constant branch is involved into asymptotic dynamics or not.

n our companion paper [32] we study in detail the case where all

hree branches are involved, demonstrating that it is characterized

y periodicity regions related to superstable cycles existing due the

onstant branch, and that these regions are ordered according to

he well known U-sequence distinctive for unimodal maps (first de-

cribed in [24] , see also [13] ), which is adjusted to the considered

ap. 

In the present paper we analyze the dynamics of the map when

he constant branch does not participate in the asymptotic dynam-

cs. Such a map belongs to a class of 1D PWS continuous unimodal

aps possessing quite complicated dynamics which, depending on

he parameters, is characterized by attracting cycles of any pe-

http://dx.doi.org/10.1016/j.chaos.2016.06.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2016.06.015&domain=pdf
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riod, as well as cyclic chaotic intervals. The mechanisms govern-

ing the transitions between such attractors under parameter varia-

tion are already described in our paper [23] . The main purpose of

the present work is to give detailed proofs of the related results

and to describe the overall bifurcation structure of the parameter

space of the map, evidencing the role of codimension-two bifurca-

tion points. 

From the point of view of nonlinear dynamics theory the main

feature of the considered map is its non smoothness . In fact, as we

mentioned above, the map is given by two different smooth func-

tions whose definition regions are separated by a border point at

which the system function is not differentiable. As a result, under

variation of a parameter it is possible to observe not only bifur-

cations typical for 1D smooth maps (such as, for example, flip bi-

furcation of a fixed point related to its eigenvalue crossing −1 , or

homoclinic bifurcation related to a contact of a stable and unstable

sets of a repelling fixed point), but border collision bifurcations (BCB

for short) as well, which are characteristic of nonsmooth systems

(see [5,14,15,26] ). Recall that a BCB occurs when an invariant set,

for example, a fixed point or cycle, collides with a border point.

The result of such a bifurcation can be a direct transition from an

attracting fixed point to a chaotic attractor that is impossible in

smooth systems. Such an abrupt transition to chaos in a 1D PWS

map can be observed also due to a degenerate bifurcation which

is related to the eigenvalue of a fixed point (or cycle) crossing 1

or −1 in presence of a particular degeneracy of the system func-

tion. For example, a degenerate flip bifurcation (DFB for short) of a

fixed point occurs when its eigenvalue crosses −1 and the related

branch of the function at the bifurcation value is linear or linear

fractional (see [31] ). Note that a general bifurcation theory for non-

smooth dynamical systems has not yet such a complete form as

the one established for smooth systems. As an important advance-

ment towards such a theory we refer to the books [34] , [10] . Ex-

amples of PWS models coming from economic applications can be

found in [7,9,11,15,28] , to cite a few. 

As one of the main contributions of the present paper we give

the conditions under which abrupt transitions via a BCB from an

attracting fixed point to an attracting cycle or to a chaotic attrac-

tor are observed. Such conditions are obtained by using a 1D piece-

wise linear map defined by two linear functions, called skew tent

map . The dynamics of the skew tent map are completely described

depending on the slopes of the linear branches (see [16,19] ) that

makes it possible to use this map as a border collision normal form

( [5,27,29,30] ). 

The skew tent map is used to classify not only the BCB of the

fixed point, mentioned above, but BCBs of the attracting n -cycles

as well, n ≥ 3. More precisely, we show that one boundary of the

periodicity region related to an attracting n -cycle is associated (at

least in a certain neighbourhood) with the so-called fold BCB . The

crossing of this boundary leads to the appearance of a couple of n -

cycles, one attracting and one repelling. This bifurcation is to some

extent similar to the smooth fold bifurcation, being, however, not

related to an eigenvalue equal to 1. Another boundary of the n -

periodicity region is related to the smooth flip bifurcation, sub- or

supercritical. 

It is known that one more distinctive feature of PWS maps is

associated with robust chaotic attractors (see [4] ), that means that

in the parameter space of a PWS map an open region may exist,

called chaotic domain, related to chaotic attractors persistent un-

der parameter perturbations. Considering a chaotic attractor which

consists of n cyclic intervals, n ≥ 1, under parameter variation in-

side a chaotic domain bifurcations can be observed at which the

number of intervals constituting the chaotic attractor changes. In

particular, a merging bifurcation is related to the transition from

2 n - to n -cyclic chaotic attractor. It is caused by the first homoclinic

bifurcation of a repelling cycle with negative eigenvalue, located at
he immediate basin boundary of the attractor. An expansion bifur-

ation occurs when a chaotic attractor abruptly increases in size

lling the complete absorbing interval due to the first homoclinic

ifurcation of a repelling cycle with positive eigenvalue (see [2] for

etails). By using the skew tent map we get the conditions of the

omoclinic bifurcations leading to merging and expansion bifurca-

ions in the considered map. 

The paper is organized as follows. In Section 2 we describe

he map, its fixed points and the conditions of their stability.

he parameter region we are interested in is confined by three

oundaries. One of them is related to a contact of the absorbing

nterval with the border point (crossing this boundary the con-

tant branch becomes involved into asymptotic dynamics), and two

ther boundaries are related to the bifurcations of a fixed point as-

ociated with the downward branch of the map. Namely, crossing

ne of such boundaries a BCB of this fixed point occurs, whose

ossible results are listed in Section 3 (see Proposition 1) and

roved using the skew tent map as a border collision normal form.

he second boundary is related to the flip bifurcation described in

ection 4 (see Proposition 2). In Section 5 it is discussed the over-

ll bifurcation structure of the parameter space of the considered

ap, emphasizing the role of codimension-two bifurcation points.

ection 6 concludes. 

. Description of the map, its fixed points and their 

ifurcations 

We consider a 4-parameter family of 1D piecewise smooth

aps defined as 

 : w �→ T (w ) 

 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

T L (w ) = w 

α if 0 < w < w c , 

T M 

(w ) = 

[ 
1 

μβ

(
1 − w 

m 

)] α
1 −α

if w c < w < w μ, 

T R (w ) = β
α

α−1 if w ≥ max { w c , w μ} , 
(1)

here α, β , μ and m are real parameters such that 

 < α, μ < 1 , β ≡ B 

1 − α

α
> 0 , 1 < m < 

1 

1 − α
, (2)

 c and w μ are the border points defined by 

 

1 −α
c = 

1 

μβ
max 

{ 

1 − w c 

m 

, μ
} 

, w μ = m (1 − μ) . (3)

ap T describes the dynamic trajectory of the entrepreneur net

orth w in a credit cycle model, first introduced in [20] , under

he additional assumption that the aggregate production function

s Cobb-Douglas (see [23,32] ). 

In the simplest case map T is defined only by the branches

 L ( w ) and T R ( w ) with the border point w c = ( w B ) 
1 /α . The bound-

ry in the parameter space defined by 

= (m (1 − μ)) α−1 (4)

s related to the appearance of the middle branch in the definition

f T . Namely, for β > (m (1 − μ)) α−1 map T can be written in the

ollowing form: 

 : w �→ T (w ) 

 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

T L (w ) = w 

α if 0 ≤ w ≤ w c , 

T M 

(w ) = 

[ 
1 

μβ

(
1 − w 

m 

)] α
1 −α

if w c < w < w μ, 

T R (w ) = w B if w > w μ. 

(5)

ote that T maps (0, 1] into itself, so that we restrict T on (0, 1]

rom now on. 
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Fig. 1. Basic bifurcation curves of map T in ( μ, β)-parameter plane at m = 1 . 2 , α = 0 . 6 . Examples of map T in different parameter regions are also shown. 
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Let us first recall the simplest bifurcation conditions (see

32] and [23] ) related to existence and stability of the fixed points

f map T . We illustrate the corresponding regions and bifurcation

urves in Fig. 1 which shows also examples of map T associated

ith different parameter regions. 

The fixed points related to the upward, downward and flat

ranches of map T are denoted w 

∗
L 
, w 

∗
M 

and w 

∗
R 
, respectively. The

xed point w 

∗
L = 1 exists and is globally attracting for the parame-

er values belonging to the region 

 : β ≤ max 

{ 

1 

μ

(
1 − 1 

m 

)
, 1 

} 

, (6) 

wo boundaries of which correspond to BCBs of w 

∗
L , namely, for 

C LM 

: β = 

1 

μ

(
1 − 1 

m 

)
, (7) 

e have w 

∗
L 

= 1 = w 

∗
M 

, and for 

C LR : β = 1 , (8)

he equality w 

∗
L = 1 = w 

∗
R holds. The fixed point w 

∗
R = w B (which is

bviously superstable) exists for the parameter region 

 < β < (m (1 − μ)) 1 −
1 
α . 

t the boundary β = 1 (denoted as BC LR ) we have w 

∗
R 

= w 

∗
L 

= 1 .

f the parameter point crosses BC LR we observe a border collision

eading from the superstable fixed point w 

∗
R 

to the stable fixed

oint w 

∗
L 
. 1 The region of existence of w 

∗
R 

is divided by the bound-

ry given in (4) in two subregions: 

 : 1 < β < (m (1 − μ)) α−1 , 

 : (m (1 − μ)) α−1 < β < (m (1 − μ)) 1 −
1 
α , 

see Fig. 1 ). While at the boundary 

C MR : β = (m (1 − μ)) 1 −
1 
α (9)

e have w 

∗
R = w μ = w 

∗
M 

, so that BC MR is related to one more bor-

er collision of w 

∗
R 

. The fixed point w 

∗
M 

exists if w c ≤ w 

∗
M 

≤ w μ that

olds for 

≥ max 

{ 

1 

μ

(
1 − 1 

m 

)
, (m (1 − μ)) 1 −

1 
α

} 

. (10) 
1 We say that persistence border collision occurs if neither the kind nor the stabil- 

ty properties of the colliding invariant set change after the collision. 

b

t

oth boundaries of this parameter region are related to the border

ollision of w 

∗
M 

, namely, at the boundary BC LM 

(see (7) ) w 

∗
M 

= 1 =
 

∗
L 
, as already mentioned. The possible results of this BCB are de-

cribed in Proposition 1 below. While at the boundary BC MR (see

9) ) we have w 

∗
M 

= w μ = w 

∗
R . Crossing BC MR in the generic case

e observe either a persistence border collision, or a flip BCB 

2 

see [32] ). 

The fixed point w 

∗
M 

may become unstable via a standard flip

ifurcation (see Proposition 2 below). The flip bifurcation curve of

 

∗
M 

is given by 

 B M 

: β = 

α

μ
(m (1 − α)) 1 −

1 
α . (11)

o, for parameter values belonging to the region 

 : β > max 

{ 

α

μ
(m (1 − α)) 1 −

1 
α , (m (1 − μ)) 1 −

1 
α

} 

see Fig. 1 ) there exists the locally attracting fixed point w 

∗
M 

. 

We have the following two possibilities for an invariant absorb-

ng interval J of map T : 

(1) In the absorbing interval J only the functions T L ( w ) and

 M 

( w ) are defined, that holds for parameter values belonging to

he region 

 - I : 

⎧ ⎪ ⎨ ⎪ ⎩ 

β < 

α

μ
(m (1 − α)) 1 −

1 
α , 

β > max 

{ 

1 

μ

(
1 − 1 

m 

)
, 1 − 1 

μ
+ 

1 

μ
(m (1 − μ)) 1 −

1 
α

} 

(12) 

n such a case J = [ T 2 (w c ) , T (w c )] . 

(2) All the three functions, T L ( w ), T M 

( w ) and T R ( w ), are involved

n J , that holds in the region 

 - II : 

{ 

β > (m (1 − μ)) 1 −
1 
α , 

β < min 

{
1 − 1 

μ + 

1 
μ (m (1 − μ)) 1 −

1 
α , α

μ (m (1 − α)) 1 −
1 
α

}
(13) 

n such a case J = [ T (w μ) , T (w c )] = [ w B , T (w c )] . 

The boundary between the two regions corresponds to the con-

act of J with the border point w μ, occurring when the condition
2 The border collision of a fixed point due to which the fixed point changes sta- 

ility while a 2-cycle emerges from the border point is called flip BCB . Similarly to 

he smooth flip bifurcation a flip BCB can be sub- or supercritical. Note, however, 
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Fig. 2. (a) Bifurcation structure of the ( a l , a r )-parameter plane of the skew tent map, where the border collision curves B m are shown for m = 1 . 05 , 1.2, 2, 3 and 8; (b) 

Bifurcation structure of the ( μ, α)-parameter plane of the map T at m = 1 . 05 , B = 1 . 5 . 
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the map g n and its fixed point corresponding to the periodic point of g colliding 

with the border point. 
4 Fold BCB is a border collision at which two fixed points (one attracting and one 

repelling, or both repelling) simultaneously collide with the border point and dis- 

appear after the collision. It is worth to emphasize that a fold BCB is not associated 

with an eigenvalue passing through 1. 
5 
T (w c ) = w μ is satisfied, leading to the curve BC J having the follow-

ing equation: 

BC J : β = 1 − 1 

μ
+ 

1 

μ
(m (1 − μ)) 1 −

1 
α . (14)

The bifurcation structure of the region E − I I formed by the pe-

riodicity regions related to superstable cycles of map T (existing

due to its flat branch) is described in [32] . In the following we first

describe the border collision and flip bifurcations of the fixed point

w 

∗
M 

in detail and then we discuss the overall bifurcation structure

of the region E − I. 

3. Crossing the curve BC LM 

: BCB of the fixed point 

Consider first the BCB of the fixed point w 

∗
M 

, occurring when

a parameter point crosses the boundary BC LM 

given in (7) of the

region E − I. To describe the possible results of this BCB we can

use the skew tent map defined by 

q : x �→ q (x ) = 

{
a l x + ε if x ≤ 0 , 

a r x + ε if x > 0 , 
(15)

as a border collision normal form. This approach is based on the

following statement (see [5,27,30] ): For a family of 1D piecewise

smooth continuous maps g : x �→ g ( x, c ) depending smoothly on a pa-

rameter c and having a border point x = d, suppose that 

g(d, c ∗) = d (16)

and let 

a ∗l = lim 

x ↑ d 
d 

dx 
g(x, c ∗) , a ∗r = lim 

x ↓ d 
d 

dx 
g(x, c ∗) . (17)

Then in the generic case the border collision occurring in the map g

as c varies through c ∗ is of the same kind as the one occurring in the

skew tent map ( 15 ) as ε varies through 0 at (a l , a r ) = (a ∗
l 
, a ∗r ) . 

Clearly, this statement refers to the border collision of a fixed

point x = x ∗ of the map g (its existence before or/and after the col-

lision follows from the conditions of the statement). 3 Generic case
that it is not related to an eigenvalue passing through −1 . Moreover, it may result 

in a chaotic attractor that is impossible for a smooth flip bifurcation. 
3 The skew tent map can be also used as a border collision normal form for a 

BCB of an n -cycle of the map g , in which case the statement has to be applied to 

w

q

s

s

R

eans that at c = c ∗ the fixed point x = x ∗ of the map g undergoes

nly one bifurcation, i.e. a codimension-one BCB. An example of

odimention-two bifurcation is when a border collision and a flip

ifurcation occur simultaneously at the same point in the param-

ter space (in fact, this can happen also in map T , as we discuss

ater). For the detailed classification of the possible BCBs in the

kew tent map and explanation how to use this map as a border

ollision normal form we refer to [30] . 

Let us recall in short the equations of the curves forming the

ifurcation structure in the ( a l , a r )-parameter plane of the skew

ent map given in (15) for any ε > 0. Let q n denote a cycle of pe-

iod n, n ≥ 2, of the skew tent map. The stability region of q n is

ounded from above by the curve φn and from below by the curve

 n defined as 

n : a r = − 1 − a n −1 
l 

(1 − a l ) a 
n −2 
l 

, (18)

 n : a r = 

−1 

a n −1 
l 

, (19)

see Fig. 2 (a)). The curve φn is related to the fold BCB 

4 leading

o the appearance of the basic cycle 5 q n and its complementary

ycle 6 ˜ q n . The curve ψ n is related to the degenerated flip bifur-

ation (DFB) of q n leading to 2 n -cyclic chaotic intervals Q n , 2 n , n

3, where the first index n means that this chaotic attractor is

orn due to a DFB of the n -cycle, while 2 n indicates that the

haotic intervals constituting the attractor are 2 n -cyclic. The tran-

itions Q n , 2 n ⇒ Q n, n (merging bifurcation) and Q n, n ⇒ Q 1 (expansion
For a 1D piecewise smooth map defined on two partitions, L and R , an n -cycle 

ith symbolic sequence LR n −1 or RL n −1 for any n ≥ 2 is called basic. The basic cycle 

 n of the skew tent map (15) for ε > 0 has symbolic sequence RL n −1 . It can be 

hown that only such cycles can be stable (see [30] ). 
6 The symbolic sequences of two complementary cycles differ by one symbol. The 

ymbolic sequence of the cycle ̃  q n which is complementary to the basic cycle q n is 

L n −2 R. 
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2  
ifurcation) take place crossing the curves γ n and 

˜ γn , respectively,

hose equations are given by 

n : a 2(n −1) 
l 

a 3 r − a r + a l = 0 , (20)˜ n : a n −1 
l 

a 2 r + a r − a l = 0 . (21)

or the description of merging and expansion bifurcations we refer

o [2] . The curves γ n and 

˜ γn are related to the first homoclinic

ifurcation of the cycles q n and ̃

 q n , respectively. There is also a set

f curves σ2 i , i ≥ 0, given by 

2 i : 
(
a δi 

l 
a 
δi +1 
r 

)2 + (a l /a r ) 
(−1) i +1 − 1 = 0 , (22)

here δi = (2 i − (−1) i ) / 3 . The curve σ2 i for i ≥ 1 corresponds to

he first homoclinic bifurcation of harmonic 2 i -cycle, causing the

erging bifurcation Q 2 , 2 i +1 ⇒ Q 2 , 2 i , and the curve σ 1 ( i = 0 ) is re-

ated to the first homoclinic bifurcation of the fixed point leading

o the merging bifurcation Q 2, 2 ⇒ Q 1 . The curves σ2 i for i → ∞ are

ccumulating to the point (a l , a r ) = (1 , −1) (see Fig. 2 (a)). 

To construct a normal form for the border collision occurring

n map T when its fixed point collides with the border point w c 

in which case w 

∗
M 

= w 

∗
L = w c = 1 ) we have to evaluate the left-

nd right-side derivatives of T at w = 1 for the parameter values

elonging to the boundary BC LM 

given in (7) : 

 

∗
l = lim 

w ↑ 1 
d 

dx 
T (w ) = α, a ∗r = lim 

w ↓ 1 
d 

dx 
T (w ) = − α

(1 − α)(m − 1) 
. 

(23) 

he relation between a point belonging to BC LM 

and the parame-

ers a l , a r of the skew tent map is given by 

(a l , a r ) = 

(
α, − α

(1 − α)(m − 1) 

)
, 

o, if a parameter point moves along the boundary BC LM 

the re-

ated point in the ( a l , a r )-parameter plane moves along the curve

enoted B m 

: 

 m 

: a r = − a l 
(1 − a l )(m − 1) 

. (24) 

ecall that the curve BC LM 

is valid for β = B 1 −α
α > 1 , i.e., for α <

B 
B +1 . Moreover, α > 1 − 1 

m 

(see (2) ). So, the curve B m 

is valid in the

ange 

 − 1 

m 

< a l < 

B 

B + 1 

, or 
−B 

m − 1 

< a r < −1 , (25)

hich is nonempty for B > m − 1 . 

Using the bifurcation curves of the skew tent map we can state

he following 

roposition 1. Consider map T given in (5) for some fixed parameter

alues satisfying (2) , and let β = (1 − 1 /m ) /μ (the boundary BC LM 

).

onsider the bifurcation structure of the ( a l , a r ) -parameter plane of

he skew tent map given in (15) for ε > 0, defined by the curves

18) - (22) , and let (a l , a r ) = (a ∗
l 
, a ∗r ) as defined in (23) . Then the BCB

ccurring in map T when its parameter point crosses transversely the

oundary BC LM 

leads from the attracting fixed point w 

∗
L 

to the follow-

ng attractor: 

• n-cycle g n , n ≥ 2, if (a ∗
l 
, a ∗r ) is below the BCB curve φn and above

the flip bifurcation curve ψ n ; 

• 2 n-cyclic chaotic intervals G n , 2 n , n ≥ 3, if (a ∗
l 
, a ∗r ) is below the

BCB curve φn , the flip bifurcation curve ψ n , and above the merg-

ing bifurcation curve γ n ; 

• n-cyclic chaotic intervals G n, n , n ≥ 3, if (a ∗
l 
, a ∗r ) is below the BCB

curve φn , the merging bifurcation curve γ n and above the expan-

sion bifurcation curve ˜ γn ;
• 2 i -cyclic chaotic intervals G 2 , 2 i , i ≥ 1, if (a ∗

l 
, a ∗r ) is below the BCB

curve φ2 , the flip bifurcation curve ψ 2 , the merging bifurcation

curve σ i and above the merging bifurcation curves σ i −1 ;
2 2 
• Otherwise, the attractor is chaotic interval G 1 = [ T 2 (w c ) , T (w c )] . 

To illustrate this proposition we present in Fig. 2 (a) the bifur-

ation structure of the ( a l , a r )-parameter plane of the skew tent

ap together with the curves B m 

for different values of m , and

n Fig. 2 (b) it is shown the 2D bifurcation diagram in the ( μ, α)-

arameter plane for m = 1 . 05 , B = 1 . 5 , where the curve BC LM 

cor-

esponds to the curve B 1 . 05 . 

Let us associate the regions which are crossed by the curve

 1 . 05 (see Fig. 2 (a) and Eqs. (18 )–( 22) ) with the attractors which

ppear when the curve BC LM 

is crossed (see Fig. 2 (b) ). First note

hat due to (25) the curve B 1 . 05 is valid for −30 < a r < −1 . Start-

ng from the point p ′ 
0 

of B 1 . 05 with a r = −1 , the curve B 1 . 05 in-

ersects (moving from above to below) the curve ψ 2 at the point

p ′ 1 , the curves σ 2 and σ 1 at the points p ′ 2 ,p ′ 3 , the curve φ3 at

he point p ′ 
4 
,ψ 3 at p ′ 

5 
, γ 3 at p ′ 

6 
, ̃  γ3 at p ′ 

7 
, and so on, up to

he intersection with the curve ˜ γ5 at the point p ′ 
15 

. It can be

hecked that B 1 . 05 does not intersect any other bifurcation curve.

ubstituting (24) to the related Eqs. (18 )–( 22) , we obtain the a l -

oordinates of the intersection points, that is, a l = α ≡ α j , j =
 , . . . , 15 , which then can be substituted to (7) (recall that β =
 

1 −α
α ). In such a way we obtain the corresponding points p i of the

urve BC LM 

(see Fig. 2 (b)). Namely, the α-coordinates of the points

 j are the following: α0 = 0 . 047619 , α1 ≈ 0.199961, α2 ≈ 0.201786,

3 ≈ 0.203248, α4 ≈ 0.218205, α5 ≈ 0.322973, α6 ≈ 0.324797, 

7 ≈ 0.326245, and so on. The intersection point of BC LM 

and BC LR 

s (μ, α) = (0 . 047619 , 0 . 6) related to the end point of B 1 . 05 with

 r = −30 . 

Let BC LM 

| p j+1 
p j 

denote an open arc of the curve BC LM 

bounded by

he points p j and p j+1 . Now we can state, for example, that if the

arameter point crosses the arc BC LM 

| p 1 p 0 
then an attracting 2-cycle

 2 is born due to this BCB, because the related arc B 1 . 05 | p 
′ 
1 

p ′ 
0 

belongs

o the stability region of the 2-cycle of the skew tent map. Simi-

arly we can conclude that crossing BC LM 

| p 2 p 1 
, BC LM 

| p 3 p 2 
and BC LM 

| p 4 p 3 
eads to chaotic intervals G 2, 4 , G 2, 2 and G 1 , respectively, while

rossing BC LM 

| p 5 p 4 
leads to an attracting 3-cycle g 3 , and so on. 

Analyzing Fig. 2 (a) one can conclude also that for larger values

f m less periodicity regions are intersected by B m 

. For example,

he curve B 2 intersects only the 2-periodicity region (which is in

act intersected by B m 

for any m ), thus, besides an attracting 2-

ycle only chaotic attractors can appear due to the BCB. It is clear

lso that for fixed B the interval of valid values of α (see (25) )

ecreases for increasing m . 

. Crossing the curve FB M 

: flip bifurcation of the fixed point 

Let us consider now the flip bifurcation of the fixed point x ∗
M 

hich occurs if the parameter point crosses the boundary of the

egion D , the curve FB M 

given in (11) . As we show below, this bifur-

ation can be supercritical, subcritical or degenerate as illustrated

n Fig. 3 by means of 1D bifurcation diagrams. 

Namely, in Fig. 3 (a) one can see that decreasing μ a pair of 2-

ycles ( g 2 attracting and 

˜ g 2 repelling) are born due to a fold BCB

efore the subcritical flip bifurcation of the fixed point. So, in the

nterval between these two bifurcations the attracting fixed point

 

∗
M 

coexists with the 2-cycles g 2 and 

˜ g 2 . Then, if we continue to

ecrease μ, at the subcritical flip bifurcation the fixed point w 

∗
M 

oses stability merging with 

˜ g 2 so that after the bifurcation the

ap T has the attracting 2-cycle g 2 and the repelling fixed point.

he DFB of w 

∗
M 

illustrated in Fig. 3 (b) also leads to an attracting 2-

ycle g 2 , but the characteristic feature of this bifurcation is that at

he bifurcation value any point of the interval [ w c , T ( w c )], except

or the fixed point w 

∗
M 

, is 2-periodic, including the end points of

his interval. Thus, we have T 2 (w c ) = w c , that is, the BCB of the

-cycle g 2 occurs simultaneously with the DFB of w 

∗ . As for the

M 
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Fig. 3. 1D bifurcation diagrams illustrating subcritical (a) , degenerate (b) and supercritical (c) flip bifurcation of the fixed point w 

∗
M . Here m = 1 . 2 and α = 0 . 47 , β = 2 . 25 in 

(a), α = 0 . 5 , β = 2 . 25 in (b), α = 0 . 6 , β = 2 in (c) . 
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supercritical flip bifurcation (see Fig. 3 (c) ) note that soon after this

bifurcation the attracting 2-cycle g 2 changes its symbolic sequence,

from MM to LM , due to a persistence border collision. That is, one

periodic point of the 2-cycle crosses the boundary w c (from the re-

gion M to the region L ) so that a border collision occurs, but the

attractor is a 2-cycle before the bifurcation with symbolic sequence

MM and persists as a 2-cycle after the bifurcation, with symbolic

sequence LM . 

The conditions of degenerate, sub- and supercritical flip bifur-

cations of w 

∗
M 

are stated in the following 

Proposition 2. The flip bifurcation of the fixed point w 

∗
M 

of the map

T defined in (5) occurs for parameter values satisfying (2) and (10) at

β = α(m (1 − α)) 1 −
1 
α /μ (the boundary FB M 

). The flip bifurcation of

w 

∗
M 

is supercritical for α > 0.5, subcritical for α < 0.5 and degenerate

for α = 0 . 5 . 

To prove this proposition we have to check the sign of

(T 2 
M 

) ′′′ (w ) evaluated at the fixed point w 

∗
M 

for the bifurcation pa-

rameter value, namely, if we have (T 2 
M 

) ′′′ (w 

∗
M 

) < 0 then the flip bi-

furcation is supercritical, while for (T 2 M 

) ′′′ (w 

∗
M 

) > 0 it is subcritical

(see, e.g., [33] ). In the case of a DFB (when it is (T 2 
M 

) ′′′ (w 

∗
M 

) = 0 ),

it is enough to show that T 2 
M 

(w ) ≡ w occurs in an interval around

w 

∗
M 

(see [31] ). 

In order to simplify the calculations let us introduce a change

of variable, x := (1 − w/m ) , and let also γ = α/ (1 − α) , C =
(μβ) γ /m. Now the middle branch T M 

of map T has the form

(x ) = 1 − Cx γ , and its fixed point satisfies x ∗M 

= 1 − C(x ∗M 

) γ . It is

easy to see that at the flip bifurcation value we have x ∗
M 

= α. Us-

ing this equality after some algebraic computations and rearrange-

ments we get 

(t 2 ) ′′′ (x ∗M 

) = (γC) 2 (1 − γ )(x ∗M 

) 2(γ −2) (1 + γ ) , 

so that the sign of this expression depends on γ , namely,

(t 2 ) ′′′ (x ∗
M 

) < 0 for γ > 1, and (t 2 ) ′′′ (x ∗
M 

) > 0 for γ < 1. Coming

back to the map T and the original parameters we conclude that

for α > 0.5 we have (T 2 M 

) ′′′ (w 

∗
M 

) < 0 , thus, the flip bifurcation

is supercritical, while for α < 0.5 the inequality (T 2 M 

) ′′′ (w 

∗
M 

) > 0

holds, so that the flip bifurcation is subcritical. For α = 0 . 5 corre-

sponding to γ = 1 we have C = 1 , so that 

 

2 (x ) = 1 − C(1 − Cx γ ) γ | C=1 ,γ =1 ≡ x. 

Thus, the flip bifurcation is degenerate. For map T this means

that any point of the absorbing interval, except for the fixed point

w 

∗ , is 2-periodic. The absorbing interval in such a case is J =

M 
 w c , T (w c )] for the parameter region E − I, and J = [ w B , T (w B )] for

he region E − I I . 

As we can see in Fig. 3 , all the bifurcation sequences associated

ith the flip bifurcation of the fixed point w 

∗
M 

include a border col-

ision of a 2-cycle. Let us consider it in more details. The condition

hich is to be satisfied is 

 M 

◦ T L (w c ) = w c 

nd the related boundary in the parameter space is denoted BC 2 :

C 2 : 

[ 
1 

μβ

(
1 − w 

α
c 

m 

)] α
1 −α

= w c . (26)

See, for example, the curve BC 2 shown in case of subcritical flip

ifurcation of w 

∗
M 

in Fig. 2 (b) ). To see the result of this bifurca-

ion we can use the skew tent map as a normal form for the

order collision of the related fixed point of the map T 2 . For this

e need to evaluate the left- and right-side derivatives of T 2 at

 = w c for the parameter values belonging to BC 2 . Obviously, a ∗
l 

=
(T M 

◦ T L ) 
′ (w c ) < 0 and a ∗r = (T 2 

M 

) ′ (w c ) > 0 , and the skew tent map

15) with ε < 0 can be used as a normal form. However, it is easy

o show that bifurcation structure of the ( a l , a r )-parameter plane

or ε < 0 is symmetric with respect to a l = a r to the one for ε >
. Thus, we can use the results related to dynamics of the skew

ent map presented in the previous section considering the sym-

etric point (a l , a r ) = (a ∗r , a ∗l ) . In particular, one can check that

 

∗
l 

= (T M 

◦ T L ) 
′ (w c ) > −1 for 

 

α
c 

(
1 + 

α2 

1 − α

)
< m (27)

nd a ∗r = (T 2 M 

) ′ (w c ) > 1 for α < 0.5. The point (a l , a r ) = (a ∗r , a ∗l )
ith a l > 1 and 0 < a r < 1 belongs to the region at which the

kew tent map has an attracting and repelling fixed points (in

ig. 2 (a) a small part of this region can be seen), and a fold BCB

ccurs in the skew tent map if ε passes through 0. Thus, in the

ap T 2 also a fold BCB occurs. For map T this means that the bor-

er collision occurring at BC 2 is also a fold BCB leading to a pair

f 2-cycles, an attracting g 2 and a repelling ˜ g 2 , with symbolic se-

uences LM and MM , respectively. We can check also that crossing

C 2 for α = 0 . 5 always leads to one attracting 2-cycle. To see this,

ote that the curve FB M 

at α = 0 . 5 is defined by 

 B M 

| α=0 . 5 : μβ = 

1 

m 

, 

nd the branches of map T are T L (w ) = 

√ 

w and T M 

(w ) =
 − x with the border point w c = (−1 + 

√ 

1 + 4 m ) 2 / 4 . We have
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Fig. 4. 1D bifurcation diagram in the map T for α = 0 . 9 , m = 1 . 005 , β = 1 . 315 , μ ∈ [0.86, 0.885] is shown in a), and its enlargements are in b) . Here the BCB of the 2-cycle 

leads to 8-cyclic chaotic intervals. 
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2  
(T 2 
M 

) ′ (w c ) = 1 , while (T M 

◦ T L ) 
′ (w c ) > −1 , where the last inequal-

ty holds for m > 3/4, that is always true given that m > 1.

hus, the 2-cycle born due to this bifurcation (with symbolic se-

uence LM ) is attracting. For α > 0.5 we have (T 2 
M 

) ′ (w c ) < 1 and

(T L ◦ T M 

) ′ (w c ) > −1 (for the parameter values satisfying (27) ), so

hat due to collision with w = w c the 2-cycle remains attracting

nd only changes its symbolic sequence from MM to LM (persis-

ence border collision). If the condition (27) does not hold, that is,

f (T L ◦ T M 

) ′ (w c ) < −1 , then the crossing of the curve BC 2 leads to

wo repelling 2-cycles and to a chaotic attractor. An example of

uch a bifurcation is shown in Fig. 4 . 

Suppose that map T has an attracting 2-cycle g 2 = { w 1 , w 2 }
ith symbolic sequence LM . Let us obtain the condition of its flip

ifurcation. First, from T M 

◦ T L (w 1 ) = w 1 we get that w 1 = [(1 −
 

α
1 
/m ) /μβ] 

α
1 −α . Then, from (T M 

◦ T L ) 
′ (w ) | w = w 1 

= −1 we get w 

α
1 

=
 (1 − α) / (α2 − α + 1) , so that the flip bifurcation of g 2 occurs for

 B 2 : μβ = 

α2 

α2 − α + 1 

(
(α2 − α + 1) 

m (1 − α) 

) 1 −α

α2 

. (28) 

ote that for α = 0 . 5 the curve FB 2 is given by 

 B 2 | α=0 . 5 : μβ = 

3 

4 m 

2 
. 

. Overall bifurcation structure of the region E-I 

In this section we discuss the overall bifurcation structure of

he region E − I defined in (12) . The bifurcation structure of the

egion E − I I defined in (13) is studied in detail in [32] . Recall

hat the region E − I is confined by the boundaries BC LM 

(7) , FB M 

11) and BC J (14) . Using Proposition 1 which describes the dynam-

cs of map T in a neighborhood of the curve BC LM 

we can state

hich bifurcation curves issue from this boundary, namely, from

he points p j , j = 0 , . . . , l (where l depends on the parameters). Re-

all that these points correspond to the intersection points of the

urve B m 

(24) with the bifurcation curves (18) –(22) of the skew

ent map. 

Note that all the points p j are codimention-two bifurcation

oints, for which, as we have already mentioned, the skew tent

ap does not help to state precisely which attractor appears

fter the BCB. Consider, for example, the codimension-two bi-

urcation point p 0 , at which the BCB of the fixed point occurs

imultaneously with its flip bifurcation, that is, the fixed point

s (one-side) nonhyperbolic. Such a point is called border-flip

odimention-two bifurcation point. It is shown in [8] , focusing,
n particular, on the geometric shapes of the bifurcation curves

round a border-flip point, that in general three bifurcation curves

re issuing from such a point, among which one is a curve re-

ated to the smooth bifurcation and the other two curves are BCB

urves. In fact, in Fig. 2 (b) we see that besides the curve BC LM 

wo more curves issue from the border-flip point p 0 , namely, the

urve FB M 

corresponding to the subcritical flip bifurcation of the

xed point w 

∗
M 

and the curve BC 2 related to the fold BCB of the 2-

ycle. Clearly, if the curve BC LM 

is crossed at the point p 0 , then the

arameter point can enter to the narrow region bounded by the

urves BC 2 and FB M 

, where an attracting 2-cycle coexists with the

ttracting fixed point. Such a coexistence obviously cannot be clas-

ified using only the skew tent map. In fact, any border-flip point

f BC LM 

corresponding to the intersection of the BCB curve B m 

and

FB curve ψ n , n ≥ 2 (as, e.g., the points p 1 and p 5 indicated in

ig. 2 (b) ), is an issuing point of two curves, namely, a flip bifurca-

ion curve FB n and a border collision curve BC 2 n . 

Let us suppose that the curve B m 

crosses an n -periodicity re-

ion of the skew tent map, for n ≥ 3, that is, there is an arc B m 

| p 
′ 
j+1 

p ′ 
j 

elonging to this region (as shown in Fig. 2 (a) for several values

f m ). A neighborhood of the curve BC LM 

in such a case is shown

chematically in Fig. 5 . According to Proposition 1 in the one-side

eighborhood of the arc BC LM 

| p j+1 
p j 

there must be a region related

o an attracting n -cycle g n of map T (to simplify, the region related

o the attracting cycle g n is denoted in Fig. 5 in the same way as

he cycle, that is, g n . Similar notations are used for the regions re-

ated to other attractors). Its boundary issuing from the point p j is

elated to the fold BCB satisfying the condition 

C n : T n −2 
L ◦ T M 

◦ T L (w c ) = w c . 

ote that due to continuity of map T at w = w c an equivalent

ondition of BC n is T n −2 
L 

◦ T 2 M 

(w c ) = w c . Crossing the boundary BC n 
from the right to the left in Fig. 5 ) two n -cycles are born, an at-

racting cycle g n and a repelling cycle ˜ g n . The cycle g n has a pe-

iodic point w n which satisfies T n −1 
L 

◦ T M 

◦ T L (w n ) = w n , while the

ycle ̃  q n has a periodic point ˜ w n satisfying T n −2 
L 

◦ T 2 M 

( ̃  w n ) = 

˜ w n . 

The boundary of the n -periodicity region issuing from the point

p j+1 is related to the flip bifurcation of g n defined by the condition

 B n : 
(
T n −2 

L ◦ T M 

◦ T L 
)′ 

(w n ) = −1 . (29)

s already mentioned, one more bifurcation curve issues from

p j+1 , namely, the curve BC 2 n related to the border collision of a

 n -cycle g (as show in [8] , it is tangent to the flip bifurcation
2 n 
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Fig. 5. A neighborhood of the curve BC LM shown schematically in case when the BCB curve B m given in (24) related to BC LM crosses an n -periodicity region of the skew tent 

map. The flip bifurcation at FB n is subcritical in a) and supercritical in b) . The point p j+1 is a border-flip codimention-two bifurcation point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. 2D bifurcation diagram in the ( m, μB )-parameter plane at α = 0 . 5 . 1D bifur- 

cation diagram at m = 1 . 2 and its enlargements are shown in Fig. 8 and Fig. 9 . 
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curve). The curve BC 2 n satisfies the condition 

BC 2 n : 
(
T n −2 

L ◦ T M 

◦ T L 
)2 

(w c ) = w c . (30)

Given that the arc B m 

| p 
′ 
j+2 

p ′ 
j+1 

belongs to the region related to a 2 n -

cyclic chaotic intervals Q n , 2 n of the skew tent map, in the one-

side neighborhood of the arc BC LM 

| p j+2 
p j+1 

there is a region related to

2 n -cyclic chaotic intervals G n , 2 n (see the dashed region in Fig. 5 ).

There are two possibilities: if the flip bifurcation FB n is subcritical,

as in Fig. 5 (a), then in the region between FB n and BC 2 n an attract-

ing n -cycle g n coexists with a chaotic attractor G n , 2 n , while if the

flip bifurcation FB n is supercritical, as in Fig. 5 (b), the region be-

tween BC 2 n and FB n is related to an attracting 2 n -cycle g 2 n . More

precisely, in Fig. 5 (a) the curve BC 2 n belongs to the stability region

of g n , and the bifurcation occurring at BC 2 n is a fold BCB leading

to a pair of repelling 2 n -cycles, g 2 n , ˜ g 2 n , and to a chaotic attrac-

tor G n , 2 n coexisting with the n -cycle g n (in fact, as we illustrate in

Fig. 8 (b), or Fig. 9 (b), the cycle ˜ g 2 n separates the basins of G n , 2 n

and g n , while the cycle g 2 n belongs to G n , 2 n ). Then, moving from

the right to the left the curve FB n is crossed at which the repelling

cycle ˜ g 2 n merges with the attracting cycle g n due to a subcritical

flip bifurcation, so that after this bifurcation the attractor is G n , 2 n . 

In case of supercritical flip bifurcation, the crossing of the curve

BC 2 n leads from an attracting cycle g 2 n to a chaotic attractor G n , 2 n 

(see Fig. 5 (b)). 

Next, we can state that the one-side neighborhood of the arc

BC LM 

| p j+3 
p j+2 

(see Fig. 5 ) is related to n -cyclic chaotic intervals G n, n 

of map T because the related arc B m 

| p 
′ 
j+3 

p ′ 
j+2 

belongs to the region of

n -cyclic chaotic intervals Q n, n of the skew tent map. Its boundary

issuing from the point p j+2 is related to the first homoclinic bifur-

cation of the cycle g n , which satisfies the conditions 

H n : 

{ (
T n −2 

L 
◦ T M 

◦ T L 
)2 

(w c ) = w n , 

T n −2 
L 

◦ T M 

◦ T L (w n ) = w n . 

(31)

So, crossing the curve H n we observe the merging bifurcation G n , 2 n 

⇒ G n, n . See, for example, the curve H 3 in Fig. 6 and the related

merging bifurcation G 3 , 6 
H 3 ⇒ G 3 , 3 in Fig. 9 (a) . The boundary issuing

from the point p j+3 corresponds to the first homoclinic bifurcation

of the cycle ̃  g n and satisfies the conditions 

˜ H n : 

{
T n −2 

L 
◦ T M 

◦ T L (w c ) = 

˜ w n , 

T n −2 
L 

◦ T 2 M 

( ̃  w n ) = 

˜ w n . 
(32)

Thus, crossing the curve ˜ H n an expansion bifurcation G n, n ⇒ G 1 oc-

curs. An example of the curve ˜ H 3 is shown in Fig. 6 , and the related

expansion bifurcation G 3 , 3 

˜ H 3 ⇒ G 1 is illustrated in Fig. 9 (a) . 

As we have seen, the curve B m 

may not intersect the n -

periodicity regions for n ≥ 3, of the skew tent map (see Fig. 2 (a) ).
he description presented above can be easily adjusted to such a

ase. However, the 2-periodicity region is intersected for any m ,

nd this case differs from the one described above. In fact, we

now that from the border-flip point p 0 of the curve BC LM 

the

oundaries FB M 

and BC 2 issue related to the flip bifurcation of the

xed point w 

∗
M 

and border collision of the 2-cycle g 2 , as we show

chematically in Fig. 7 . Differently from the generic case we have

hree possibilities as stated in Proposition 2 (see also Fig. 3 ): 

(1) if the flip bifurcation is subcritical, that holds for α < 0.5,

hen the curve BC 2 is related to a fold BCB leading to a pair of

-cycles, an attracting one ( g 2 ) and a repelling one ( ̃  g 2 ) , in which

ase the region between BC 2 and FB M 

is related to coexisting at-

ractors, the fixed point w 

∗
M 

and the 2-cycle g 2 (see Fig. 7 (a) ); 

(2) if the flip bifurcation is supercritical, that holds for α > 0.5,

hen the curve BC 2 is a persistence border collision curve crossing

hich the 2-cycle g 2 born before due to supercritical flip bifurca-

ion just changes its symbolic sequence, remaining attracting (see

ig. 7 (b) ); 

(3) if the flip bifurcation is degenerate that holds for α = 0 . 5 ,

e have F B M 

= BC 2 , so that crossing this boundary one attracting

ycle g 2 appears (with symbolic sequence LM ). 

Thus, in the one-side neighborhood of the arc BC LM 

| p 1 p 0 
there is

 region related to an attracting 2-cycle g 2 of map T . From the

order-flip point p 1 the boundaries FB 2 and BC 4 originate related

o the flip bifurcation of g 2 and BCB of g 4 . The next point p 2 corre-

ponds to the intersection of B m 

with the curve σ2 i (22) for some

 ≥ 1. From p 2 a curve denoted H i issues (see Fig. 7 ), related to the
2 
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Fig. 7. A neighborhood of the curve BC LM shown schematically near the border-flip 

point p 0 . The flip bifurcation at FB M is subcritical in a) and supercritical in b) . The 

point p 1 is also a border-flip codimention-two bifurcation point. 
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t

H

T  

G  

p  

t  

t

H

F

i

rst homoclinic bifurcation of the harmonic 2 i -cycle of the map T .

or the skew tent map the crossing of the curve σ2 i leads to the
ig. 8. In (a) 1D bifurcation diagram of the map T is shown for α = 0 . 5 , m = 1 . 2 and μ

ndicated in a) is shown enlarged. 
erging bifurcation Q 2 , 2 i +1 ⇒ Q 2 , 2 i . Thus, in the one-side neigh-

orhood of the arc BC LM 

| p 2 p 1 
there is a region related to 2 i +1 -cyclic

haotic intervals G 2 , 2 i +1 , and the crossing of BC 4 leads to a chaotic

ttractor G 2 , 2 i +1 . Similarly, the point p 3 is an issuing point for the

urve H 2 i −1 related to the first homoclinic bifurcation of the har-

onic 2 i −1 -cycle of map T , and so on, up to the point p i +2 which

s an issue point of the curve H 1 related to the first homoclinic bi-

urcation of the fixed point w 

∗
M 

(see Fig. 7 ). For example, from the

oint p i +1 of the curve BC LM 

related to the intersection of B m 

with

he curve σ 2 (see (22) for i = 1 ), the curve H 2 issues which corre-

ponds to the first homoclinic bifurcation of the cycle g 2 , satisfying

he conditions 

 2 : 

{
(T M 

◦ T L ) 
2 (w c ) = w 2 , 

T M 

◦ T L (w 2 ) = w 2 . 
(33) 

he crossing of this curve leads to the merging bifurcation G 2 , 4 
H 2 ⇒

 2 , 2 (see, e.g., Fig. 8 (a) and the curve H 2 in Fig. 6 issuing from the

oint p 2 ). From the point p i +2 the curve H 1 issues corresponding

o the first homoclinic bifurcation of the fixed point w 

∗
M 

, satisfying

he conditions 

 1 : 

{
T L ◦ T M 

◦ T L (w c ) = w 

∗
M 

, 

T M 

(w 

∗
M 

) = w 

∗
M 

. 
(34) 
B ∈ [0, 1] related to the vertical line with an arrow in Fig. 6 . In (b) the window I 
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Fig. 9. In (a) an enlargement of window II indicated in Fig. 8 (a) is shown, and in (b) the window indicated in (a) is enlarged. 
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The crossing of this curve leads to the merging bifurcation G 2 , 2 
H 1 ⇒

G 1 (see, e.g., Fig. 8 (a) and the corresponding curve H 1 in Fig. 6 is-

suing from the point p 3 ). 

The bifurcation structure described above is illustrated in

Fig. 6 in the ( m, μB )-parameter plane at α = 0 . 5 . The curve BC LM

in such a case is defined by 

BC LM 

| α=0 . 5 : μB = 1 − 1 

m 

(note that for α = 0 . 5 we have B = β). The curve B m 

(24) in the

( a l , a r )-parameter plane of the skew tent map represents a vertical

line a l = 0 . 5 where −B 
m −1 < a r < −1 (see (25) ): 

B m 

| α=0 . 5 : a l = 0 . 5 , a r = − 1 

m − 1 

. (35)

Using the Eqs. (18) –(22) we can obtain the points p ′ 
j 
, j = 0 , . . . , 15 ,

related to the intersection of B m 

| α=0 . 5 with the bifurcation curves

of the skew tent map. Then, substituting the related values a r into

(35) we obtain the m -coordinates of the point p j of the curve BC LM 

(see Fig. 6 ). The curves issuing from the points p j in Fig. 6 are ob-

tained numerically using the related conditions (29) –(34) . 

To illustrate the bifurcations (29) –(34) we present in Fig. 8 (a)

a 1D bifurcation diagram related to the vertical line with an ar-

row indicated in Fig. 6 . Enlargements of this diagram are shown
n Fig. 8 (b) and Fig. 9 . The sequence of observed bifurcations for

ecreasing μB can be summarized as follows: 

 

∗
M 

F B M = BC 2 ⇒ g 2 
BC 4 ⇒ { g 2 , G 2 , 4 } F B 2 ⇒ G 2 , 4 

H 2 ⇒ G 2 , 2 
H 1 ⇒ G 1 

C 3 ⇒ g 3 
BC 6 ⇒ { g 3 , G 3 , 6 } F B 3 ⇒ G 3 , 6 

H 3 ⇒ G 3 , 3 

˜ H 3 ⇒ G 1 
BC LM ⇒ w 

∗
L 

. Conclusion 

In the present paper we have studied the dynamics of a credit

ycle model introduced in [20] , under the additional assumption

hat the production function is Cobb-Douglas. In the generic case

his model is defined by a 4-parameter family of 1D piecewise

mooth maps with upward, downward and flat branches. We have

onsidered the cases for which the flat branch is not involved in

he asymptotic dynamics, that correspond to the region E − I given

n (12) . 

The bifurcation structure of the region E − I is described in de-

ail. It is formed by the boundaries related to border collision bifur-

ations characteristic for nonsmooth systems, as well as flip bifur-

ations and homoclinic bifurcations (causing merging and expan-

ion of the chaotic attractors). These boundaries separate regions

orresponding to different attractors of the map, namely, attracting

ycles and chaotic attractors (cyclic chaotic intervals). In particular,
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ossible results of a BCB of the fixed point are classified in Propo-

ition 1 using skew tent map as a border collision normal form.

he conditions are obtained under which this BCB leads directly to

n attracting cycle of period n , or to an n -cyclic chaotic attractor,

 ≥ 1. The skew tent map helps also to describe the overall bifur-

ation structure of the region E − I in a neighborhood of the BCB

oundary. Proposition 2 states that the flip bifurcation of the fixed

oint is supercritical for α > 0.5, subcritical for α < 0.5 and de-

enerate for α = 0 . 5 . It is shown that an attracting 2-cycle which

ppears due to the supercritical flip bifurcation soon after collides

ith the border point. In fact, a cascade of flip bifurcations charac-

eristic for smooth unimodal maps is not realized in the considered

ap. The subcritical flip bifurcation is characterized by bistability

elated to coexistence of an attracting fixed point and an attract-

ng 2-cycle which is born, together with a repelling 2-cycle, due

o a fold BCB before the flip bifurcation. From an economic point

f view this implies corridor stability, i.e., the steady state of the

conomy is stable against small shocks but unstable against large

hocks. Furthermore, when the steady state loses its stability via

uch a subcritical flip bifurcation, the effect is catastrophic and ir-

eversible in that restoring the stability of the steady state by re-

ersing the parameter change is not enough for the economy to re-

urn to the steady state. Examples of an attracting cycle coexisting

ith a cyclic chaotic attractor are also presented. It is important

o emphasize that chaotic attractors of the considered map are ro-

ust, that is, they are persistent under parameter perturbations. 
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