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Abstract

In this work we study some properties associated with the border-
collision bifurcations in a two-dimensional piecewise linear map in canon-
ical form, related to the case in which a �xed point of one of the linear
maps has complex eigenvalues and undergoes a center bifurcation when
its eigenvalues pass through the unit circle. This problem is faced in sev-
eral applied piecewise smooth models, such as switching electrical circuits,
impacting mechanical systems, business cycle models in economics, etc.
We prove the existence of an invariant region in the phase space for para-
meter values related to the center bifurcation and explain the origin of a
closed invariant attracting curve after the bifurcation. This problem is re-
lated also to particular border-collision bifurcations leading to such curves
which may coexist with other attractors. We show how periodicity regions
in the parameter space di¤er from Arnold tongues occurring in smooth
models in case of the Neimark-Sacker bifurcation, how so-called danger-
ous border-collision bifurcations may occur, as well as multistability. We
give also an example of a subcritical center bifurcation which may be con-
sidered as a piecewise-linear analogue of the subcritical Neimark-Sacker
bifurcation.

Keywords: Border Collision Bifurcations, Border Collision Normal Forms,
Center Bifurcation, Piecewise-Linear 2D maps.

1 Introduction

Recently, more and more works have been published showing a rich variety of
applied models ultimately described by continuous piecewise smooth or piece-
wise linear maps which are not di¤erentiable in a subset (of zero measure) of
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the state space. See, among others, Hommes [1991], Hommes and Nusse [1991],
Nusse and Yorke [1992, 1995], Maistrenko et al. [1993, 1995], Yuan [1997],
Banerjee and Grebogi [1999], Banerjee et al. [2000a,b], Fournier-Prunaret et al.
[2001], Taralova-Roux and Fournier-Prunaret [2002], Sushko et al. [2005, 2006].
For such maps particular kinds of bifurcations may occur, di¤erent from those
studied in smooth models, which since Nusse and Yorke [1992] are denoted as
border collision bifurcations (BCB for short henceforth). This quite recent re-
search subject (although the �rst works by Feigin date back to the 70th, and
were rediscovered only a few years ago, see Di Bernardo et al. [1999]), has been
mainly studied by using one- and two-dimensional canonical forms, proposed in
Nusse and Yorke [1992], which are piecewise linear maps de�ned by two linear
functions, being this analysis at the basis also of the BCB occurring in piecewise
smooth systems. The two-dimensional canonical form has been mainly consid-
ered in dissipative cases associated with real eigenvalues of the point which
undergoes the BCB. Among the e¤ects studied up to now are uncertainty about
the occurrence after the BCB (see e.g. Kapitaniak and Maistrenko [1998], Dutta
et al. [1999]), multistability and unpredictability of the number of coexisting
attractors (see e.g. in Zhusubaliyev et al. [2006]), as well as the so-called dan-
gerous BCB (Hassouneh et al. [2004], Ganguli and Banerjee [2005]), related to
the case in which a �xed point is attracting before and after the BCB, while at
the bifurcation value the dynamics are divergent.
However, in the last years the problem of BCB associated with points having

complex eigenvalues, was raised in several applied models, see e.g. a sigma-delta
modulation model in Feely et al. [2000], several physical and engineering models
in Zhusubaliyev and Mosekilde [2003], a dc-dc converter in Zhusubaliyev et al.
[2007], business cycles models in economics as in Gallegati et al. [2003], Sushko
et al. [2003], Gardini et al. [2006a,b]. The so-called center bifurcation, �rst
described in Sushko et al. [2003], associated with the transition of a �xed
point to an unstable focus and the appearance of an attracting closed invariant
curve, in piecewise linear maps is completely new with respect to the theory
existing for smooth maps, known as Neimark-Sacker bifurcation, although, as
we shall see, there is a certain analogy: For example, the closed invariant curve
made up by the saddle-node connections of a pair of cycles (a saddle and a
node) is clearly similar to those occurring in smooth maps, however such a
curve is not smooth but made up of �nitely or in�nitely many (depending on
the type of noninvertibility of the map) segments and corner points. While
similarly to the Arnold tongues in the smooth case, the periodicity regions in
the piecewise linear case may be classi�ed with respect to the rotation numbers,
the boundaries of these periodicity regions, issuing from the center bifurcation
line at points associated with rational rotation numbers, are BCB curves, instead
of saddle-node bifurcation curves issuing from the Neimark-Sacker bifurcation
curve. Moreover, while the emanating point from the Neimark-Sacker curve of
an Arnold tongue is a cusp point (except for the strong resonance cases 1 : n;
n = 1; 2; 3; 4), in the piecewise linear case the periodicity regions are issuing with
a nonzero opening angle. In this respect, uncertain is the existence of curves in
the parameter space (having zero measure) which we know existing for smooth
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maps, issuing from the Neimark-Sacker bifurcation curve at points associated
with irrational rotation numbers, and corresponding to parameter values for
which the closed invariant curve has no cycles but quasiperiodic trajectories
(which �ll in densely the invariant curve). Some authors (see e.g. Zhusubaliyev
et al. [2006], Zhusubaliyev et al. [2007]) refer to the dynamics occurring on
closed invariant curves in piecewise linear maps with the same term, namely,
speaking of quasiperiodic trajectories. On our opinion this problem deserves a
more detailed investigation. In fact, besides the di¤erent structure of the tongues
in the angle issuing from the bifurcation curves, one more di¤erence with respect
to the smooth case has to be emphasized: In a piecewise linear map a closed
invariant curve must intersect the boundary separating the regions of di¤erent
de�nitions of the system. A point of intersection is mapped into a corner point
on the curve. But given that a quasiperiodic orbit is everywhere dense on the
curve, and the images of the corner point are generally corner points as well,
the corner points are expected to be also everywhere dense. In such a case
the closed invariant curve is a nowhere di¤erentiable set, in contrast with the
smooth case. Anyhow, we are not going to consider this problem in the present
paper: we mainly are interested in the periodicity regions (i.e. the so called
"resonant cases") and some of the related bifurcations.
The plan of the work is as follows. In Section 2 we shall introduce a two-

dimensional piecewise linear map which is a normal form to study BCB in piece-
wise smooth two-dimensional maps, describing the case in which one of the �xed
points considered is a focus which undergoes a center bifurcation. This is the
object of our studies: The dynamics at the center bifurcation value is considered
in Section 3, showing how to detect an invariant region in the phase space �lled
with closed invariant curves on which the dynamics are either quasiperiodic or
converging towards a periodic orbit, depending on the rotation number (irra-
tional or rational, respectively). In Section 4 we shall consider the dynamics
�after�the center bifurcation, which gives birth to an invariant attracting closed
curve, and the possible e¤ects of the BCB associated with a repelling focus.
Here several examples of two-dimensional bifurcation diagrams are presented
and the structure of the periodicity regions is explained, related with di¤erent
kinds of noninvertibility of the map. However, the main characteristic features
of the periodicity regions are the same in all the cases: The so-called �sausages�
structure of the regions, their overlapping (associated with the multistability
phenomena), the BCB-boundaries of periodicity regions issuing from the center
bifurcation line, as well as the mechanism of homoclinic tangle of the stable
and unstable sets destroying the closed invariant curve. In Subsection 4.1 we
obtain analytically the equation of the BCB boundaries of the main periodicity
regions in the parameter space, using which we show how an issuing point of a
periodicity region is not a cusp point. In Subsection 4.2 we consider in detail the
boundaries of the periodicity region associated with the rotation number 1/3
while in Subsection 4.3 we illustrate overlapping periodicity regions representing
coexistence of several stable cycles both before and after the center bifurcation.
We give also an example of the dangerous BCB (the term was introduced in
Hassouned et al. [2004]) related to the case in which the �xed point is attract-
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ing before and after the collision with the border, and divergent trajectories
also exist, so that at the BCB value the basin of attraction of the �xed point
shrinks to zero size and all the orbits with non zero initial conditions diverge to
in�nity. Finally, in Section 5 we present the example which may be considered
as a piecewise-linear analogue of the subcritical Neimark-Sacker bifurcation for
smooth maps. Section 6 gives some conclusion.

2 Border-Collision Normal Form

As it was proposed in Nusse and Yorke [1992], the normal form for the border-
collision bifurcation in a 2D phase space, a real plane, is represented by a family
of two-dimensional piecewise linear maps F : R2 ! R2 given by two linear maps
F1 and F2 which are de�ned in two half planes L and R:

F : (x; y) 7!
�
F1(x; y); (x; y) 2 L;
F2(x; y); (x; y) 2 R;

(1)

where

F1 :

�
x
y

�
7!
�
�Lx+ y + �
��Lx

�
; L = f(x; y) : x � 0g ; (2)

F2 :

�
x
y

�
7!
�
�Rx+ y + �
��Rx

�
; R = f(x; y) : x > 0g : (3)

Here �L, �R are traces and �L, �R are determinants of the Jacobian matrix
of the map F in the left and right halfplanes, i.e., in L and R, respectively,
R2 = L [R:
The straight line x = 0 separating the regions L and R, and its images (back-

ward by F�1 and forward by F ) are called critical lines of the corresponding
rank, that is, LC�1 = f(x; y) : x = 0g is called basic critical line separating the
de�nition regions of the two maps; LC = F (LC�1) = f(x; y) : y = 0g is the
critical line (of rank 1) and LCi = F i(LC) is the critical line of rank i: For
convenience of notation we shall identify LCi; i = 0; with LC: Note that due to
continuity of the map F the �rst image of the straight line x = 0 by either F1
or F2 is the same straight line y = 0; i.e., F1(LC�1) = F2(LC�1) = LC0; while
LCi, i > 0; is in general a broken line.

Property 1. The map F is invertible for �L�R > 0, noninvertible of (Z0�Z2)-
type for �L�R < 0, noninvertible of (Z0 � Z1 � Z1)-type for �L = 0; �R 6= 0 or
�R = 0; �L 6= 0 and noninvertible of (Z0 � Z1 � Z0)-type for �L = 0; �R = 0:
To check this property it is enough to consider images of the regions L and

R, i.e., F1(L) and F2(R). Let �R 6= 0, �L 6= 0: Then the map F is invertible if
F1(L) \ F2(R) = LC; i.e., L and R are mapped into two di¤erent halfplanes,
that is true for �L�R > 0: The map F is noninvertible if F1(L) = F2(R), i.e.,
if L and R are mapped into the same halfplane, so that the image of the plane
is folded into a halfplane, in each part of which F has two distinct preimages.
The map F is noninvertible of (Z0 � Z2)-type. It is easily to check that this is
true for �L�R < 0:
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If one of the two determinants is 0 then the related halfplane is mapped into
the straight line LC; that is any point of LC has an in�nity of preimages (a
whole hal�ine), one of the two halfplanes separated by LC has no preimages, and
another has one preimage, so that we have (Z0 � Z1 � Z1)-noninvertibility. In
such a case the asymptotic dynamics of F are often reduced to a one-dimensional
subspace of the phase space (examples may be found in Hommes and Nusse
[1991], Kowalczyk [2005], Sushko and Gardini [2006]). In the case in which
both the determinants are 0 we have two halfplanes mapped into LC: The map
F on LC is reduced to a one-dimensional piecewise linear map

f : x 7! f(x) =

�
�Lx+ �; x � 0;
�Rx+ �; x � 0;

(4)

representing a border-collision normal form for one-dimensional piecewise smooth
continuous maps. The dynamics of the map f have been studied by many au-
thors. See, e. g., Maistrenko et al. [1993], Nusse and Yorke [1995], Banerjee et
al. [2000a], Sushko et al. [2006] and references therein, where one can �nd a
full classi�cation of border-collision bifurcations, depending on left- and right-
sides derivatives of the map evaluated at the border-crossing �xed point (i.e.,
depending on the parameters �L and �R in (4)).

Following Banerjee and Grebogi [1999] we denote by L� and R� the �xed
points of F1 and F2 determined, respectively, by�

�

1� � i + �i
;

��i�
1� � i + �i

�
; i = L;R:

Obviously, L� and R� become �xed points of the map F if they belong to
the related regions L and R. Namely, L� is the �xed point of the map F if
�=(1 � �L + �L) � 0; otherwise it is a so-called virtual �xed point which we
denote by L

�
: Similarly, R� is the �xed point of F if �=(1 � �R + �R) � 0;

otherwise it is a virtual �xed point denoted by R
�
: Clearly, if the parameter �

varies through 0; the �xed points (actual or/and virtual) cross the border LC�1,
so that the collision with it occurs at � = 0, value at which L� and R� merge
with the origin (0; 0):
Let � vary from a negative to a positive value. As it was noted in Banerjee

and Grebogi [1999], if some bifurcation occurs for � increasing through 0, then
the same bifurcation occurs also for � decreasing through 0 if we interchange the
parameters of the maps F1 and F2; i.e., there is a symmetry of the bifurcation
structure with respect to �R = �L, �R = �L in the (�R; �L; �R; �L)-parameter
space. Thus, it is enough to consider � varying from negative to positive.
We consider the parameter values such that the �xed point of the map

F is attracting for � < 0, i.e., before the border-collision. For � < 0; and
1 � �L + �L > 0; the point L� is a �xed point of F . Its stability is de�ned by
the eigenvalues �1;2(L) of the Jacobian matrix of the map F1, which are

�1;2(L) =

�
�L �

q
�2L � 4�L

�
=2: (5)
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The triangle of stability of L�; say SL; is de�ned as follows:

SL = f(�L; �L) : 1 + �L + �L > 0; 1� �L + �L > 0; 1� �L > 0g : (6)

Thus, let (�L; �L) 2 SL.
At � = 0 we have L� = R� = (0; 0); i.e., the �xed points collide with the

border line LC�1. For � > 0 (i.e., after the border-collision) and for 1��R+�R >
0 the point R� is the �xed point of F: The eigenvalues �1;2(R) of the Jacobian
matrix of the map F2, and the triangle of stability SR of R� are de�ned as in
(5) and (6), respectively, putting the index R instead of L.
Our main purpose is to describe the bifurcation structures of the (�R; �R)

- parameter plane depending on the parameters (�L; �L) 2 SL at some �xed
� > 0: Such a bifurcation diagram re�ects the possible results of the border-
collision bifurcation occurring when the attracting �xed point of F crosses the
border x = 0 while � passes through 0. A classi�cation of the di¤erent types
of border-collision bifurcation depending on the parameters of F is presented
in Banerjee and Grebogi [1999], Banerjee et al. [2000b], but related only to
the case in which this map is dissipative on both sides of the border, i.e., for
j�Lj < 1; j�Rj < 1.
We are interested in a di¤erent case, with j�Lj < 1; �R > 1; related, in

particular, to a speci�c type of border-collision bifurcations, giving rise to closed
invariant attracting curves. A similar problem is posed in Zhusubaliyev et al.
[2006] where among other results there is a descriptive analysis of the bifurcation
structure of the (�L; �R)-parameter plane (called there as a chart of dynamical
modes) for some �xed �R > 1:
Our approach to investigate the dynamical modes in the (�R; �R)-parameter

plane gives the advantage of discussing the origin of the periodicity regions,
namely to connect this problem to the center bifurcation occurring for �R = 1;
�2 < �R < 2; � > 0. The center bifurcation was �rst described in Sushko et
al. [2003] for a two-dimensional piecewise linear map coming from an economic
application. Later it was analyzed in more details in Sushko and Gardini [2006]
for some generalized piecewise linear map. In the following section we describe
the center bifurcation for the map F .

3 Center bifurcation (�R = 1)

Without loss of generality we can �x � = 1 in the following consideration.
Indeed, one can easily see that � > 0 is a scale parameter: Due to linearity of
the maps F1 and F2 with respect to x, y and �; any invariant set of F contracts
linearly with � as � tends to 0; collapsing to the point (0; 0) at � = 0.
For (�L; �L) 2 SL; (�R; �R) 2 SR; � = 1; the map F has the stable �xed

point R� and the virtual �xed point L
�
: For �2R � 4�R < 0 the �xed point R� is

an attracting focus. If the (�R; �R)-parameter point leaves the stability triangle
SR crossing the straight line �R = 1; then the complex-conjugate eigenvalues
�1;2(R) cross the unit circle, i.e., the �xed point R� becomes a repelling focus.
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At �R = 1 the �xed point R� = (x�; y�); x� = 1=(2��R); y� = �x�; is locally
a center. What is the phase portrait of the map F in such a case? Note that at
�R = 1 the map F2 is de�ned by a rotation matrix characterized by a rotation
number which may be rational, say m=n; or irrational, say �. Obviously, there
exists some neighborhood of the �xed point in which the behavior of F is de�ned
only by the linear map F2, i.e., there exists an invariant region included in R
�lled with invariant ellipses, each point of which is either periodic of period n (in
case of a rational rotation number m=n; and we recall that the integer n denotes
the period of the periodic orbit while m denotes the number of tours around
the �xed point which are necessary to get the whole orbit), or quasiperiodic (in
case of an irrational rotation number �).
Let F2 be de�ned by a rotation matrix with an irrational rotation number

�, which holds for �R = 1; and

�R = �R;�
def
= 2 cos(2��): (7)

Then any point from some neighborhood of the �xed point is quasiperiodic, and
all the points of the same quasiperiodic orbit are dense on the invariant ellipse
to which they belong. In such a case an invariant region Q exists in the phase
space, bounded by an invariant ellipse E of the map F2; tangent to LC�1; and,
thus, also tangent to LCi; i = 0; 1; :::. The equation of an invariant ellipse of F2
with the center (x�; y�) through (x0; y0) is given by:

x2 + y2 + �R;�xy � x+ y = x20 + y20 + �R;�x0y0 � x0 + y0: (8)

In order to obtain an ellipse tangent to LC�1, we �rst get a tangency point

(x; y) = (0;�1=2); (9)

which is the same for any rotation number. Then we write the equation of the
ellipse (8) through (x; y), that gives us the equation of E :

x2 + y2 + �R;�xy � x+ y = �1=4: (10)

Thus, we can state the following

Proposition 1. Let �R = 1; �R = �R;� given in (7). Then in the phase
space of the map F there exists an invariant region Q; bounded by the invariant
ellipse E given in (10). Any initial point (x0; y0) 2 Q belongs to a quasiperiodic
orbit dense in the corresponding invariant ellipse (8).

Let now F2 be de�ned by the rotation matrix with a rational rotation number
m=n, which holds for �R = 1; and

�R = �R;m=n
def
= 2 cos(2�m=n): (11)

Then any point in some neighborhood of the �xed point R� is periodic with
rotation number m=n, and all the points of the same periodic orbit are located
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on an invariant ellipse of F2. As before, the invariant region we are looking for
includes obviously the region bounded by an invariant ellipse, say E1; tangent
to LC�1, given by

x2 + y2 + �R;m=nxy � x+ y = �1=4: (12)

But in the case of a rational rotation number the invariant region is wider: There
are other periodic orbits belonging to R: To see this, note that there exists a
segment S�1 = [a0; b0] � LC�1; which we call generating segment, such that
its end points a0 and b0 belong to the same m=n-cycle located on an invariant
ellipse of F2 which crosses LC�1, denoted E2 (note that E2 is not invariant for
the map F ). Obviously, the generating segment S�1 and its images by F2; that
is, the segments Si = F2(Si�1), Si � LCi = F2(LCi�1); i = 0; :::; n � 2, form
a boundary of an invariant polygon denoted by P; with n sides, completely
included in the region R. The polygon P is inscribed by E1 and circumscribed
by E2 (see Fig.1 where such a polygon is shown in the case m=n = 3=11).

Figure 1: The invariant polygon P of the map F at �R = 1; �R = 2 cos(2�m=n);
m=n = 3=11:

The case m=n = 1=n is the simplest one: It can be easily shown that the
point LC�1 \ LC0 = (0; 0) and its n � 1 images form a cycle of period n; all
points of which are in R: The ellipse E2 through (0; 0) is given by

x2 + y2 + �R;1=nxy � x+ y = 0;

and the generating segment S�1 for any n has the end points a0 = (�1; 0) and
b0 = (0; 0):
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The case m=n for m 6= 1 is more tricky. To clarify our exposition we use the
example of the rotation number m=n = 3=11 (see Fig.1). The end points of the
generating segment S�1 are obtained as intersection points of LC�1 with two
critical lines of proper ranks. We �rst obtain an equation for the image of LC�1
of any rank i by F2 (for convenience, in this section we denote these images by
LCi, as in the general case, but recall that in the general case the images by F1
have to be also considered so that LCi is indeed a broken line). Let A denote
the matrix de�ning F2, i.e.,

A =

�
�R;m=n 1
�1 0

�
=

�
2 cos(2�m=n) 1

�1 0

�
:

For any integer 0 < i < n we can write down

Ai =
1

sin(2�m=n)

�
sin(2�(i+ 1)m=n) sin(2�im=n)
� sin(2�im=n) � sin(2�(i� 1)m=n)

�
: (13)

(Note that for i = n we get an identity matrix). Making a proper change of
coordinates and using (13) we get the following equation for the straight line
LCi for 0 � i < n :

LCi : y = � sin(2�im=n)

sin(2�(i+ 1)m=n)
x+

tan(�(i+ 1)m=n)

2 tan(�m=n)
� 1
2
:

The point of intersection of LC�1 and LCi has the following coordinates:�
0;
tan(�(i+ 1)m=n)

2 tan(�m=n)
� 1
2

�
: (14)

Now we need to determine the proper rank k1 such that the side Sk1 � LCk1
of the polygon P is an upper adjacent segment of the generating segment S�1.
The number n which is the period of them=n-cycle, can be written as n = rm+l;
where an integer r = bn=mc is the number of periodic points visited for one
turn around the �xed point, and an integer l < m is the rest. For our example
m=n = 3=11 we have r = 3 and l = 2: Following some geometrical reasoning,
which we omit here, one can get that if (m� 1)=l is an integer, then

k1 =
(m� 1)r

l
; (15)

so that the coordinates of the point b0 are determined through m and n by
substituting i = k1 into (14). It can be easily shown that the coordinates of
the other end point a0 of S�1 are determined by substituting i = k2 into (14),
where

k2 = n� 2� k1: (16)

For the example shown in Fig.1 we have k1 = 3 and k2 = 6; so that the end
points of S�1 are a0 = LC�1 \ LC6 and b0 = LC�1 \ LC3; whose coordinates
are obtained by substituting m=n = 3=11 and, respectively, i = 6 and i = 3 into
(14).
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If (m � 1)=l is not an integer number, then we use a numerical algorithm
to determine k1 as the rank of the critical line whose intersection with LC�1 is
m=n-periodic point; k2 is determined by (16) as before.
Obviously, such a polygon P can be constructed for any rotation number

m=n. Summarizing we can state the following

Proposition 2. Let �R = 1; �R = �R;m=n given in (11). Then in the phase
space of the map F there exists an invariant polygon P with n edges whose
boundary is made up by the generating segment S�1 � LC�1 and its n � 1
images Si = F2(Si�1) � LCi; i = 0; :::; n � 2: Any initial point (x0; y0) 2 P is
periodic with rotation number m=n.

Up to now we have not discussed the behavior of a trajectory with an ini-
tial point (x0; y0) not belonging to the invariant region (either P or Q), which
obviously depends on the parameters �L; �L of the map F1. Such a behavior
can be quite rich, even in the case we are restricted to, that is for (�L; �L) 2 SL
in which the �xed point L

�
of F1 is attracting being virtual for F . Without

going into a detailed description we give here di¤erent examples: A trajectory
initiated outside P or Q can be

- attracted to a periodic or quasiperiodic trajectory belonging to the bound-
ary of the invariant region (as, for example, for �L = 0:3; �L = �0:4; when F is
invertible, L

�
is a focus);

- mapped inside the invariant region (it is possible if F is (Z0 � Z2) - non-
invertible, like, for example, for �L = �0:5; �L = 0:3; L

�
is a �ip node);

- mapped to the boundary of the invariant region (it is possible for (Z0 �
Z1 � Z1) - noninvertibility, for example, at �L = 0; �L = �0:3; L� is a �ip
node);
- attracted to some other attractor, regular, i.e., periodic or quasiperiodic

(e.g., to a periodic attractor for �R = 0:25; �L = 0:9; �L = �0:7) or chaotic
(e.g., for �R = �1:5; �L = 0:1; �L = 0:63), coexisting with the invariant region
(for both examples L

�
is a focus);

- divergent (e.g., for �R = �1:5; �L = 0:9; �L = �0:7; L
�
is a focus).

In the following sections we investigate dynamics of the map F �after�the
center bifurcation, that is for �R > 1: Among all the in�nitely many invariant
curves �lling the invariant region (P or Q) at �R = 1, only the boundary of it
survives, being modi�ed, after the bifurcation, that is for �R = 1 + " at some
su¢ ciently small " > 0. Roughly speaking, the boundary of the former invariant
region is transformed into an attracting closed invariant curve C on which the
map F is reduced to a rotation. Similar to the Neimark-Sacker bifurcation
occurring for smooth maps, we can use the notion of rotation numbers: In case
of a rational rotation number m=n two cycles of period n with rotation number
m=n are born at the center bifurcation, one attracting and one saddle, and
the closure of the unstable set of the saddle cycle approaching points of the
attracting cycle forms the curve C. In the piecewise linear case such a curve
is not smooth, but a piecewise linear set, which in general has in�nitely many
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corner points accumulating at the points of the attracting cycle. Di¤erently from
the smooth case such a curve is born not in a neighborhood of the �xed point:
Obviously, its position is de�ned by the distance of the �xed point from the
critical line LC. Description of such a curve, born due to the center bifurcation
for some piecewise linear maps, as well as proof of its existence in particular
cases, can be found in Gallegati et al. [2003], Sushko et al. [2003], Zhusubaliyev
et al. [2006], Sushko and Gardini [2006]. A rigorous proof of the existence of an
invariant attracting closed curve C for the map F given in (1) for (�L; �L) 2 SL,
�2 < �R < 2; �R = 1 + "; � > 0; is the subject of a work in progress and we
don�t discuss it in the present paper. Our main interest here is related to the
bifurcation structure of the (�R; �R)-parameter plane, namely, to the periodicity
regions corresponding to the attracting cycles born due to the center bifurcation.

4 (�R; �R)-parameter plane

Before entering into some general considerations we present three examples of
the 2D bifurcation diagram in the (�R; �R)-parameter plane for di¤erent values
of �L and �L giving some comments on the bifurcation structure of the parame-
ter plane. Note that each of these examples deserves more detailed investigation
being quite rich in a sense of possible bifurcation scenarios. Some properties of
similar bifurcation diagrams for piecewise linear and piecewise smooth dynam-
ical systems were described, e. g., in Hao Bai-Lin [1989], Sushko et al. [2003],
Zhusubaliyev and Mosekilde [2003], Sushko and Gardini [2006]. Referring to
these papers, we recall here a few properties using our examples.
For all the bifurcation diagrams, presented in Fig.s 2-4, the parameter re-

gions corresponding to attracting cycles of di¤erent periods n; n � 32; are shown
in di¤erent colors (note that the periodicity regions related to attracting cycles
with the same period n, but di¤erent rotation numbers, say m1=n and m2=n;
are shown by the same color). If one takes the (�R; �R)-parameter point belong-
ing to some m=n-periodicity region, denoted by Pm=n, then the corresponding
map F has an attracting cycle of period n; which in general may be not the
unique attractor. Some periodicity regions are marked also by the correspond-
ing rotation numbers. White region on these �gures is related either to higher
periodicities, or to chaotic trajectories. Gray color corresponds to divergent
trajectories.
Fig.2 presents the 2D bifurcation diagram for �L = 0:25; �L = 0:5. In such a

case the map F is invertible (given that we consider �R > 1; see Property 1); L
�

is an attracting focus. In Fig.3 we show the (�R; �R)-parameter plane at para-
meter values �L = 0; �L = 0:5, for which F is noninvertible of (Z0 �Z1 �Z1)-
type; L

�
is a superstable node. While Fig.4 presents the bifurcation diagram

at �L = �0:5; �L = 0:3 : For such parameter values F is noninvertible, of
(Z0 � Z2)-type; L

�
is an attracting �ip node (i.e. one negative eigenvalue ex-

ists). Recall that such bifurcation diagrams representing qualitatively di¤erent
dynamic regimes, re�ect also possible results of the border-collision bifurcation
of the attracting �xed point of the map F occurring when � changes from a
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negative to a positive value. For example, if we �x �L = 0:25; �L = 0:5; �R = 4;
�L = 0:5 (the parameter point is inside the region P1=5 on Fig.2), then for � < 0
the map F has the attracting focus L� which at � = 0 undergoes the border-
collision bifurcation resulting (for � > 0) in the attracting and saddle cycles of
period 5.

Figure 2: Two-dimensional bifurcation diargam of the map F in the (�R; �R)-
parameter plane for �L = 0:25; �L = 0:5: F is invertible and L

�
is an attracting

focus.

First of all we recall that an issuing point for the periodicity region Pm=n
is (�R; �R) = (1; �R;m=n); where �R;m=n is given in (11). In the vicinity of the
bifurcation line �R = 1 the periodicity regions are ordered in a way similar
to that of the Arnold tongues associated with the Neimark-Sacker bifurcation
occurring for smooth maps. In short, the periodicity regions follow a summation
rule, or Farey sequence rule, holding for the related rotation numbers (see, e.g.,
Mira [1987], Maistrenko et al. [1995]). In particular, according to this rule if,
for example, r1 = m1=n1 and r2 = m2=n2 are two rotation numbers, associated
at �R = 1 with �R = �R;r1 and �R = �R;r2 ; �R;r1 < �R;r2 , then there exists
also a value �R = �R;r3 ; �R;r1 < �R;r3 < �R;r2 ; related to the rotation number
r3 = (m1 +m2)=(n1 + n2), so that (�R; �R) = (1; �R;r3) is an emanating point
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Figure 3: Two-dimensional bifurcation diargam of the map F in the (�R; �R)-
parameter plane for �L = 0; �L = 0:5: F is noninvertible, of (Z0�Z1�Z1)-type,
and L

�
is a superstable node.

for the region Pr3 . To illustrate the summation rule some periodicity regions
are marked in Fig.s 2-4 by the rotation numbers of the related cycles.
The kind of bifurcations associated with the boundaries of the periodicity

regions di¤ers from the smooth case: It is known that the boundaries of the
Arnold tongues issuing from the Neimark-Sacker bifurcation curve are related
to saddle-node bifurcations, and the other boundaries correspond to stability
loss of the related cycle. While for piecewise linear maps the boundaries of
the periodicity regions issuing from the center bifurcation line correspond to
so-called border-collision pair bifurcations (a piecewise linear analogue of the
saddle-node bifurcation), which we shall consider in detail in the next section.
Note also that di¤erently from the smooth case the periodicity regions can

have a �sausage�structure (see Fig.s 2 and 3) with several subregions, �rst de-
scribed in Hao Bai-Lin [1989], which is typical for piecewise smooth and piece-
wise linear systems (see also Zhusubaliyev and Mosekilde [2003], Sushko et al.
[2003]). In fact, di¤erent subregions of the same periodicity region for the con-
sidered map F are related to di¤erent compositions of the maps F1 and F2
applied to get the corresponding cycle (attracting or saddle). It can be shown
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Figure 4: Two-dimensional bifurcation diargam of the map F in the (�R; �R)-
parameter plane for �L = �0:5; �L = 0:3: F is noninvertible, of (Z0�Z2)-type,
and L

�
is an attracting �ip node.

that the �rst (leftmost) subregion of the m=n-periodicity region, denoted by
P 1m=n; is related to an attracting m=n-cycle with two periodic points located
in L and n � 2 points in R, that is, the related composition can be written as
Fn = F 21 � Fn�22 for m = 1; and Fn = F1 � F i2 � F1 � Fn�2�i2 , for m 6= 1; where
i > 1 depends on m and n. The corresponding saddle m=n-cycle for any m for
parameters from P 1m=n has one periodic point in L and n� 1 points in R, that
is, for such a cycle Fn = F1 � Fn�12 .
The �waist�points separating subregions are related to a particular border-

collision bifurcation at which points of the attracting and saddle cycles exchange
their stability colliding with the border: Namely, after the collision the former
attracting cycle becomes a saddle one while the saddle cycle becomes attracting
(for details see Di Bernardo et al. [1999], Sushko et al. [2003]). To illustrate
such a border-collision bifurcation we have chosen the waist point (�R; �R) �
(2;�0:6666) of the region P1=4 at �L = 0:5; �L = 0:25 (see Fig.2). Fig.5 presents
a bifurcation diagram for �R 2 [1:9; 2:05] ; �R = �1:6665�R + 2:66635; so that
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the parameter point moves from the �rst subregion P 11=4; to the second one,
denoted P 21=4 (the related parameter path is shown by the thick straight line
with an arrow in Fig.2). On this diagram the points of the attracting and saddle
cycles are shown in red and blue, respectively. Three (x; y)-planes shown in gray
represent a part of the phase portrait of the system: Before the bifurcation, i.e.,
for (�R; �R) 2 P 11=4; at the moment of the border-collision related to the waist
point (�R; �R) � (2;�0:6666); and after the bifurcation, i.e., for (�R; �R) 2 P 21=4.
Comparing the phase portrait related to the subregion P 21=4 with the one related
to P 11=4; one can see that the number of periodic points in L is increased: Now
three points of the attracting cycle are in L and one in R; and for the saddle
cycle we have two points in L and two in R:

Figure 5: Bifurcation diagram for �R 2 [1:9; 2:05] ; �L = 0:5; �L = 0:25; re-
lated to the parameter path shown in Fig.2 by the thick straight line with an
arrow. The points of the attracting and saddle cycles are shown in red and blue,
respectively.

To end this section let us comment the overlapping of periodicity regions,
which corresponds to multistability (as an example, see Fig.2 on which several
multistability regions are dashed, related with the periodicity regions P1=3 and
P1=4: Some other overlapping zones can be seen in the same �gure, as well as
in Fig.s 3 and 4). Recall that considering the initial problem of the BCB of the
�xed point of F , we have that in the case of multistability, varying � through 0;
the �xed point bifurcates into several attractors. As it was already mentioned,
any invariant set of F contracts linearly with � as � tends to 0 collapsing to
the origin at � = 0. Among such invariant sets we have the basins of attraction
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of coexisting attractors which shrink to 0 as well. Thus, one cannot answer a
priori to which attractor the initial point will be attracted after the bifurcation.
This gives a source of unpredictability of the results of the BCB. This problem
was posed �rst in Kapitaniak and Maistrenko [1998], see also Dutta et al.[1999].
To give an example, we �x �L = 0:25; �L = 0:5, �R = �2 and will increase the
value of �R starting from �R = 1:5, when the map F has attracting and saddle
cycles of period 3 (see the arrow in Fig.2). At �R � 1:64 a border-collision pair
bifurcation occurs giving birth to attracting and saddle cycles of period 4, i.e.,
the parameter point enters the bistability region. Fig.6 presents a part of the
phase portrait of the system at �R = 1:65 when there are coexisting attracting
cycles of period 3 and 4 whose basins of attraction, separated by the stable
set of the period 4 saddle, are shown in yellow and green, respectively. The
unstable set (shown in blue) of the saddle 3-cycle, approaching points of the
attracting 3-cycle, forms a saddle-node connection which is wrinkled due to two
negative eigenvalues of the attracting 3 cycle. With further increasing �R the

Figure 6: Attracting cycles of periods 3 and 4 with their basins of attraction
(shown in yellow and green, respectively) separated by the stable set of the 4-
saddle; The unstable set (in blue) of the 3-saddle forms a saddle-node connection
which is near to be destroyed by homoclinic tangency with the stable set (in
red). Here �L = 0:25; �L = 0:5; �R = 1:65; �R = �2:

stable set of the period 3 saddle (shown in red) tends to get a tangency with its
unstable set. Indeed, at �R � 1:68 a homoclinic bifurcation occurs after which
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the saddle-node connection is destroyed. Another qualitative change of the
phase space occurs when the attracting 3-cycle undergoes a ��ip� bifurcation
(an eigenvalue passing through �1) resulting in a cyclic chaotic attractor of
period 6. After pairwise merging of the pieces of the attractor it becomes a
3-piece cyclic chaotic attractor shown in Fig.7 (for further details related to the
��ip�bifurcation in a piecewise linear map see Maistrenko et al. [1998]). Note
that the boundary separating the basins of attraction is no longer regular as
in Fig.6 but fractal. Such a basin transformation is a result of the homoclinic
bifurcation of the saddle 4-cycle. A contact with the fractal basin boundary
leads to the disappearance of the chaotic attractor at �R � 2:25. Thus, in the
considered sequence of bifurcations, the attracting 4-cycle coexists �rst with the
attracting 3-cycle, then with the 6-piece chaotic attractor and �nally with the
3-piece chaotic attractor. To illustrate the border-collision bifurcation of the
�xed point of F in a case of multistability we present in Fig.8 a bifurcation
diagram for � 2 [�0:2 : 1], related to Fig.7. The problem of multiple attractors
and the role of homoclinic bifurcation is discussed in Zhusubaliyev et al. [2006],
Sushko and Gardini [2006].

Figure 7: Basins of attraction of the 3-piece cyclic chaotic attractor and 4-cycle
are shown in yellow and green, respectively. Here �L = 0:25; �L = 0:5; �R = 2:2;
�R = �2:
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Figure 8: Phase space (x; y) as � changes in the interval � 2 [�0:2 : 1] at
�L = 0:25; �L = 0:5; �R = 2:2; �R = �2: After the BCB at � = 0 the attractor
in red is the attracting 4-cycle, while the attractor in black is the 3-piece chaotic
attractor.

The next Subsection is devoted to a more detailed investigation of the main
periodicity regions related to the rotation number 1=n; namely, to the border-
collision pair bifurcations which de�ne the boundaries of the 1=n periodicity
regions.

4.1 1=n periodicity regions and their BCB boundaries

Let us consider the �rst subregion, denoted by P 11=n, of the main periodicity
region P1=n. For such regions in the parameter space we can get the analytic
representations for their boundaries related to the BCB, that is, the two bound-
aries of the regions issuing from the center bifurcation line, which we shall call
BC boundaries for short. Note that in general any periodicity region has two
BC boundaries and may have also other boundaries which are related to the
stability loss of the corresponding attracting cycle. Note that (similarly to the
smooth case) inside a periodicity region it is not guaranteed the existence of
a closed invariant curve, which can be destroyed in several ways (for a list of
mechanisms of destruction of a closed invariant attracting curve in the piecewise
linear case see Sushko and Gardini, [2006]).
So let us consider a periodicity region P1=n and let (�R; �R) 2 P 11=n: De-

note the related attracting and saddle cycles by p = fp0; :::; pn�1g and p0 =�
p00; :::; p

0
n�1
	
, respectively. Let p0; pn�1 2 L and p1; :::; pn�2 2 R: As for the

saddle cycle, let p00 2 L and p01; :::; p0n�1 2 R: We shall see what happens with
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these cycles if the (�R; �R)-parameter point crosses the two BC boundaries of
P 11=n. To illustrate our consideration we use an example shown in Fig.9a for
�L = 0:25; �L = 0:5; i.e., (�R; �R) 2 P 11=5 (see Fig.2).
We consider a �xed value �R = �

�
R inside the periodicity tongue, such that

the qualitative position of the periodic points in the (x; y) phase plane is pre-
sented in Fig.9a. Now let us increase the value of �R; then the point pn�1 of
the cycle moves towards the critical line LC�1; so that at some �R = ��R we
have pn�1 2 LC�1 (and, as a consequence, p0 2 LC0) which indicates a BCB. It
occurs not only for the attracting cycle: Indeed, also the saddle cycle undergoes
the BCB, namely, at �R = ��R we have p

0
n�1 2 LC�1; moreover, p0n�1 = pn�1;

as well as all the other points of the cycles p and p0 are pairwise merging on the
critical lines of the proper ranks (see Fig9c). In such a way the �saddle-node�
BCB occurs (not related to an eigenvalue equal to 1). The value �R = ��R
corresponds to the (�R; �R)-parameter point crossing the upper boundary of
P 11=n, which we denote by BC1=n(1): While if at the �xed �R = ��R the value
�R is decreased, then p0 and p01 move towards the critical line LC�1; so that
at some �R = ���R we have p0 = p01 2 LC�1, thus one more �saddle-node�BCB
occurs (see Fig9b), related to the (�R; �R)-parameter point crossing the lower
boundary of P 11=n, denoted by BC1=n(2).

Figure 9: Examples of the �saddle-node� BCB for (�R; �R)-parameter points
crossing the boundaries of P 11=5 at �L = 0:25; �L = 0:5 : (a) (��R; �R) =
(1:25; 0:65) 2 P 11=5 ; (b) (�

�
R; �

��
R ) 2 BC1=5(2) where ���R � 0:575; (c) (��R; ��R) 2

BC1=5(1) where ��R � 0:726.

Note that in the above consideration the value �R was �xed and the value of
�R was varying (increasing or decreasing) in order to rich the BC boundaries of
P 11=n. Indeed, it is not a general case: As we shall see, there are examples of the
periodicity regions P 11=n such that to reach the two BC boundaries from inside
P 11=n we can �x �R and vary the value of �R, increasing it, or decreasing. Related
examples can be seen in Fig.11. One more example is the region P1=3 shown in

19



Fig.3, which is bounded by the BC curves from above and on the left, while its
right boundary is a curve denoted Fl1=3; related to the ��ip�bifurcation of the
attracting cycle of period 3 (in the next Subsection we shall consider again the
region P1=3; describing the general case).
Independently on the way the parameters �R and �R are varying, the two

conditions for the BCB of the cycle p (at this moment we say nothing about
its stability before the bifurcation), are p0 2 LC�1 and p0 2 LC0; or, more
precisely,

BC1=n(1) (x0; 0) = Fn�12 � F1(x0; 0); (17)

BC1=n(2) (0; y0) = F1 � Fn�12 (0; y0); (18)

where (x0; y0) are coordinates of the point p0.
Let the matrix de�ning the map F2 be denoted by A, that is

A =

�
�R 1
��R 0

�
:

It is not di¢ cult to note that Ai; i > 1; can be written as follows:

Ai =

�
ai ai�1

��Rai�1 ��Rai�2

�
; (19)

where ai is a solution of the second order di¤erence equation

ai � �Rai�1 + �Rai�2 = 0 (20)

with the initial conditions
a0 = 1; a1 = �R: (21)

We know that the eigenvalues of the corresponding characteristic equation of

(20) are complex-conjugate: �1;2(R) =
�
�R �

p
�2R � 4�R

�
=2, where �2R < 4�R,

so the general solution of (20) with the initial conditions (21) can be written as

ai =
�p

�R

�i 
cos(2�i=n) +

�Rp
4�R � �2R

sin(2�i=n)

!
:

For example, a2 = �2R � �R; a3 = �3R � 2�R�R; and so on.
Now, to get the condition in (17) in terms of the parameters of the system,

we �rst shift the coordinate system so that the origin becomes the �xed point
of F2; that is we make a change of variables: x0 = x�x�; y0 = y� y�: Note that
y� = ��Rx�. Then, in the new variables the maps F1 and F2; say eF1 and eF2;
become

eF1 :

�
x0

y0

�
7!
�
�L(x

0 + x�) + y0 + y� + 1� x�
��L(x0 + x�)� y�

�
; x0 � �x�;

eF2 :

�
x0

y0

�
7!
�
�Rx

0 + y0

��Rx0
�
; x0 � �x�:
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The equality (17) in the new variables is

(x00 � x�; �Rx�) = eFn�12 � eF1(x00 � x�; �Rx�): (22)

Note that eF i2 can be written as
eF i2 : � x0

y0

�
7! Ai

�
x0

y0

�
;

where Ai is given in (19). So, substituting (19) with i = n � 1 into (22) and
equating the two expressions for x00; we get the equality

�Ran�1 � an + 1
�Lan�2 � �Lan�1 + 1

=
�Ran�2 � an�1 + 1
�Lan�3 � �Lan�2

which can be also written as

BC1=n(1) :
an�1 + an�2 + :::+ a1 + 1

�Lan�2 � �Lan�1 + 1
=
an�2 + an�3 + :::+ a1 + 1

�Lan�3 � �Lan�2
: (23)

Similarly, the equality in (18) in the new variables (x0; y0) is written as

(�x�; y00 + �Rx�) = eF1 � eFn�12 (�x�; y00 + �Rx�);

from which we get the equality

BC1=n(2) :
�L(an�1 � 1) + �R

�Lan�2 + 1
=
�L(an�1 � 1)� �Ran�2 + �R � 1

�Lan�2 � �Ran�3
: (24)

For �xed values of the parameters �L and �L, the equalities (23) and (24)
represent, in an implicit form, two curves in the (�R; �R)-parameter plane. As
an example, in Fig.10 the curves BC1=n(1) and BC1=n(2) are plotted for n =
3; :::; 9, where �L = 0; �L = 0:5: Obviously, only particular arcs of the curves
given in (23) and (24) are related to the BCB of the attracting cycle. The
end points of such arcs are the waist points mentioned in Section 4, being two
intersection points of (23) and (24), and one of them belongs, obviously, to the
center bifurcation line, i.e., �R = 1; �R = �R;1=n = 2 cos(2�=n) (see (11)).
For example, let us consider in more details the region P 11=4 at �L = 0;

�L = 0:5 (see Fig.10). The BC boundaries of P 11=4 are given by

BC1=4(1) : �R � �R � �L�R + �L�R�R + �2R + �L�2R + �L�2R + 1 = 0; (25)

BC1=4(2) : ��L�R � �L + �R � 1� �L�2R + �L�R + �R�R = 0: (26)

For �L = 0:5 we can easily obtain the waist points, which are (�R; �R) = (1; 0)
and (�R; �R) = (3;�1): We can also check that for the curve BC1=4(1) the
derivative of �R with respect to �R; evaluated at (�R; �R) = (1; 0) is

� 0Rj
(1)
(�R;�R)=(1;0)

=
1� �L
1 + �L

;

21



Figure 10: The border-collision bifurcation curves BC1=n(1) and BC1=n(2); n =
3; :::; 9; �L = 0; �L = 0:5:

while for the curve BC1=4(2) we have

� 0Rj
(2)
(�R;�R)=(1;0)

=
�L + 1

�L � 1
=

1

� 0Rj
(1)
(�R;�R)=(1;0)

These two derivatives are not equal (in e¤ect they are reciprocal), thus the point
(�R; �R) = (1; 0); which is an issuing point for the region P 11=4; is not a cusp
point.

4.2 1/3 periodicity region

Let us consider now in more details the region P1=3 in the (�R; �R)-parameter
plane for (�L; �L) 2 SL. Let p = fp0; p1; p2g be a cycle of period 3 of the map
F such that p0; p1 2 L and p2 2 R: Substituting n = 3 to (23) and (24) we get
the equations for the BC boundaries of P1=3; which are the straight lines in the
(�R; �R)-parameter plane:

BC1=3(1) :

�
�R = (�R � �R�L � 1� �L)=(�L + �L); for �L 6= ��L;
�R = 1; for �L = ��L;

(27)
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BC1=3(2) :

�
�R = (��R�L � �R�L + �L � 1)=(1 + �L); for �L 6= �1;
�R = 1; for �L = �1:

(28)

We can also obtain the equations de�ning the boundaries of the triangle of
stability of the cycle p. Indeed, the map F 3 corresponding to the considered
cycle is F 3 = F2 � F 21 ; for which the related eigenvalues �1;2 are less then 1 in
modulus for8>>>><>>>>:

�
�R > (�R(�L � �2L)� 1 + �L�L)=(�2L � �L);
�R > (�R(�L + �

2
L) + 1 + �L�L)=(�

2
L � �L);

for �2L > �L;�
�R < (�R(�L � �2L)� 1 + �L�L)=(�2L � �L);
�R < (�R(�L + �

2
L) + 1 + �L�L)=(�

2
L � �L);

for �2L < �L;

�R <
1
�2L
;

(29)

so that the ��ip�bifurcation line denoted by Fl1=3 and related to �2 = �1, is
given by

Fl1=3 :

�
�R = (�R(�L � �2L)� 1 + �L�L)=(�2L � �L); for �2L 6= �L;
�R = (�L�L � 1)=(�2L � �L); for �2L = �L;

(30)

the bifurcation line related to �1 = 1, denoted by T1=3 (a particular "transcriti-
cal" bifurcation in our examples, as we shall see), is given by

T1=3 :

�
�R = (�R(�L + �

2
L) + 1 + �L�L)=(�

2
L � �L); for �2L 6= �L;

�R = �(�L�L + 1)=(�2L + �L); for �2L = �L;
(31)

and by C1=3 we denote the center bifurcation line (related to
���1;2�� = 1 for the

complex-conjugate �1;2), which is given by

C1=3 : �R =
1

�2L
; �L 6= 0: (32)

Thus, in the (�R; �R)-parameter plane we have 5 straight lines such that
two of them, namely, BC1=3(1), BC1=3(2) are necessarily the boundaries of P1=3;
while three others depend on �L and �L : All the three lines may be involved
as boundaries of P1=3, or only two of them, or only one. Note that it may also
happen that P1=3 = ?; as well as P1=3 may be an unbounded set (as, for example,
in the case shown in Fig.10, in which the straight line BC1=3(1) is parallel to
the straight line Fl1=3). All the above cases can be classi�ed depending on the
values of �L and �L:
Thus, coming back to the initial problem of the BCB of the attracting �xed

point of F occurring for � varying through 0 at some �xed values of the other
parameters of the normal form (1), one can check analytically, using (27)-(32),
whether an attracting cycle of period 3 is born due to the bifurcation.

4.3 Overlapping of 1/n periodicity regions with the trian-
gle of stability

In this section we discuss several examples of the bifurcation structure of the
(�R; �R)-parameter plane where the periodicity regions P1=n have intersection
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with the triangle of stability SR of the �xed point of F . We have already seen
that the region P1=3 can overlap SR (see Fig.s 2, 3 and Fig.11). In terms of the
BCB of the �xed point of F when � is varying through 0; such a case means
that the �xed point remains attracting after the collision with the border: Let
us consider �xed all the parameters (�L; �L) 2 SL; (�R; �R) 2 SR and let � vary,
then for � < 0 the �xed point is stable on the left side, it is on the boundary at
� = 0 and for � > 0 it is again stable but on the right side. If (�R; �R) belongs
to the region SR overlapping with other periodicity regions, then for � > 0 the
attracting �xed point coexists with other pairs of attracting and saddle cycles,
born due to the BCB. For example, if (�R; �R) 2 (P1=3 \ SR); shown in Fig.2,
then for � > 0 the attracting �xed point coexists with a cycle of period 3 born
due to the BCB. Indeed, not only the region P1=3 can overlap SR (in fact this
does not occur in Fig.4), while we may also have cases with overlapping regions
of other periodicities: As an example, Fig.11 presents a bifurcation diagrams in
the (�R; �R)-parameter plane for �L = 0:8; �L = �0:7. In this �gure the BC

Figure 11: Two-dimensional bifurcation diagram in the (�R; �R)-parameter
plane for �L = 0:8; �L = �0:7:

boundaries of the 1=n-periodicity regions for n = 3; :::7 are plotted using their
analytical expressions given in (23) and (24). The lower boundary in the region
P1=3 and the upper boundaries in the other periodicity regions, are the bifurca-
tion curves associated with an eigenvalue equal to +1 which, in the considered
cases, are related to a particular �transcritical�bifurcation of the corresponding
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attracting cycles. We have to clarify the mechanism of �transcritical�bifurcation
of a cycle here occurring, which is particular because it involves an "exchange of
stability" with a cycle at in�nity, belonging to the Poincaré equator: A stable
cycle approaches in�nity and becomes unstable, while on the Poincaré equator
an unstable cycle becomes attracting. The rightmost boundaries are the center
bifurcation lines de�ned by �2L�

n�2
R = 1: The regions of coexisting attractors are

clearly seen: For example, at �R = 0:999; �R = 1:04 the attracting �xed point
coexists with attracting cycles of period 5, 6 and 11 (in Fig.12 these attractors
are shown together with their basins of attraction).

Figure 12: Basins of attraction of coexisting �xed point and cycles of period 5,
6 and 11 at �L = 0:8; �L = �0:7; �R = 0:999; �R = 1:04:

It is worth to note that if the parameter point belongs to periodicity regions
overlapping SR, then the bifurcation occurring at � = 0 may be related to a
wide uncertainty: It is unpredictable to which attractor an initial point will
be attracted after the bifurcation. It is also important to note in Fig.11 that
there are periodicity regions overlapping the parameter regions related to the
divergent trajectories. For such parameter values at the bifurcation occurring
at � = 0 all the related basins of attraction reduce to the �xed point, except the
basin of in�nity. Thus, a small noise on the initial point may lead the trajectory
to sudden divergence at the bifurcation, as well as before and after, and this also
may be considered as dangerous (although this term is used to denote divergence
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at the BCB � = 0 while a stable �xed point exists both before and after the
bifurcation, see Hassouneh et al. [2004], Ganguli and Banerjee [2005]).

5 An example of subcritical center bifurcation

The center bifurcation of the �xed point of the map F described in the previ-
ous sections may be considered of supercritical type. A natural question arises
whether a subcritical center bifurcation may also occur in piecewise linear sys-
tems. In the present paper we don�t study this problem in detail but just give
an example of such a bifurcation. For this purpose one more bifurcation dia-
gram is presented in Fig.13 where �L = 0:9; �L = 0:7. The dashed region in this
�gure indicates the 1=4-periodicity region related to an attracting cycle of pe-
riod 4 coexisting with other attractors. The periodicity region P1=4 is bounded
by two BC curves plotted using the equations in (23) and (24) and the center
bifurcation line given by �2R�

2
L = 1; that is, �R = 1=�L � 1:1111: Let us inves-

tigate stability loss of the 4-cycle occurring when the parameter point crosses
the center bifurcation line.

Figure 13: Two-dimensional bifurcation diagram in the (�R; �R)-parameter
plane for �L = 0:9; �L = 0:7:
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First we �x (�R; �R) 2 P1=4 as �R = 1:057; �R = �0:2 : Fig.14 shows the
basins of coexisting attracting cycles of period 4 and 25; The unstable set of the
saddle 25-cycle approaching the points of the attracting 25-cycle form a closed
invariant curve of the �saddle-focus�type. The basin of attraction of the 4-cycle
is bounded by the stable set of the saddle 4-cycle.

Figure 14: �L = 0:9; �L = 0:7; �R = 1:057; �R = �0:2: Basins of coexisting
attracting cycles of period 4 (in blue) and 25 (in green). The unstable set of the
saddle 25-cycle form a closed invariant curve of �saddle-focus�type. The basin
of attraction of the 4-cycle is bounded by the stable set of the saddle 4-cycle.

Let us increase the value of �R: At �R � 1:0874 the �rst homoclinic bifurca-
tion occurs for the saddle 4-cycle: Fig.15a shows an enlarged part of the phase
space with one point of the attracting 4-cycle, one point of the saddle 4-cycle
and the related branches of the stable and unstable sets. Homoclinic tangle at
�R = 1:089 is presented in Fig.15b, and Fig.15c shows the second homoclinic
bifurcation occurring at �R � 1:0929; which gives rise to four cyclic repelling
closed invariant curves constituting the boundary of the basin of attraction of
the attracting 4-cycle (see Fig.15d where �R = 1:1). An analogous homoclinic
structure is described in Kuznetsov [1995] in case of the Neimark-Sacker bifur-
cation (strong resonance 1 : 4) occurring for smooth maps.
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Figure 15: Enlarged part of the phase space with one point of the attracting
4-cycle and one point of the saddle 4-cycle with the related branches of stable
and unstable sets at �L = 0:9; �L = 0:7; �R = �0:2 and (a) �R = 1:0874: The
�rst homoclinic bifurcation of the saddle 4-cycle; (b) �R = 1:089: Homoclinic
tangle; (c) �R = 1:0929: The last homoclinic bifurcation; (d) �R = 1:1: One of
the four closed invariant repelling curves bounds the basin of attraction of the
attracting 4-cycle.

We continue to increase the value of �R: At �R = 1=�L = 1:1111::: the
complex-conjugate eigenvalues of the former attracting 4-cycle reach the unit
circle, that is, the 4-cycle undergoes a center bifurcation, but it is of subcritical
type: Exactly at �R = 1=�L in the phase space there are four cyclic repelling
invariant regions �lled with the invariant ellipses (see Fig.16); After the bifur-
cation the 4-cycle becomes unstable and nothing is born.
In terms of the BCB of the �xed point of the map F as � varies through

0, the above case gives an example of a new kind of the BCB giving birth to a
cyclic repelling closed invariant curve coexisting with one or several attractors
(take, for example, the parameter values as in Fig.15d and let � vary from a
negative to a positive value).
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Figure 16: Enlarged part of the phase space with one of the 4-cyclic repelling
invariant regions at the moment of the subcritical center bifurcation of the
attracting 4-cycle; A point of the saddle 4-cycle is shown together with the
related branches of the stable and unstable sets. Here �L = 0:9; �L = 0:7;
�R = �0:2 and �R = 1:11111111:

6 Conclusion

In this work we have considered some of the bifurcation mechanisms which may
be associated with the BCB in a two-dimensional piecewise linear map when
one of the �xed points undergoes a center bifurcation, investigating a piecewise
linear map which is considered as a normal form to study BCB in piecewise
smooth two-dimensional maps. In Section 3 we have fully described the dynam-
ics at the center bifurcation value, and the main results collected in Sections
4: Considering the dynamics �after� the center bifurcation, which gives birth
to an invariant attracting closed curve. We have analytically determined the
BC-boundaries of the main periodicity regions issuing from the center bifurca-
tion line in the parameter space, giving an example of the issuing point which
is not a cusp, and described the so-called �sausages� structure of the regions
(mechanism typical in piecewise smooth or piecewise linear maps, which cannot
occur in smooth maps). We have described the overlapping of the periodicity
region, associated with the multistability phenomena, representing coexistence
of several stable cycles both before and after the center bifurcation. In partic-
ular, we have given also examples of the dangerous BCB related to the case in
which at the BCB value all the orbits with non zero initial conditions diverge
to in�nity, while bounded attracting sets exist (before and after). Also we have
shown an example which may be considered as a piecewise-linear analogue of the
subcritical Neimark-Sacker bifurcation for smooth maps, and still to be studied
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in detail. As stated in Section 2, we have considered only some of the possible
signs of the parameters: Several other situations are still to be investigated.
And also other mechanisms in the regions here analyzed (as for example the dy-
namic structure associated with quasiperiodic orbits) are left as open problems,
for further works.
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