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a b s t r a c t

In some previous papers the present authors reassembled the Hicksian trade cycle model in
a new way. The floor was tied to depreciation on capital, itself the cumulative sum of past
net investments, for which the principle of acceleration provided an explanation. Hence
no alien elements were needed to include capital, and so close the system. The resulting
model created a growth trend along with growth rate cycles, which could be periodic or
quasiperiodic. In the current paper, the ceiling, using capital stock as a capacity limit for
production, is added. It then turns out that pure growth no longer exists, and chaos and
multistability become possible, which they were not in the previous model. A variety of
bifurcation scenarios is explored, and a full understanding of the working of the four-piece,
originally three-dimensional, piecewise smooth map, is attained, using a reduction to a
one-dimensional return map.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Background

In this paper the Hicksian floor–ceiling model of the business cycle is reconsidered. As we know, the multiplier-accelerator
model invented by Samuelson (1939) and also used by Hicks (1950) could produce either pure growth or cycles, depending on
the parameters. In Samuelson’s linear format the model (whether the solution was cyclic or growing/declining) would either
explode or else extinguish any initially present motion. The Hicksian floor and ceiling, which made the model non-linear,
introduced the possibility of sustained cyclic variation.

However, there could still be either growth or cycles, never both. Therefore Hicks added an exogenous growth trend in
terms of autonomous expenditures, around which the multiplier-accelerator model produced sustained cycles bounded by
the floor (lower bound to disinvestment) and ceiling (upper capacity bound to production).

In Puu et al. (2005) the possibility of making growth endogenous was explored. As the floor is a limit to disinvestment,
representing the decrease in the capital stock occurring when no worn out capital at all was replaced, it was suggested
to link it to the actual capital stock through an assumed rate of depreciation. Capital was not a variable in Hicks’s original
model, but, as capital is nothing but the cumulative sum of its increments, i.e., investments, for which there was a theory in
the model, no alien elements were needed for inclusion of the capital variable, thus closing the model. The advantage was
that the model now created an endogenous growth trend along with cycles in the growth rates. At the same time the growth
rates in the cyclic regimes, which had been enormous in the original model, were reduced to but a fraction, which adds one
feature of realism to the, still admittedly, much oversimplified model.
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Growing models are not readily analyzed by standard methods, so the model in Puu et al. (2005) was converted to new
“relative” variables, the growth factor and the capital to income ratio. This, however, made the original piecewise linear
model non-linear, but also had the advantage of reducing its dimension from three to two.

The model with floor only, retained the unrealistic feature that with high accelerators it still created pure exponential
growth. Therefore, in Puu (2007) a ceiling along Hicks’s original line of thought was added. The simplest argument behind the
principle of acceleration is a fixed coefficient limitational production technology that makes producers use capital and other
inputs in strict proportion to the output. The same idea could, however, also be used for an upper limit (ceiling) to possible
output (=real income), again making use of the capital variable. In Puu (2007) it was proved that no more pure growth points
did exist as possible trajectories of the model. However, although producing some exemplifying trajectories and bifurcation
diagrams, which hinted at the possibility of complex results (such as chaos), the model remained mathematically largely
unexplored. To carry out such a mathematical analysis is the objective of the present paper.

1.1.1. The Samuelson model
“Multiplier theory” assumes consumption to be a given fraction, c, of income, i.e., Ct = cYt−1, where a one period lag is

allowed for consumption out of incomes earned the preceding period.1

The “principle of acceleration” determines investment. The idea is that capital is needed in a fixed proportion, a, to the
(real) income to be produced, i.e., Kt = aYt−1, where again a one period lag is allowed for the building up of capital. As
investments are the change of capital stock, i.e., It = Kt − Kt−1, we have It = a(Yt−1 − Yt−2).2

Plugging It = a(Yt−1 − Yt−2) and Ct = cYt−1 into

Yt = Ct + It, (1)

the reduced form equation:

Yt = (c + a)Yt−1 − aYt−2 (2)

is obtained, which is Hicks’s version of the original Samuelson model.3

1.1.2. Hicksian floor and ceiling
The floor: According to It = a(Yt−1 − Yt−2) investments become negative when income is decreasing. However, disinvest-

ment cannot exceed the natural depreciation on capital in the absence of any reinvestment to replace worn out capital. For
this reason Hicks introduced a lower bound for disinvestment −If

t . Accordingly, the principle of acceleration took the form

It = max(a(Yt−1 − Yt−2), −If
t ) (3)

The Ceiling: The ceiling is motivated as follows. Given income is growing very fast, some resources may become limiting,
so there is also a ceiling for income Yc

t , and the income formation Eq. (1) is replaced by:

Yt = min(Ct + It, Yc
t ) (4)

Using the consumption function Ct = cYt−1 in (4) and substituting from (3), we obtain the new reduced form:

Yt = min(cYt−1 + max(a(Yt−1 − Yt−2), −If
t ), Yc

t ) (5)

which replaces (2).

1.1.3. Capital formation
Before leaving the original model let us check that it contained a capital formation theory, though it was never stated

explicitly, as it did not feed back into the original model. From the definition of investments It = Kt − Kt−1, we have

Kt = Kt−1 + It

so, using (3),

Kt = Kt−1 + max(a(Yt−1 − Yt−2), −If
t ) (6)

which is an updating equation for capital.

1 The accounting identity reads Yt = Ct + It , or Yt = cYt−1 + It . In equilibrium, Yt = Yt−1, so Yt = (1/1 − c)It . As c < 1, the factor (1/1 − c) > 1 multiplies
up investment expenditures, whence the term multiplier.

2 Assume an aggregate production function Ȳt = min(K̄t−1/a, L̄t−1/b), where K̄t−1 and L̄t−1 denote planned capital and labour, needed for producing output
Ȳt , expected to be demanded at the end of period t. Further, assume a naive forecasting rule Ȳt = Yt−1, that the formation of capital takes exactly one period,
i.e. Kt = K̄t−1, and that labour supply is affluent and it hence is the availability of capital that is binding. We have Kt = aYt−1.
According to definition, investment becomes It = Kt − Kt−1 = a(Yt−1 − Yt−2), which justifies the principle of acceleration.

3 To be quite true to history, Samuelson (1939) applied the accelerator to consumption only, i.e., assumed It = a(Ct−1 − Ct−2). It was Hicks (1950) that
replaced consumption by income.
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1.2. A suggested reformulation

1.2.1. The floor
In Puu et al. (2005) it was suggested to relate the floor to the stock of capital through a depreciation factor r. Then,

If
t = rKt−1, so the investment function becomes

It = max(a(Yt−1 − Yt−2), −rKt−1). (7)

Using (7) in the income formation Eq. (1) along with Ct = cYt−1, we get

Yt = cYt−1 + max(a(Yt−1 − Yt−2), −rKt−1). (8)

Further, using If
t = rKt−1 in (6),

Kt = Kt−1 + max(a(Yt−1 − Yt−2), −rKt−1). (9)

Eqs. (8) and (9) provide a complete dynamical system in the two variables Yt, Kt . It is actually third order as the right
hand sides contain also income, delayed two periods.

1.2.2. The ceiling
The ceiling was skipped in Puu et al. (2005), but reintroduced in Puu (2007), putting Yc

t = Kt−1/a. Accordingly, with proper

substitution also for If
t = rKt−1 (5) becomes4:

Yt = min(cYt−1 + max(a(Yt−1 − Yt−2), −rKt−1),
1
a

Kt−1), (10)

replacing (8), whereas (9) remains as it is.
The new map contains two maximum/minimum clauses, and hence consists of four pieces, each of which is a linear map.

1.2.3. The resulting map
In order to decide which selection in the min/max choice applies we need three conditions. The condition for application

of the floor can be stated in terms of the quantity

Rt−1 = a(Yt−1 − Yt−2) + rKt−1 (11)

When Rt−1 ≥ 0 then the multiplier-accelerator process works, whereas if Rt−1 < 0, then the floor is activated.
As for the applicability of the ceiling, we check whether the sum of consumption cYt−1 and investments (accelerator

generated as a(Yt−1 − Yt−2), or fixed at floor level −rKt−1), exceeds the maximum production capacity (1/a)Kt−1 or not, so
let us define:

St−1 = (c + a)Yt−1 − aYt−2 − 1
a

Kt−1, (12)

and

Tt−1 = cYt−1 − rKt−1 − 1
a

Kt−1. (13)

If Rt−1 ≥ 0 and St−1 ≤ 0, then the classical multiplier-accelerator process works as usual, whereas for Rt−1 < 0 and Tt−1 > 0
we deal with the case where both floor and ceiling are applied at the same time. The conditions in terms of (11)–(13) are
not independent, because St−1 − Tt−1 ≡ Rt−1, however this does not simplify the map, as the phase space is always split into
eight parts,5 and the map becomes{

Kt = Kt−1 + a(Yt−1 − Yt−2)

Yt = 1
a

Kt−1

Rt−1 ≥ 0, St−1 > 0, (14)

{
Kt = Kt−1 + a(Yt−1 − Yt−2)

Yt = cYt−1 + a(Yt−1 − Yt−2)
Rt−1 ≥ 0, St−1 ≤ 0, (15)

{
Kt = (1 − r) Kt−1

Yt = cYt−1 − rKt−1
Rt−1 < 0, Tt−1 ≤ 0, (16)

4 We again use the production function Yt = min(Kt−1/a, Lt−1/b). The dating is different from its use above, but now we deal with actual quantities, not
with planned and expected. Supposing capital is again binding, we must have Yt ≤ Kt−1/a.

5 Notice that three independent planes in a three-dimensional phase pace divide it into eight different regions.
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Kt = (1 − r) Kt−1

Yt = 1
a

Kt−1

Rt−1 < 0, Tt−1 > 0, (17)

The first map represents the case with the ceiling activated, the third the one with the floor activated, the second is the
regular multiplier-accelerator model, whereas the last is case where both the floor and ceiling constraints are activated at
once.

In the model we have three parameters with the ranges 0 < c < 1, 0 < a, and 0 < r < 1.

1.3. The relative system

As in Puu et al. (2005), we now convert the system (14)–(17) to a relative system, in order to obtain stationary orbits,
using

yt = Yt

Yt−1
(18)

and

kt = Kt

Yt−1
(19)

for the income growth ratio and the capital to income ratio respectively.
Through the conversion all the branches become second order. In order to define the branch conditions (11)–(13) properly

in terms of yt, kt , we multiply them through by the factor Kt−1/Y2
t−2, which is granted to be nonnegative, and define �t =

RtKt/Y2
t−1, �t = StKt/Y2

t−1 and ςt = TtKt/Y2
t−1, so that we get:

�t−1 = a(yt−1 − 1)kt−1 + rk2
t−1, (20)

�t−1 = (c + a)yt−1kt−1 − akt−1 − 1
a

k2
t−1, (21)

ςt−1 := cyt−1kt−1 − rk2
t−1 − 1

a
k2

t−1, (22)

with the resulting maps⎧⎪⎨⎪⎩
kt = kt−1

yt−1
+ a

(
1 − 1

yt−1

)
yt = 1

a

kt−1

yt−1

�t−1 ≥ 0, �t−1 > 0, (23)

⎧⎪⎨⎪⎩
kt = kt−1

yt−1
+ a

(
1 − 1

yt−1

)
yt = c + a

(
1 − 1

yt−1

) �t−1 ≥ 0, �t−1 ≤ 0, (24)

⎧⎪⎨⎪⎩
kt = (1 − r)

kt−1

yt−1

yt = c − r
kt−1

yt−1

�t−1 < 0, ςt−1 ≤ 0, (25)

and ⎧⎪⎨⎪⎩
kt = (1 − r)

kt−1

yt−1

yt = 1
a

kt−1

yt−1

�t−1 < 0, ςt−1 > 0. (26)
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2. Description of the map

Summing up, we consider the two-dimensional nonlinear discontinuous piecewise smooth map F given by four maps Fi,
i = 1, 2, 3, 4:

F : (k, y) �→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F1(k, y), � ≥ 0, � > 0,

F2(k, y), � ≥ 0, � ≤ 0,

F3(k, y), � < 0, � ≤ 0,

F4(k, y), � < 0, � > 0,

(27)

where the maps Fi are defined as follows:

F1 :

(
k

y

)
�→

(
k/y + a(1 − 1/y)

k/ay

)
,

F2 :

(
k

y

)
�→

(
k/y + a(1 − 1/y)

c + a(1 − 1/y)

)
,

F3 :

(
k

y

)
�→

(
k(1 − r)/y

c − kr/y

)
,

F4 :

(
k

y

)
�→

(
(1 − r)k/y

k/ay

)
,

and �, �, � are given in (20)–(22), respectively (omitting the lower index t − 1). The parameters a, c and r are real and
such that 0 < c < 1, 0 < r < 1, and a > 0. Let us first remark that in this work we are only interested to the case a > 1.
In fact, when the parameter a satisfies 0 < a < 1 then the model in the original variables has the fixed point in the origin
which is asymptotically stable and at a = 1 a bifurcation occurs (a center bifurcation, conjugate eigenvalues crossing the
unit circle), after which the dynamics are diverging. Correspondingly, in the relative model for 0 < a < 1 the trajectories are
diverging and at a = 1 a particular bifurcation occurs (involving the points at infinity, on the Poincaré Equator). While we
are interested in situations in which the fixed point in the origin of the original model is unstable and endogenous cycles
appear of increasing amplitude, that is what occurs for a > 1, and in order to study the trend of the diverging trajectories
we have introduced the relative model described above. In it, for a > 1 we can have bounded trajectories which allow us to
study how the trajectories in the original model are growing. Thus it is this last regime of interest to us, and in this paper
we restrict our analysis to the case a > 1.

Let Ri, i = 1, 2, 3, 4, denote the regions of definition of the maps Fi. The boundaries of Ri are defined by four straight lines,
which we call critical lines and denote as L(i)

−1:

L(1)
−1 =

{
(k, y) : y = 1 − rk/a

}
;

L(2)
−1 =

{
(k, y) : y = (a2 + k)/a(c + a)

}
;

L(3)
−1 =

{
(k, y) : y = (ra + 1)k/ac

}
;

L(4)
−1 =

{
(k, y) : k = 0

}
.

The function F is defined in the whole plane except for the axis y = 0. The image of a point on the axis y = 0 is at infinity,
i.e. belongs to the so-called Poincaré Equator; thus the iterative dynamic process is well defined in the real phase plane,
except for this axis and all its preimages6 of any rank. The map F is continuous on L(1)

−1, L(2)
−1, L(3)

−1 and discontinuous on L(4)
−1.

The qualitative picture of the partition of the (k, y)-phase plane into the regions Ri (for parameters in the range of interest)
is shown in Fig. 1.

The dynamic behavior of the map defined only by the two functions F2 (for � ≥ 0) and F3 (for � < 0) was studied in
Sushko et al. (2004) and Sushko and Gardini (2009). In particular, in Sushko and Gardini (2009) it is shown that at a = 1
the fixed point of F2 located on the Poincaré Equator undergoes the center bifurcation, giving rise to an attracting invariant
one-dimensional set in the phase plane on which the map F can have, depending on parameters, either a pair of cycles of any
period n ≥ 6 (one attracting and one saddle), or a quasiperiodic trajectory. The dynamics of the map F given in (27) can be
more complicated: even chaotic. To give a general view of the asymptotic behavior of F we show two bifurcation diagrams

6 We recall that given a map Xn+1 = T(Xn) a preimage of rank-one of a point P is any point Q which satisfies P = T(Q ) (see Mira et al., 1996).



Author's personal copy

82 I. Sushko et al. / Journal of Economic Behavior & Organization 75 (2010) 77–94

Fig. 1. Regions of definition in the phase plane.

for F in the (a, c)-parameter plane for r = 0.025 (Fig. 2) and r = 0.3 (Fig. 3). Regions related to attracting cycles of different
periods n ≤ 42 are shown by different shades of gray, and the white region corresponds to either cycles of period n > 42,
or to chaotic trajectories. It is also shown a curve c = c∗ obtained numerically, corresponding to a contact of the attractor
with the boundary L(2)

−1 of the region R1, where the map F1 is defined. For c < c∗ only the two maps F2 and F3 are involved in
the asymptotic dynamics of F (which is as already described in Sushko et al. (2004)). The purpose of the present paper is to
study the dynamics of F for c > c∗ and to explain some different mechanisms of transition to chaos.

Appendix A contains a short description of the four map components of F, together with a description of the application
of the map F to the regions Ri, i = 1, . . . , 4. The result is summarized in Fig. 4, and the analytic expressions for the boundaries
of the regions are given in Appendix A.

The white region in Fig. 4 denotes the locus of points which are never visited by a trajectory (the so-called region Z0),
while the points in the gray (respectively white hatched) regions have two (respectively one) preimages.

It is immediately seen that the region R4 is never involved in the asymptotic dynamics (as any point from that region is
mapped outside, and its orbit never reenters the same region). Neither does the discontinuity line k = 0 have any influence
on the asymptotic dynamics of the map F. Thus we are left with the dynamics of the points belonging to the three remaining
regions. We know that if the regions involved are only R2 and R3 (i.e. only the maps F2 and F3) then the dynamics are regular,
whereas, as we shall see, the new region R1 will play an important role in producing more spectacular phenomena.

Fig. 2. Two-dimensional bifurcation diagram in the (a, c)-parameter plane at r = 0.025.
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Fig. 3. Two-dimensional bifurcation diagram in the (a, c)-parameter plane at r = 0.3.

In order to understand which maps are involved in the asymptotic dynamics of F, and how, let us first assume that a
trajectory has a point (kj, yj) ∈ R3. Then (kj+1, yj+1) = F3(kj, yj) ∈ L(1)

0 , as F3 maps all the points into the line L(1)
0 .

For c < 1 − r the attracting fixed point of F3 is (k∗, 1 − r) ∈ R2, where k∗ = (1 − r)(c − 1 + r)/r < 0, and the repelling fixed
point (0, c) is just on the border of R2 (see Appendix A). Thus, approaching the attracting fixed point, the trajectory necessarily
enters the region R2, i.e., there exists some s > 0 such that (kj+1+s, yj+1+s) ∈ L(1)

0 ⊂ R2, where kj+1+s < 0.
If c > 1 − r, then the fixed point (0, c) is attracting, while (k∗, 1 − r) with k∗ > 0 is repelling, thus also in this case the

above conclusion holds. So, we have (kj+1+s, yj+1+s) ∈ R2.
The trajectory cannot stay forever in R2, given that, as it is shown in Sushko and Gardini (2009) (see also Appendix A),

for c < c∗∗ = 2
√

a − a, a > 1, the map F2 has a transversely attracting invariant straight line {x = a}, on which the trajectory
of any point is either periodic, or quasiperiodic under the map F2. It is shown that any such trajectory must have at least
one point in R3, thus, it cannot stay forever in R2. For c > c∗∗ the fixed points of F2, located at {x = a}, belong to R1. Thus, the
trajectory must enter other regions, that is either R1 or R3. Indeed, there are two possibilities:

• The trajectory never enters the region R1 (which occurs in the parameter range c < c∗ in Figs. 2 and 3). This means that,
after a number of consecutive points in R2 with k < 0, y > 0 the trajectory enters the subregion of R2 below y = 0 and
above a straight line which is the preimage of L(2)

−1 by F2, i.e., above the straight line L(2)
−2 = F−1

2 (L(2)
−1). Points of this subregion

are mapped in the subregion of R2 below L(2)
−1 and above y = c + a. Then, after some number of iterations under F2 the

Fig. 4. Image of the phase plane in one application of the map F.
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Fig. 5. Examples of the two-branch attracting invariant set S for r = 0.3, c = 0.41, a = 1.25 (a) and a = 2.5 (b). In (a) also shown are points of the attracting
cycle of period 8 of the map F, while in case (b) the map F has a chaotic attractor on S.

trajectory enters the region R3, and after one iteration under F3 we again have a point on L(1)
0 . As it was shown in Sushko

et al. (2004) (see also Sushko and Gardini, 2009) the dynamics of F in such a case can be either periodic, or quasiperiodic.
• The trajectory, starting from the point (kj+1+s, yj+1+s) ∈ R2 after a number of consecutive points in R2 (with k < 0) enters

the region R1 (indeed, the trajectory can enter only subregions not belonging to Z0). Then, using our analysis in Appendix
A, related to the images of Ri, we can state that the trajectory, after a number of consecutive points in R1, must enter the
subregion R2 with k > 0 and then the region R3. As in the previous case, after one iteration under F3 the trajectory comes
back to the straight line L(1)

0 .

An important conclusion from the above considerations (besides the existence of a backward mechanism for obtaining
a generic trajectory of F) is that the map F3 is always involved in the asymptotic dynamics of F, and that, due to its zero
eigenvalue, there exists a one-dimensional subset S of the phase plane, to which the dynamics of F are reduced. Such a
subset S is a broken line of two branches consisting of images of a proper segment of L(1)

0 . In the case c < c∗ the set S has
a rather simple structure, which is in some sense similar to a piecewise linear approximation of the two branches of a
hyperbola (see Fig. 5a), while for c > c∗ it can have a quite complicated structure with self-intersections and foldings (see
an example in Fig. 5b). The main result of this analysis is the existence of a proper segment of L(1)

0 to which we can restrict

our study. The segment is given by [a0, a1] ⊂ L(1)
0 , where the point a0 is the intersection between the two straight lines L(1)

−1

(whose equation is given above: y = 1 − rk/a) and L(1)
0 (whose equation is given in Appendix A: y = c − rk/(1 − r)), that is:

a0 = (a(c − 1)(1 − r)/r(a − 1 + r), (a − c(1 − r))/(a − 1 + r)). While a1 is its image under the map, a1 = F(a0), which belongs
to the line L(1)

0 and to its image under the map F. So, as described in the next section, just considering the one-dimensional
return map on the segment [a0, a1] we can investigate and explain the main properties of the map F.

3. Dynamics of the return map

We present here some properties and numerical results related to the dynamics of the first return map ϕ : [a0, a1] →
[a0, a1]. Let us first define it:

Definition 1. The first return map ϕ : [a0, a1] → [a0, a1] is a map ϕ through which the k-coordinate of a given point
(k, y) ∈ [a0, a1] is mapped to the point ϕ(k) which is the k-coordinate of the first point satisfying Fn(k, y) ∈ [a0, a1].

The map ϕ(k) is a piecewise smooth function which has, in general, a number n1 ≥ 1 of kink points. These are the k-
coordinates of the images of the intersection points of the invariant attracting set S with L(1)

−1 and L(2)
−1 that belong to [a0, a1].

Further ϕ(k) has some number n2 ≥ 1 of discontinuity points. These are the k-coordinates of images of the intersection points
of the invariant attracting set S with the line of non definition y = 0 that belong to [a0, a1].

A fixed point of the map ϕ(k) corresponds to a cycle of some period n of the map F. The m th return on [a0, a1] is given by
the map ϕm. If the map F has a cycle of period n with m points in the segment [a0, a1], then the m th return map ϕm has m
fixed points.

Fig. 6 shows two return maps ϕ(k) related to the parameter values of Fig. 5a and b, respectively. The return map shown in
Fig. 6a corresponds to the case in which the map F has an attracting and a saddle cycle of period 8, so that the related return
map ϕ(k) has one attracting and one repelling fixed point. The map ϕ(k) has one kinked point and one point of discontinuity.
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Fig. 6. Return map ϕ(k) at r = 0.3, c = 0.41, a = 1.25 (a) and a = 2.5 (b).

The return map shown in Fig. 6b has a more complicated structure, with 9 kink points and 9 points of discontinuity. The fixed
points of ϕ(k) are all repelling, and no stable cycle can exist as the derivative is |ϕ′(k)| > 1 in all the points of the absorbing
segment, which proves that the attracting set in Fig. 5b is chaotic.

Using the first return map ϕ(k) we can study the bifurcations occurring to the attractors of the map F. Due to the structure
of the return map, which is piecewise smooth, with kinked points and discontinuity points, cycles may appear, or bifurcate
(i.e. a stable cycle may become unstable) due to the eigenvalue, or it may undergo a border-collision bifurcation, as the
parameters are changed. This occurs when a periodic point of a cycle merges with a kinked point or a point of discontinuity,
after which the cycle no longer exists, and some other asymptotic behavior emerges.

Hence, besides the standard bifurcations (fold and flip), we have bifurcations related to the appearance/disappearance
of cycles, or directly of chaotic attractors due to border-collision bifurcations. We cannot easily predict what occurs at a
border-collision bifurcation of a cycle. In general this depends on the slopes of the functions at the kinked point or the point
of discontinuity. This kind of bifurcations in piecewise smooth and discontinuous maps is a new research area. We refer to
Avrutin and Schanz (2006) and Avrutin et al. (2006), for some works related to a one-dimensional discontinuous normal
form, and to Maistrenko et al. (1995) for the bifurcations related to a continuous piecewise linear map. Here we do not
discuss this problem in deeper detail: In our applied context we have simply verified numerically that several bifurcations
of this kind occur for the cycles of the piecewise smooth discontinuous first return map, and thus for the map F.

As shown in Sushko et al. (2004), in the case c < c∗ an attracting cycle of the map F can only undergo a border-collision
bifurcation. Consider, for example, the parameter values r = 0.3, c = 0.41, a = 1.25, for which the map F has an attracting
8-cycle and a saddle 8-cycle (see Fig. 5a); the related return map ϕ(k) is shown in Fig. 6a.

Increasing the values of c the graph of ϕ(k) moves down so that the two fixed points approach each other, and for c ≈ 0.436
they merge, colliding with the kink point (see Fig. 7a), then disappearing and giving rise to a quasiperiodic trajectory. Thus,
a “saddle-node” border-collision bifurcation occurs.

If the value of c is decreased, the attracting fixed point moves towards the boundary point a1, and the repelling fixed point
approaches the boundary point a0 (and, simultaneously, the point of discontinuity tends to a0 as well), so that at c ≈ 0.394
a border-collision bifurcation of a different kind occurs (see Fig. 7b) again giving rise to a quasiperiodic trajectory. Indeed,
the boundaries of the regions of periodicity in the (a, c)-parameter plane, shown in Figs. 2 and 3for c < c∗, are related to the two
kinds of border-collision bifurcations, described above.

Fig. 7. Return map ϕ(k) at r = 0.3, a = 1.25, c = 0.436 (a), and c = 0.394 (b).
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Fig. 8. The enlarged window of Fig. 2.

In order to show which kinds of bifurcations an attracting cycle of F can undergo for c > c∗, in Fig. 8 we show an enlarge-
ment of the rectangle in the lower right hand corner of Fig. 2, and consider several bifurcation sequences, related to the
parameter changes indicated by the two straight lines with arrows.

So, let us first fix r = 0.025, c = 0.23, a = 2.93. For these parameter values the map F has a pair of 10-cycles, an attracting
node and a saddle. The related return map ϕ(k) has two fixed points, one attracting and one repelling (see Fig. 9a). Increasing
a, at a ≈ 2.9369 the attracting fixed point of ϕ(k) undergoes a degenerate flip bifurcation (see Fig. 9b in which the map ϕ2(k)
is shown close to this bifurcation). Exactly at the bifurcation value the map ϕ(k) has an interval of period-2 points (i.e. all
the points of the interval belong to 2-cycles, stable but not attracting), whereas after the bifurcation only one attracting
2-cycle is left (corresponding to two attracting fixed points of ϕ2(k) as shown in Fig. 10a). The related map F has an attracting
20-cycle. At a = 3.0195 the map ϕ(k) has already two coexisting attractors: attracting 2- and 4-cycles. The attracting 4-cycle
was born, together with a repelling 4-cycle, due to a “saddle-node” border-collision bifurcation: To see this, in Fig. 10b we
show an enlargement of ϕ4(k). These two coexisting attractors of ϕ(k) correspond to two different attracting cycles of the
map F.

Besides the degenerate flip bifurcation of an attracting cycle, leading to a cycle of double period, we can have the “period-
doubling” border-collision bifurcation. To show an example of such a bifurcation, let us fix the parameter values r = 0.025,
c = 0.1, a = 3.65, for which the map F has an attracting cycle of period 8. The related return map ϕ(k) is shown in Fig. 11a.
Increasing a, at a ≈ 3.704 the attracting fixed point of ϕ(k) undergoes a “period-doubling” border-collision bifurcation giving
rise to an attracting 2-cycle, which corresponds to an attracting 16-cycle of the map F (see Fig. 11b, which shows the map
ϕ(k) approximately at the bifurcation value).

If we continue to increase the value of a, one more “period-doubling” border-collision bifurcation occurs at a ≈ 3.7254
(see Fig. 12a, in which the enlarged part of the map ϕ2(k) is shown approximately at the moment of this bifurcation). After

Fig. 9. Return maps, r = 0.025, c = 0.23, a = 2.93 (a); a = 2.9369 (b).
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Fig. 10. Return maps, r = 0.025, c = 0.23, a = 2.97 (a); a = 3.0195 (b).

Fig. 11. Return maps, r = 0.025, c = 0.1, a = 3.65 (a); a = 3.704 (b).

the bifurcation the map ϕ(k) has an attracting cycle of period 4, corresponding to an attracting 32-cycle of the map F. The
next border-collision bifurcation occurs for the 4-cycle of ϕ(k) at a ≈ 3.7371, when a point of this cycle collides with a point
of discontinuity, which leads to a chaotic attractor (see Fig. 12b), corresponding to a 9-piece cyclical chaotic attractor of the
map F shown in Fig. 13a.

In Fig. 13b we show an enlargement of the phase plane indicated in Fig. 13a by a rectangle containing three pieces of the
9-piece cyclical chaotic attractor. It can be seen that one piece of the attractor intersects the line of discontinuity y = 0, so
its image consists of two unbounded pieces of the attractor belonging to L(1)

0 .
From one single example we have thus shown that for c > c∗ an attracting cycle of the map F, besides the “saddle-

node” border-collision bifurcation, can also undergo a degenerate flip bifurcation, and a “period-doubling” border-collision
bifurcation, as well as a border-collision bifurcation leading directly to chaos.

Fig. 12. Return maps, r = 0.025, c = 0.1, a = 3.7254 (a); a = 3.738 (b).
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Fig. 13. The 9-piece cyclical attractor of the map F (a) at r = 0.025, c = 0.1, a = 3.738 in the phase plane; and (b) an enlargement of the rectangle.

Fig. 14. Basins of attraction, r = 0.025, c = 0.19, and a = 3.1.

One more important difference of the case c > c∗ compared to c < c∗, is worth noting, namely that the regions of
periodicity can overlap. This corresponds to bistability. The previous example also showed this property of bistability.

As another example, let us consider the parameter values in the point inside the 9- and 10-periodicity tongue (or region
of periodicity) shown in Fig. 8. Then 9- and 10-cycles of the map F coexist in the phase plane, and in Fig. 14 we show the
related two basins of attraction.

An enlarged part in Fig. 15 shows that the frontier between the two basins may have a fractal structure. Hence, the
noninvertibility of the map F, together with the possible existence of chaos and chaotic repellors, leads to the complex
structure of the basins of attraction, with pieces which may be disjoint. Moreover, it is of some interest to note that for high
values of a we mainly observe chaotic dynamics, and that the structure of the chaotic invariant set becomes more and more
folded as the number of intersections with L(2)

−1 increases. As an example to illustrate the complex structure of an attractor
of the map F, we show the enlargement of the attractor at r = 0.3, c = 0.5, a = 15 in Fig. 16.

4. Growth rates

The preceding sections concerned the dynamics for the evolution of the “relative” variables kj, yj , as only these could
produce stationary orbits in a growing system. These were, however, only introduced for analytical purposes. What the
economists are really interested in is the orbit for Kj, Yj , in particular Yj .

We can note that, whenever there is an attracting cycle of period n, with periodic points (kj, yj), j = 1, . . . , n, then from
(18) for any j, the product

Yj−1+n

Yj−1
= yjyj+1· · ·yj+n = y1y2· · ·yn, (28)
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Fig. 15. The enlarged window of Fig. 14.

Fig. 16. Enlargement of a chaotic attractor in the phase plane, at r = 0.3, c = 0.5, and a = 15.

is an invariant which equals the growth factor of income (growth rate augmented by unity) over one complete cycle. We can
now replace the expressions yjyj+1· · ·yj+n or y1y2· · ·yn in (28) by their absolute values.7 To obtain the growth rates reduced
to a one period basis write

(1 + R)n =
∣∣∣∣Yj−1+n

Yj−1

∣∣∣∣ = |y1y2· · ·yn|. (29)

For computational reasons, for any period−n cycle with n ≤ 42 we calculate R from (29) as follows:

ln(1 + R) = 1
n

ln |y1y2· · ·yn| (30)

R = exp
[

1
n

ln |y1y2· · ·yn|
]

− 1 (31)

Whenever R > 0 we deal with growth, otherwise the income trend is decreasing, and numerical evidence indicates that
for a > 1 we indeed deal with growth.

To get a picture of the growth rates corresponding to the regions of periodicity in Figs. 2 and 3, we calculated R for these,
and pictured the growth rates in different gray shades in Figs. 17 and 18, respectively. Without any formal justification,

7 The reason the absolute value works is that, should we have y1y2· · ·yn < 0, then we can take the evolution over two cycles, for which (y1y2· · ·yn)2 =
|y1y2· · ·yn|2.
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Fig. 17. Growth rates in the (a, c)-parameter plane at r = 0.025. The width of each band of different shades of gray corresponds to a growth rate
of 0.007.

Fig. 18. Growth rates in the (a, c)-parameter plane at r = 0.3. The width of each band of different shades of gray corresponds to a growth rate of 0.007.

we also extended the idea to the cases of aperiodic or chaotic trajectories, and computed R with the same formula in (31)
taking n = 1500, after a transient of 10,000 steps, and so extended the pictures of growth rates outside the domains of strict
periodicity tongues. As we see, the rates of growth are radically reduced as compared to the growth rates for the original
multiplier accelerator models.8

Examples of growth trends and income time series are shown in Fig. 19a and b resulting from the parameters r = 0.025,
c = 0.2, and a = 3.7 (with R = 0.1036245) and a = 4.0 (with R = 0.1099578), respectively.

8 To appreciate this point it must be recalled that the original multiplier/accelerator model Yj = (a + c)Yj−1 − aYj−2 does not have any growth trend in
the oscillatory solution Yj = �t cos(ωj + ε), where � = √

a, does not have any growth term. The exponential factor �t is an envelope for the cyclic variation
around a stationary income level. Yet, we may note that this growth rate (50% per period for a = 2.25, 100% for a = 4) is huge. The original model can

only produce pure growth (without oscillations) Yj = A1	j
1 + A2	j

2 at the rates 	1,2 = (1/2)(a + c) ± (1/2)
√

(a + c)2 − 4a, of which the largest dominates
eventually. This is growth of an equally huge magnitude.
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Fig. 19. The trajectory Y(t) and the function eRt at r = 0.025, c = 0.2, a = 3.7, R = 0.1036245 (a); a = 4, and R = 0.1099578 (b).

5. Conclusion

In a previous paper, Puu et al. (2005), the authors considered a possibility of reassembling the Hicksian trade cycle model
in a new way. The floor was tied to the stock of capital through a given rate of depreciation, thus rendering a lower bound
to disinvestment when no worn out capital was replaced. For this reason the stock of capital had to be included as a new
variable in the model. It was not in the original model, Hicks (1950), but, as capital is the cumulative sum of all past net
investments, and, as the determinants of investment were an important part of the model, no additional elements were
needed to achieve the inclusion of capital, and so close the model.

As a result, the model could create a growth trend along with growth rate cycles endogenously, which had been
impossible in the original model, where an exogenous growth trend in autonomous expenditures had to be added. The
setup called for a new method in order to deal with a growing system, through converting it to “relative” variables; the
income growth factor and the capital/income ratio. A full mathematical analysis was supplied in Sushko et al. (2004) (see
also Sushko and Gardini, 2009).

The model could produce periodic or quasiperiodic orbits, and also had the advantage that the enormous income growth
rates of Samuelson’s and Hicks’s models were reduced by about a factor of one hundredth in the periodic and quasiperiodic
regimes. However, for high values of the accelerator, pure exponential growth (at the original high rates) remained, quite
as in Samuelson (1939) and Hicks (1950).

In a recent publication, Puu (2007), one of the present authors reintroduced the ceiling, again using capital stock as an
actual capacity limit for producing real income. It was demonstrated that the pure growth cases no longer existed, and
numerical experiments indicated both chaos and multistability, but the numerical results remained inconclusive, and the
model itself largely mathematically unexplored.

The aim of the present contribution is to provide a full mathematical analysis of the new model in Puu (2007). A full
description of the mathematical properties of the different branches of the map are given in Appendix A. Its was shown that
chaos and multistability indeed occur in the new model, and a variety of bifurcation scenarios were explored. A numerical
investigation indicated a drastic reduction of growth rates from the original huge values over the entire parameter space.

A full understanding of the working of the four-piece (originally three dimensional, two dimensional in relative variables)
piecewise smooth map was attained by using a reduction to a one-dimensional return map.

Appendix A.

In this Appendix we first describe the dynamic behavior of each map Fi, i = 1, 2, 3, 4, given in Section 2, and then the
dynamic behavior of the map in the phase plane.

• The map F1 is an invertible map having two fixed points (a, 1) and (a, −1) with eigenvalues 
1,2 = ±1 and 
1 = 
2 = −1,
respectively. It maps the strip {(k, y) : −1 ≤ y ≤ 1} in two half planes

{(k, y) : y ≥ k/a} and {(k, y) : y ≤ k/a − 2},

while two half-planes {(k, y) : y ≥ 1} and {(k, y) : y ≤ −1} are mapped by F1 in the strips

{(k, y) : k/a − 2 ≤ y ≤ k/a − 1} and {(k, y) : k/a − 1 ≤ y ≤ k/a},
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respectively. The straight line in between, denoted L∞,

L∞ = {(k, y) : y = k/a − 1},

is the image of the Poincaré Equator.
• The map F2 is an invertible map of triangular type, such that y is mapped independently on k by a one-dimensional map f:

f : y �→ (c + a) − a

y
. (32)

It has two fixed points y+ and y−: y± = (c + a ±
√

(c + a)2 − 4a)/2, appearing at c = c∗∗ = 2
√

a − a via a saddle-node
bifurcation. For 0 < c < c∗∗ the map f has no fixed points, but any initial value y0 is either n-periodic with rotation num-
ber m/n (for c = 2

√
a cos(�m/n) − a) or quasiperiodic with rotation number � (for c = 2

√
a cos(��) − a) (see Sushko and

Gardini, 2009). An eigenvalue of f is 	1(y) = a/y2. If the fixed points y± exist, i.e., for c ≥ c∗∗, we have 0 < 	1(y+) < 1 and
	1(y−) > 1. The corresponding fixed points of the map F2 are (a, y−) and (a, y+). Indeed, it can be easily checked that
the straight line {x = a} is invariant under the map F2. Moreover, in Sushko and Gardini (2009) it is shown that this line
is transversely attracting for a > 1 and transversely repelling for a < 1; Any point (a, y) is either periodic, or quasiperi-
odic; At a = 1 any point (k0, y0) is either periodic, or quasiperiodic, and any trajectory belongs to corresponding invariant
hyperbola. The second eigenvalue of F2 is 	2(y) = 1/y. Taking into account that c ≥ c∗∗ the inequalities 	2(y+) < 1 and
	2(y−) < 1 hold (as c > 2 − a), we have that the fixed point (a, y+) is an attracting node and (a, y−) is a saddle (and both
belong to the region R1). Let L(2)

0 denote the image of L(2)
−1 by F2, i.e.,

L(2)
0 = F2(L(2)

−1) =
{

(k, y) : y = (k + c)
(a + 1)

}
.

• Consider now the map F3. Due to one zero eigenvalue in each part of the definition, any point of the phase plane is mapped
by F3 into a point of a straight line, denoted L(1)

0 ,

L(1)
0 = F3(L(1)

−1) =
{

(k, y) : y = c − rk

(1 − r)

}
,

on which the map F3 is reduced to a one-dimensional map g:

g : k �→ g(k) = k(1 − r)2

c(1 − r) − rk
. (33)

The map g has two fixed points: k∗ = (1 − r)(c − 1 + r)/r and k∗∗ = 0. If c < 1 − r, then k∗∗ is repelling and k∗ is attracting,
while if c > 1 − r, then k∗ is repelling and k∗∗ is attracting. At c = 1 − r these fixed points merge: k∗ = k∗∗ = 0. The corre-
sponding fixed points of the map F3 are (k∗∗, c) and (k∗, (1 − r)). The map F3 is a noninvertible map of (Z0 − Z∞ − Z0)-type.

• The dynamics of the map F4 are trivial. Due to one zero eigenvalue, any point of the phase plane is mapped into a point of
the straight line denoted L(3):

L(3) =
{

(k, y) : y = k

a(1 − r)

}
,

which in one more iteration is mapped into the fixed point p1 = (a(1 − r)2, (1 − r)) of F4 (the second eigenvalue of the fixed
point is also 0). Note that if (k, y) ∈ L(3)

−1 then F4(k, y) = (k1, y1) ∈ L(3), where k1 = (1 − r)ack/(ra + k), y1 = ck/(ra + k).

It is not difficult to check that for the parameter range considered, no one of the fixed points, mentioned above, of the
individual maps Fi, i = 1, 2, 3, 4, belongs to the definition region of the related map.

A.1. Action of the map F

In order to understand the dynamic action of the map F (whose components have been considered separately in the above
discussion), we have to understand how is the image of the phase plane under F. This will lead us to locate the regions where
it is possible to get the invariant attracting sets, and the regions in which the map is invertible or noninvertible. We recall
that the phase space may be subdivided in regions, or zones, Zk such that each point of a region Zk has k distinct rank-one
preimages (see Mira et al. (1996) for more details). A region Z0 denotes points having no rank-one preimage (which also
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means that a point can never be mapped in such a region, and thus no limit set can belong to it). A region Z∞ denotes points
having infinitely many rank-one preimages, as it occurs in maps having degenerate cases, as straight lines mapped into
points, as it is in our case.

So, let us describe the images of the regions Ri, i = 1, 2, 3, 4, by F: if a region is not visited by F(Ri), i = 1, 2, 3, 4, then it is
a region Z0; if a region includes points of F(R1) and of F(R2) then it is a region Z2.

As the boundaries of the regions Ri are the lines L(i)
−1, the regions F(Ri) are bounded by the images F(L(i)

−1). First note

that lines L(1)
−1, L(2)

−1 and L(3)
−1 (belonging to the boundaries of the regions Ri) intersect in the same point (see Fig. 1), which

we denote p0: p0 = (k0, y0) = L(1)
−1 ∩ L(2)

−1 ∩ L(3)
−1, k0 = ac/(1 + r(c + 1)), y0 = 1 − rk0/a. The point p1 is the image of p0 under F,

i.e., p1 = F(p0). Obviously, p1 = L(1)
0 ∩ L(2)

0 ∩ L(3). Now we can easily obtain an image of the region R4, which is a segment:
F(R4) = F4(R4) = (0, p1]. For our parameter ranges this segment (0, p1] ∈ R3 (see Fig. 4).

Now let us get the image of R3. As mentioned above, F3 maps any point of the plane into a point of the straight line L(1)
0 .

So,

F3(R3) = {(k, y) : (k, y) ∈ L(1)
0 for k < 0 andk ≥ k1}.

Note, that due to the intersection of L(1)
−1 with the axis y = 0, we have a singularity point s0 = (a/r, 0). Let (k0, y0) ∈ L(1)

−1,

F3(k0, y0) = (k1, y1) ∈ L(1)
0 . Then y1 → ±∞ as y0 → 0∓, while points at infinity of L(1)

−1 are mapped into a point, denoted s∞,
with coordinates (a(1 − r)/r, c + a), that is, y1 → (c + a)∓ as y0 → ±∞ (see Fig. 4).

The boundary L(2)
−1 also intersects the axis y = 0 in a point denoted s′

0: s′
0 = (−a2, 0). If (k0, y0) ∈ L(2)

−1 and F2(k0, y0) =
(k1, y1) ∈ L(2)

0 , then y1 → ±∞ as y0 → 0∓; points at infinity of L(2)
−1 are mapped into a point s′∞ = (a(c + a + 1), c + a), i.e.,

y1 → (c + a)∓ as y0 → ±∞.
The images of the regions R1 and R2 are shown in Fig. 4 as gray and hatched regions, respectively. More precisely, the

subregion of R1 such that k < 0, y > 0, is mapped into the region above L(2)
0 and below y = 0, i.e., into the region{

(k, y) :
(k + c)
(a + 1)

< y < 0
}

.

The subregion of R1, such that k < 0, y < 0, is mapped into a region below L(2)
0 , below L∞ and above y = 0, that is, into

the region{
(k, y) : 0 < y <

k

a − 1
, and y <

(k + c)
(a + 1)

}
.

Finally, the subregion of R1 such that k > 0, y > 0 is mapped in the region{
(k, y) :

k

a − 1
< y <

(k + c)
(a + 1)

, and 0 < y <
k

a(1 − r)

}
.

Let us now consider the image of the region R2 in detail. Its part related to k < 0, y > 0 is mapped into the region given
by: {

(k, y) :
(k + c)
(a + 1)

< y <
c − rk

(1 − r)
, and (k + a) < y < (c + a)

}
.

The subregion of R2 such that k < 0, y < 0 is mapped into the following region:{
(k, y) : (c + a) < y <

(k + c)
(a + 1)

}
.

The subregion of R2 with k > 0, y > 0 is mapped in the region:{
(k, y) :

c − rk

(1 − r)
< y <

(k + c)
(a + 1)

, and y < (c + a)
}

.

Finally the image of the subregion of R2 with k > 0, y < 0 is the region{
(k, y) : (c + a) < y <

c − rk

(1 − r)

}
.

In order to illustrate the images of the regions Ri, i = 1, 2, 3, 4, in Fig. 4 we have taken a = 2, c = 0.6, r = 0.3, but it can
be easily checked that for other parameter values in the range of interest the picture is qualitatively the same. From the
same picture one can also get information about the invertibility of the map F, namely, points of the gray region have one
preimage, as also do points of the hatched region (denote these regions as Z1); in the overlapping gray and hatched regions
the related points have two preimages (Z2); points of the white region have no preimages (Z0). And clearly, as it was already
mentioned above, due to a zero eigenvalue, the points of L(1)

0 have infinitely many preimages (Z∞). From this description we
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also can see that the line of discontinuity k = 0, as well as the region R4, have no influence on the asymptotic dynamics of
the map F.

References

Avrutin, V., Schanz, M., 2006. Multi-parametric bifurcations in a scalar piecewise-linear map. Nonlinearity 19, 531–552.
Avrutin, V., Schanz, M., Banerjee, S., 2006. Multi-parametric bifurcations in a piecewise-linear discontinuous map. Nonlinearity 19, 1875–1906.
Hicks, J.R., 1950. A Contribution to the Theory of the Trade Cycle. Oxford University Press, Oxford.
Maistrenko, Y.L., Maistrenko, V.L., Vikul, S.I., Chua, L., 1995. Bifurcations of attracting cycles from time-delayed Chua’s circuit. International Journal of

Bifurcation and Chaos 5 (3), 653–671.
Mira, C., Gardini, L., Barugola, A., Cathala, J.C., 1996. Chaotic Dynamics in Two-Dimensional Noninvertible Maps. World Scientific, Singapore.
Puu, T., Gardini, L., Sushko, I., 2005. A Hicksian multiplier-accelerator model with floor determined by capital stock. Journal of Economic Behavior and

Organization 56, 331–348.
Puu, T., 2007. The Hicksian trade cycle with floor and ceiling dependent on capital stock. Journal of Economic Dynamics & Control 31, 575–592.
Samuelson, P.A., 1939. Interactions between the multiplier analysis and the principle of acceleration. Review of Economic Statistics 21, 75–78.
Sushko, I., Gardini, L., Center bifurcation of a point on the Poincar é Equator. Proc. of ECIT 2008, Grazer Math. Ber. No. 354, 2009.
Sushko, I., Gardini, L., Puu, T., 2004. Tongues of periodicity in a family of two-dimensional discontinuous maps of real Möbius type. Chaos, Solitons & Fractals

21, 403–412.




