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Abstract

In this paper we consider a two-dimensional piecewise-smooth discontinuous map representing the so-called ‘‘rel-

ative dynamics’’ of an Hicksian business cycle model. The main features of the dynamics occur in the parameter region

in which no fixed points at finite distance exist, but we may have attracting cycles of any periods. The bifurcations

associated with the periodicity tongues of the map are studied making use of the first-return map on a suitable segment

of the phase plane. The bifurcation curves bounding the periodicity tongues in the parameter plane are related with

saddle-node and border-collision bifurcations of the first-return map. Moreover, the particular ‘‘sausages structure’’ of

the bifurcation tongues is also explained.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

The present article reconsiders the Hicksian multiplier-accelerator model of business cycles. It was introduced by

Samuelson [8] in 1939, and was based on two interacting principles: consumers that spend a fraction c of past income,

Ct ¼ cYt�1, and investors that maintain a stock of capital Kt in given proportion a to the income Yt. With an additional

time lag for the construction period of capital equipment, net investment, by definition the change in capital stock,

It ¼ Kt � Kt�1, becomes It ¼ aðYt�1 � Yt�2Þ. As income is generated by consumption and investments, i.e. Yt ¼ Ct þ It, a
simple feed back mechanism Yt ¼ ðcþ aÞYt�1 � aYt�2 was derived.

Hicks [3] in 1950 further developed this model. As it stands, it just produces damped or explosive oscillatory motion.

Hicks preferred to model a system producing sustained limited amplitude oscillations and gave an economic expla-

nation for how the model should be changed to give this result: in a depression phase of the business cycle we have

It ¼ aðYt�1 � Yt�2Þ < 0, and it can even happen that income decreases at a pace so fast that more capital can be dis-

pensed with than disappears through natural wear. As nobody actively destroys capital, there is a lower limit to dis-

investment, called the ‘‘floor’’, and fixed at the (negative) net investment when no worn out capital is replaced at all. So

the investment function is changed to It ¼ maxðaðYt�1 � Yt�2Þ;�I fÞ, where I f is the absolute value of the floor disin-

vestment. (Hicks also suggested that there be a ‘‘ceiling’’ at full employment, when income could not be expanded any

further, but we do not consider this at present.)

To the complete model, which Hicks never formulated mathematically, also belong exponentially growing

‘‘autonomous expenditures’’, which produce a growth trend, around which the business cycles, produced by the model,

provide the fluctuations. To make this type of model suitable for analysis, the floor and the ceiling must then be
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assumed to be growing too, and even at the same rate as the autonomous expenditures. This seems to have been Hicks’s

own tacit assumption, however, all these equal growth rates look fairly arbitrary.

In a previous paper [7], the authors tried their hands at a slight reformulation, through actually relating the floor to

the stock of capital, putting I ft ¼ rKt, where Kt is capital stock and r is the rate of depreciation. Making this change to

the model, we get the benefit that the growing trend need not be exogenously introduced. It results within the model

through capital accumulation and hence explains both the growth trend and the fluctuations around it. Growth is

something economists regard as a good feature, but it is no good for the use of standard mathematical methods, as all

variables explode to infinity at an exponential rate. To make the model suitable for analysis, we focus on relative

dynamics, the rate of growth of income, and the actual capital/output ratio.

Before this reduction to relative dynamics, we, however, have to state the complete model. As noted, the con-

sumption function is Ct ¼ cYt�1, and the investment function is It ¼ maxðaðYt�1 � Yt�2Þ;�rKt�1Þ, where c, a and r are

real parameters. As the fraction of income spent is positive but less than unity, 0 < c < 1. Further, the capital output

ratio obviously is a positive number, so a > 0. Finally, the capital depreciation is a small positive number, so we

definitely have 0 < r < 1. As before, the income formation equation reads Yt ¼ Ct þ It, and we now also add an

updating equation for capital stock Kt ¼ Kt�1 þ It. This completes the model. We can eliminate Ct and It, and thus

obtain a recurrence map in the income and capital variables alone: Yt ¼ cYt�1 þmaxðaðYt�1 � Yt�2Þ;�rKt�1Þ, and

Kt ¼ Kt�1 þmaxðaðYt�1 � Yt�2Þ;�rKt�1Þ.
In order to obtain the relative dynamics, define: xt :¼ Kt=Yt�1 and yt :¼ Yt=Yt�1 These new variables are the actual

capital/output ratio, and the relative change of income from one period to the next, i.e. the growth factor. Using these

variables results in the following iterated map:
xt ¼
xt�1

yt�1

þ a 1

�
� 1

yt�1

�
; yt ¼ cþ a 1

�
� 1

yt�1

�

if
xt�1ðaðyt�1 � 1Þ þ rxt�1ÞP 0
and
xt ¼ ð1� rÞ xt�1

yt�1

; yt ¼ c� r
xt�1

yt�1
if
xt�1ðaðyt�1 � 1Þ þ rxt�1Þ < 0:
It is obvious that the domain of definition for this map is not the entire phase plane ðx; yÞ, but this plane with exclusion

of the line of nondefinition, y ¼ 0, as well as of all its preimages of any rank.

In the next sections we shall investigate the dynamic properties of this map. We shall see that an attracting fixed

point may exist. However, the more interesting features occur in a parameter region in which no attracting fixed point

exists, whereas we can have attracting cycles of any period. The bifurcation diagram in the ða; cÞ-parameter plane shows

a structure qualitatively similar to that occurring at the Neimark bifurcation. However, there is no Neimark bifurcation

in our model. The main purpose of the present paper is to explain the bifurcation structure associated with such tongues

of periodicity. To perform this study we construct a one-dimensional ‘‘first-return map’’ on a suitable segment. That is

we reduce the degree of our map by using a suitable Poincar�e section on a well defined segment which is necessarily

visited by the trajectories.

The plan of the work is as follows. After this introduction, Section 2 describes the main characteristics of the two

maps which are involved in our model, showing a two-dimensional bifurcation diagram at a fixed value of r. We only

use one value of r in this paper as any other value of this parameter in its admitted range gives bifurcation diagrams

having a qualitatively similar structure. In Section 3 we introduce the Poincar�e section and show how the bifurcation

curves may be detected by using this ‘‘first-return map’’. Section 4 illustrates some more properties of the bifurcation

curves, related to the ‘‘sausages structure’’, and Section 5 is the conclusion.
2. Description of the model

As introduced in the previous section, we are interested in a family of two-dimensional nonlinear discontinuous

maps F : R2 ! R2 given by two maps F1 and F2 defined in the regions R1 and R2, respectively:
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F : ðx; yÞ7! F1ðx; yÞ; if ðx; yÞ 2 R1;
F2ðx; yÞ; if ðx; yÞ 2 R2;

�
ð1Þ
where
F1 :
x
y

� �
7! x=y þ að1� 1=yÞ

cþ að1� 1=yÞ

� �
; R1 ¼ fðx; yÞ : xðaðy � 1Þ þ rxÞP 0g;

F2 :
x
y

� �
7! xð1� rÞ=y

c� x=y

� �
; R2 ¼ fðx; yÞ : xðaðy � 1Þ þ rxÞ < 0g:
As we recall, a, c and r are real parameters such that a > 0, 0 < c < 1, 0 < r < 1.

One can see that with this definition of the map F the ðx; yÞ-phase plane is separated into four regions by the straight

lines x ¼ 0 and y ¼ 1� rx=a, so that the map F1 is defined in R1 ¼ fxP 0; yP 1� rx=ag [ fx6 0; y6 1� rx=ag and F2 is
defined in R2 ¼ fx < 0; y > 1� rx=ag [ fx > 0; y < 1� rx=ag. We call these straight lines critical lines and denote them

LC�1 and LC0
�1:
LC�1 ¼ fðx; yÞ : y ¼ 1� rx=ag;

LC0
�1 ¼ fðx; yÞ : x ¼ 0g:
The map F is continuous on LC�1. Its image by F is the straight line
LC ¼ fðx; yÞ : y ¼ c� rx=ð1� rÞg:
The map F is discontinuous on LC0
�1, the image of which, using the map F1, is the straight line
LC0 ¼ fðx; yÞ : y ¼ xþ cg;
while by using F2 we get just a point ð0; cÞ.
Studying the map F numerically we get an interesting two-dimensional bifurcation diagram in the ða; cÞ-parameter

plane (see Fig. 1) with tongues of periodicity which look like the Arnol’d tongues that usually appear due to the

Neimark bifurcation. But for the map F this is not the case, as there are no fixed point with complex eigenvalues on the

bifurcation curve. So, the purpose of the present paper is to consider the origin and structure of these tongues.

Let us first show that the maps F1 and F2 alone have rather simple dynamics.

The map F1 is triangular: the variable y is mapped, independently of x, by a one-dimensional map f :
Fig. 1. Bifurcation diagram of the map F at r ¼ 0:01.
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Fig. 2. A trajectory of the map F for r ¼ 0:01, a ¼ 1 and c ¼ 0:65. The trajectory is tangent to the boundary of R1.
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f : y 7! ðcþ aÞy � a
y

ð2Þ
which is a so-called real M€obius map. 1It has two fixed points denoted yþ and y�
y� ¼
cþ a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcþ aÞ2 � 4a

q
2

ð3Þ
which have real values for
cP c�¼def2
ffiffiffi
a

p
� a: ð4Þ
At c ¼ c�, these fixed points appear due to a saddle-node bifurcation. For 0 < c < c� the map f has neither fixed points,

nor cycles of any period (due to the fact that for M€obius maps the solutions to the equation f kðyÞ ¼ y, k > 1, are the

same as those to f ðyÞ ¼ yÞ. Thus, for 0 < c < c� any trajectory of f , and of F1 as well, is diverging.

Let us check the stability of yþ and y� when they exist. An eigenvalue of f can be written k1ðyÞ ¼ a=y2. For the

parameter range considered 0 < k1ðyþÞ < 1 and k1ðy�Þ > 1. Thus, the fixed point yþ is attracting and y� is repelling.

The corresponding fixed points of the map F1 are ða; y�Þ and ða; yþÞ. The second eigenvalue of F1 is k2ðyÞ ¼ 1=y. For
c < 2� a we have k2ðyþÞ > 1 and k2ðy�Þ < 1, while for c > 2� a the inequalities k2ðyþÞ < 1 and k2ðy�Þ < 1 hold. Thus,

taking (4) into account, we conclude that for a > 1, c� < c < 1 the fixed point ða; yþÞ is an attracting node and ða; y�Þ a
saddle, whereas, for 0 < a < 1, c� < c < 1, ða; yþÞ is a saddle and ða; y�Þ is a repelling node. To summarize, we can state

the following

Proposition 1. For 0 < c < c� any trajectory of F1 is diverging. For 0 < a < 1, c� < c < 1 any trajectory (except those with
initial points at ða; yþÞ and ða; y�Þ, or their preimages) is diverging as well.

Consider now the map F2. Any straight line ðt;mtÞ, t 2 R, of slope m is mapped by F2 into one point

ðx0; y0Þ ¼ ðð1� rÞ=m; c� r=mÞ belonging to the critical line LC. The dynamic behavior of F2 is thus reduced to a
real rational map f : R ! R of the form

f : x7! axþ b
cxþ d

; where ad � cb 6¼ 0;

d real M€obius map.
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one-dimensional map on the straight line LC. If x is the first coordinate of a point ðx; yÞ 2 LC, then its image by F2 on LC
is given by a one-dimensional map g:
Fig. 3

of F2 t
g : x 7!gðxÞ ¼ xð1� rÞ2

cð1� rÞ � rx
; ð5Þ
which again is a M€obius map. It has two fixed points: x1 ¼ 0 and x2 ¼ ð1� rÞðc� 1þ rÞ=r. If c < 1� r, then x1 is

repelling and x2 is attracting, while if c > 1� r, then x2 is repelling and x1 is attracting. At c ¼ 1� r these fixed points

merge, i.e. x1 ¼ x2 ¼ 0. The corresponding fixed points of the map F2 are p1ðx1; cÞ and p2ðx2; ð1� rÞÞ.
We come back to the map F defined in (1). It is now obvious that only if both maps F1 and F2 are applied, we can get

attracting cycles corresponding to the tongues of periodicity shown in Fig. 1. Numerical analysis shows that for a < 1 a

generic trajectory of the map F , after some transient, belongs only to R1 where the map F1 is applied and, according to

Proposition 1, is diverging. (See Fig. 2 where a transient part of a trajectory of the map F is shown for a ¼ 1 when this

trajectory is just tangent to the boundary of R1.) Thus, we restrict our considerations to the case a > 1.
3. First-return map

Let the following inequalities hold: a > 1, c < c� and c < 1� r.
Let ½AB� denote a segment of LC which belongs to R1, that is ½AB� ¼ LC \ R1, where A ¼ LC \ LC�1 and

B ¼ LC \ LC0
�1 (see Fig. 3a). Assume that a trajectory has a point ðxk ; ykÞ 2 R2. Then, as it was shown, its image by F2

belongs to LC, i.e. ðxkþ1; ykþ1Þ 2 LC. We have that either ðxkþ1; ykþ1Þ 2 ½AB�, where the map F1 applies, or we have to

apply the one-dimensional map g given in (5). One can easily check, that, for the parameter range considered, the

attracting fixed point x2 of the map g belongs to ½AB� while the repelling fixed point of g is just the point B (see Fig. 3b).

Thus, approaching x1, the trajectory must enter the segment ½AB�, i.e. there exists an integer s > 0 such that

ðxkþ1þs; ykþ1þsÞ 2 ½AB�. It follows that we can describe the essential features of the two-dimensional map F by studying a

one-dimensional return map on the segment ½AB�.

Definition 1. The first-return map u : ½AB� ! ½AB� is a map u through which the x-coordinate of a given point

ðx; yÞ 2 ½AB� is mapped to the point uðxÞ which is the x-coordinate of the ‘‘first’’ point satisfying F kðx; yÞ 2 ½AB�.

Clearly, the ‘‘second’’ return map of a point of ½AB� to the segment ½AB� is given by the map u2, and generally, the kth
return on ½AB� is given by uk . This will be used to characterize the dynamics of the map F completely. Moreover, the

following proposition is immediate, and its proof is left as an exercise:
. In (a) it is shown the segment ½AB� suitable for the first-return map. In (b) it is shown the one-dimensional map gðxÞ, restriction
o LC.
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Proposition 2. Let C be an attracting (repelling) cycle of the map F of period k > 1 having p ðP 1Þ periodic points in the
segment ½AB�. Then it corresponds to an attracting (repelling) fixed point of the p-return map up.

We recall that the map F is discontinuous on the y-axis and thus also the map u is discontinuous. As a matter of fact,

we cannot write down the analytical expression for u, but it is easy to compute it numerically. In the following examples

the map u is used to explain the structure of the periodicity tongues which are shown in Fig. 1.

Consider the point ða; cÞ ¼ ð1:5; 0:32Þ, which in Fig. 1 is above the 8-tongue, and then decrease c. Our objective is to

describe the bifurcations which characterize the upper and lower boundary of the tongue.

Let c�1 denote the value of c corresponding to the upper boundary of the 8-tongue, and c�2 denote the value corre-

sponding to the lower boundary. The first-return map u for c ¼ c�1 � 0:3174 is shown in Fig. 4, from which we can see

that at this parameter value a saddle-node bifurcation occurs, giving rise to two fixed points of u existing for c�2 < c < c�1
(see Fig. 5 where c ¼ 0:3). This bifurcation is also a border-collision bifurcation for piecewise-smooth maps, because the
Fig. 4. Saddle-node bifurcation of the first-return map uðxÞ at r ¼ 0:01, a ¼ 1:5, c ¼ 0:3174.

Fig. 5. First-return map uðxÞ at r ¼ 0:01, a ¼ 1:5, c ¼ 0:3. Two fixed points are clearly visible, one stable and one unstable.
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saddle-node bifurcation is not a tangent bifurcation as it is defined for different maps on the right and on the left of the

contact point.

Clearly, just knowing the shape of u we cannot deduce the period of the corresponding orbit of F . We can get this

information only through iterating F . In this example the period of the two cycles (one attracting and one saddle) is 8.

As c decreases, the graph of u is modified so that the distance between the two fixed points increases and they both

approach the discontinuity points of u. At the bifurcation value c ¼ c�2 � 0:2868 (the point of the lower boundary of the
8-tongue), the fixed points of u merge with the discontinuity points (see Fig. 6) and disappear (for c < c�2). Thus, the
lower bifurcation curve corresponds to the border-collision bifurcation.

Similar bifurcations occur in all other ‘‘main’’ tongues in which the rotation number of the q-periodic orbit of F is

1=q.
The order of the tongues with different periodicity in the bifurcation diagram of Fig. 1 follows the usual Farey rule

which applies in the similar bifurcation diagram associated with the Neimark bifurcation. This means that between two

tongues corresponding to the cycles with rotation numbers p1=q1 and p2=q2 a tongue exists which corresponds to a cycle

with rotation number ðp1 þ p2Þ=ðq1 þ q2Þ (see [1,4–6]).
Fig. 6. First-return map uðxÞ at r ¼ 0:01, a ¼ 1:5, c ¼ 0:2868. Border-collision bifurcation.

Fig. 7. First-return map uðxÞ at r ¼ 0:01, a ¼ 1:26, c ¼ 0:149.



Fig. 8. Three-return map u3ðxÞ at r ¼ 0:01, a ¼ 1:26, c ¼ 0:149. Three stable and three unstable fixed points are clearly visible.
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In our case a tongue associated with a rotation number p=q corresponds to a q-periodic orbit of the map F having p
points in the segment ½AB�, and thus the cycles are represented as fixed points of the p-return map up. As an example,

Fig. 7 shows the graph of u at a ¼ 1:26, c ¼ 0:149, which has no fixed points. But the corresponding map F for such

parameter values has a cycle of period q ¼ 20 with p ¼ 3 points in the segment ½AB�. The corresponding three-return

map u3 is shown in Fig. 8.

From the properties described above we know that the dynamics of the points belonging to the segment ½AB� are
representative of the dynamics of the map F , and we can state the following

Proposition 3. Let a > 1, c < c� and c < 1� r. Then an invariant attracting set of the map F belongs to the closure of the
set A ¼ [nP 0F nð½AB�Þ.
4. Sausages structure of the periodicity tongues

In this section we give reason of the particular shape of the tongues of periodicity which can clearly be seen in Fig. 1.

This shape is due to the piecewise definition of F , and a similar shape in a two-dimensional parameter plane was already

described in [1,2,9,10]. We recall here the main features. Let us consider a point ða; cÞ ¼ ð1:25; 0:365Þ which belongs to

the first area of the sausages structure associated with the tongue of periodicity 8 in Fig. 1. At this parameter value (as

for any other value in this area), of the periodic points of the 8-cycle of F two belong to region R2 and six belong to R1

(see Fig. 9). At the transition point between the first and the second area of the same tongue, one of the periodic points

belongs to the critical line LC�1. For ða; cÞ ¼ ð1:5; 0:3Þ, belonging to the second area (as well as for any other point in

this second area) of the tongue of period 8 the 8-cycle of F has three points in region R2 and five in region R1 (see Fig.

10). For ða; cÞ, belonging to the third area of the same tongue the 8-cycle has four points in region R1 and four in region

R2. It follows that inside the different ‘‘sausage’’ portions of the areas associated with a tongue, the period is the same,

whereas changes occur in the sequence in which the maps (F1 and F2) are applied to give the cycle. The ‘‘waist’’ points of

such a structure correspond to a border-collision bifurcation of the periodic orbit, which changes only the structure of

the cycle (but not its period).

We close this section with a final remark on the dynamics of F associated with points outside the periodicity tongues

shown in Fig. 1. It is well known that quasiperiodic orbits, associated with the Neimark bifurcation, correspond to

irrational rotation numbers, and also that chaotic regimes may exist between the tongues. For the map F it is not easy

to give a definition of an ‘‘irrational rotation number’’. However, in such a case we numerically observe an invariant

attracting set which consists of two curves (crossing the line of nondefinition y ¼ 0), approaching infinity, whose shape

is similar to the one shown in Fig. 2. Moreover, we conjecture that chaotic dynamics cannot occur for the map F .



Fig. 9. Attracting 8-cycle of F in the phase plane at r ¼ 0:01 and ða; cÞ ¼ ð1:25; 0:365Þ belonging to the first area of the sausage

structure of the period-8 tongue. Two periodic points belong to the region R2 and six belong to R1.

Fig. 10. Attracting 8-cycle of F in the phase plane at r ¼ 0:01 and ða; cÞ ¼ ð1:5; 0:3Þ belonging to the second area of the sausage

structure of the period-8 tongue. Three periodic points belong to the region R2 and five belong to R1.
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A numerical computation of the Lyapunov exponents gives one exponent equal to 0 and the second one with a negative

value.
5. Conclusion

In this paper we have considered a two-dimensional piecewise-smooth discontinuous map F representing the so-

called ‘‘relative dynamics’’ of the Hicksian business cycle model proposed in [7]. The main features of the dynamics

related to this map occur in the parameter region in which no fixed points at finite distance exist, but we may have

attracting cycles of any periods. The bifurcations associated with the periodicity tongues of the map have been studied,

making use of the first-return map on a suitable segment of the phase plane, belonging to an invariant attracting set of

the map. We have thus explained the bifurcation curves bounding the periodicity tongues shown in Fig. 1 and the

related ‘‘sausages’’ structure.

The peculiarity of this bifurcation diagram is that it looks like (and possesses the same properties as) a bifurcation

diagram associated with the Neimark bifurcation of a fixed point. However, no fixed point at finite distance is involved
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on the bifurcation line a ¼ 1 of that picture, so that it is not a Neimark bifurcation. Thus, the starting points of the

tongues, issuing from the line a ¼ 1, are still an open problem for our map F , even if we can explicitly obtain their

values (described in [7]). The parameter values of the starting point of a tongue of periodicity of p=q are given by a ¼ 1

and c ¼ 2 cosð2pp=qÞ � 1. But their relation to the two-dimensional map F is still an open question.
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