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Center Bifurcation of a point on the Poincaré
Equator

Iryna Sushko and Laura Gardini

Abstract

We describe the dynamics in a two-dimensional piecewise linear- fractional
discontinuous map coming from an economic application. Our interest in this
map is related to the fact that it gives the first example, to our knowledge, of
a particular bifurcation: We show that its fixed point on the Poincaré equa-
tor undergoes a center bifurcation giving rise to a hyperbola-like attracting
invariant set on which dynamics are either periodic or quasiperiodic.

1 Introduction

Dynamical systems defined by continuous piecewise smooth (PWS) functions are
quite intensively studied nowadays, first of all due to numerous applied models
defined by such systems, coming from different fields of science, such as electronics,
mechanical engineering, economics, and others: See the books [23] and [5], in which
there is a long list of related references. In the meantime, bifurcation theory of
PWS dynamical systems remains still less developed then the theory of smooth
systems. Peculiarity in the behavior of trajectories of PWS systems is related to
the existence in the phase space of one or more boundaries separating the regions in
which the function changes its definition. In general, collision with such a boundary
of an invariant set can lead to abrupt changes in its structure and stability, so that
one can observe, for example, the transition from an attracting cycle to a chaotic
attractor, or to a chaotic attractor coexisting with an attracting cycle of some other
period. Since Nusse and Yorke ([14], [15]) the related bifurcations are called border-
collision bifurcations (BCB for short). It is worth to mention also that the first
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works devoted to the study of the bifurcation phenomena in PWS systems date
back to the 60th due to Leonov [11], and to the 70th due to Feigen (see [4], where
the related bifurcations are called C-bifurcations).

Among PWS dynamical systems essential attention has been paid to piecewise
linear (PWL) systems, in particular, to one- and two-dimensional PWL maps, de-
fined by two linear functions, which were proposed as a kind of normal forms to
study BCB in PWS maps (see [14], [1], [2]). For a 1D PWS map such a normal
form, allowing to classify all possible BCB occurring for this map, is represented by
the so-called skew-tent map which is a PWL map defined by two linear functions
depending on two parameters representing slopes of the related linear functions. Bi-
furcation phenomena occurring in the skew-tent map are well studied and described
in details (see, [12], [15]). Thus, for example, in [8], [18] the skew-tent map was used
to classify the BCB occurring in 1D PWS maps coming from economic applications.

For 2D PWS maps the normal form to study BCB is represented by a 2D PWL
map (which we call as 2D BCB normal form), defined by two linear maps depending
on four parameters which are traces and determinants of the Jacobian matrixes of
the related linear maps. It is not an easy task to classify all possible BCB occurring
in this map varying the parameters (see [2]), and indeed one can observe quite
interesting and complicated bifurcation phenomena, among which it is worth to
mention multistability and unpredictability of the number of coexisting attractors
after the BCB (see, e.g., [24]) and the so-called dangerous BCB (see [7] and the
references therein), related to the case in which a fixed point is attracting before
and after the BCB, while at the bifurcation value the dynamics are divergent.

Our particular interest is connected with the birth of a closed invariant attracting
set due to the BCB, which is closely related to the so-called center bifurcation, first
described in [22] (see also [6], [19], [20], [17]). Such a bifurcation occurs, under
suitable conditions, when a pair of complex-conjugate eigenvalues of an attracting
fixed point crosses the unit circle, so that the fixed point becomes an unstable focus,
giving rise to an attracting closed invariant set S. This bifurcation can be seen
as a PWL analogue of the Neimark-Sacker bifurcation, occurring in smooth maps:
Indeed, similar to the smooth case, the close invariant set S can be made by the
saddle-node connection of a pair of cycles (a saddle and a node), but in this case S
is not smooth but made up of finitely or infinitely many (depending on the type of
noninvertibility of the map) segments and corner points. The trajectory on S can
be also quasiperiodic. Differently from the smooth case, the set S appears not in the
neighborhood of the fixed point, but at a certain distance from it (which depends
on the distance of the fixed point from the border separating the definition regions
of the two linear maps). Considering the bifurcation structure of the parameter
space of the 2D BCB normal form, one can observe that the periodicity regions
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are organized in a way similar to the Arnold tongues in the smooth case, so that
they can be classified with respect to the rotation numbers. However, they have a
particular sausage-like structure ([24], [20]) and their boundaries issuing from the
center bifurcation line at points associated with rational rotation numbers, are BCB
curves, instead of saddle-node bifurcation curves issuing from the Neimark-Sacker
bifurcation curve.

Among PWSmaps one can distinguish a class of maps defined by linear-fractional
(LF) functions which are those closest to the PWL maps in a sense of their dynamic
properties. Indeed, as a simple observation, one can note that similarly to a PWL
function which remains PWL under the iterations (and namely this fact allows to get
many bifurcation conditions analytically), also a LF function under the iterations
remains LF, that is, the degree of the system is not changed. As a simplest example
of the similarity of the dynamics of these two classes of maps, we can compare the
dynamics of a 1D linear map with the dynamics of a hyperbolic map reciprocal to the
linear one: For example, if the linear map has a fixed point (repelling or attracting)
one can consider also its second fixed point located at infinity (attracting or repelling,
respectively), and then these two fixed points correspond to two fixed points (one
attracting and another one repelling) of the hyperbolic map. So, studying dynamics
of a PWLF map one can expect to observe bifurcation phenomena which are in a
sense ”reciprocal” to those observed in PWL systems. In particular, the subject of
the present paper is to demonstrate an analogue of the center bifurcation occurring
for a point on the Poincaré Equator (PE) for a 2D PWLF map coming from an
economic application (see [16], [21]).

The paper is organized as follows. In the next section we describe the dynamic
properties of the considered map F which is given by two LF maps F1 and F2 defined
in the regions R1 and R2, respectively. The map F depends on three parameters a, c
and r. We first present a 2D bifurcation diagram in the (a, c)-parameter plane with
the periodicity regions issuing from the bifurcation line a = 1, whose structure is
similar to the one obtained for a 2D PWLmap in the case of a center bifurcation, but,
as we show, the map has not a (finite) fixed point undergoing the center bifurcation,
but instead, it is a fixed point on the Poincaré Equator which undergoes the center
bifurcation. There exists also a vertical invariant line which at a = 1 changes its
transverse stability. In sections 2.1 and 2.2 we describe the dynamics of each of the
maps F1 and F2 separately, then in section 2.3 we show that at a = 1 in the phase
plane of the map F there exist an invariant region bounded by either two branches
of a hyperbola (analogues boundary in a center bifurcation is an ellipse), or by a
”hyperbola-like” piecewise linear set being a broken line consisting of two branches
(that corresponds to a polygon in a center bifurcation), such that any initial point
of such a region is, respectively, either periodic, or quasiperiodic. In section 2.4 we
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present an example of an invariant attracting set C born due to the bifurcation,
with attracting and saddle cycles on it, namely, we show that the set C is made
up by the saddle-node connection of these cycles. But differently from the closed
invariant attracting set S born at the center bifurcation, the set C is not closed: It
has a ”hyperbola-like” structure. Finally, in the section 3 we show that the map F
indeed has a fixed point on the PE which at a = 1 undergoes the center bifurcation.

2 Dynamics of the map F : periodic and quasi-

periodic trajectories

We consider a family of 2D maps F : R2 → R2 given by two linear-fractional
functions F1 and F2 defined in the regions R1 and R2, respectively:

F : (x, y) 7−→
{

F1(x, y), if (x, y) ∈ R1;
F2(x, y), if (x, y) ∈ R2;

(1)

where

F1 :

(
x
y

)
7→

(
(x− a)/y + a
c+ a− a/y

)
, R1 = {(x, y) : x(a(y − 1) + rx) ≥ 0} ; (2)

F2 :

(
x
y

)
7→

(
(1− r)x/y
c− rx/y

)
, R2 = {(x, y) : x(a(y − 1) + rx) < 0} . (3)

Here a, c and r are real parameters such that a > 0, 0 < c < 1, 0 < r < 1.
The map F comes from an economic application, namely, it represents the dy-

namics (in the so-called relative variables) of the multiplier-accelerator model with
floor dependent on accumulated capital [16].

The (x, y)-plane of the map F is separated into four regions by the straight line
x = 0, on which F is discontinuous, and by the line y = 1 − rx/a, on which F is
continuous, so that the map F1 is defined in

R1 = {x ≥ 0, y ≥ 1− rx/a} ∪ {x ≤ 0, y ≤ 1− rx/a}

and F2 is defined in

R2 = {x < 0, y > 1− rx/a} ∪ {x > 0, y < 1− rx/a} .

We call these straight lines critical lines and denote them LC−1 and LC ′
−1 :

LC−1 = {(x, y) : y = 1− rx/a} ; LC ′
−1 = {(x, y) : x = 0} .
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Figure 1: (a): regions R1 (in gray), R2 and critical lines LC−1, LC
′
−1, LC, LC ′;

(b): the image of the region R1 by the map F1 is shown in light and dark gray.

The image of LC−1 by F is a straight line denoted LC:

LC = {(x, y) : y = c− rx/(1− r)} .
The image of LC ′

−1 by F1 is a straight line denoted LC ′ and by F2 is a point denoted
p1 :

F1(LC
′
−1) = {(x, y) : y = x+ c} , F2(LC

′
−1) = p1, p1 = (0, c).

The partition of the (x, y)-plane into the regions R1 and R2, as well as the above
mentioned critical lines, are shown in Fig.1a (it is a qualitative picture for the case
a > 1). In Fig.1b we present the image of the region R1 by F1 which is the union of
the following sets:

F1(R1: x > 0, y > 0) = {(x, y) : c− rx/(1− r) < y < x+ c, y < c+ a, x > 0} ;
F1(R1: x < 0, y < 0) = {(x, y) : c+ a < y < x+ c, x > 0} ;
F1(R1: x < 0, y > 0) = {(x, y) : x+ c < y < c− rx/(1− r), y < c+ a, x < 0} ;
F1(R1: x > 0, y < 0) = {(x, y) : c+ a < y < c− rx/(1− r), x < 0} .

A general view on the dynamics of the map F is given by a 2D bifurcation
diagram in the (a, c)-parameter plane at fixed r = 0.2 presented in Fig.2. Here
different gray tonalities correspond to attracting cycles of different periods n < 45
(some regions are also marked by the numbers which are the periods of the related
cycles). Details of this diagram will be discussed later in the present section, but
one can see immediately that at a = 1 some bifurcation occurs which leads from
divergent trajectories to attracting cycles of different periods. Indeed, the structure
of the periodicity regions is similar to the one which is observed for 2D PWL maps
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Figure 2: 2D bifurcation diagram of the map F in the (a, c)-parameter plane at r =
0.2. Regions of different gray tonalities correspond to attracting cycles of different
periods n < 45 (some regions are marked by numbers which are the related periods).

whose fixed point undergoes a center bifurcation (see, for example, [19], [20]). But
for a < 1 the map F has no fixed point at final distance with complex-conjugate
eigenvalues crossing the unit circle. The purpose of the present paper is to clarify
what kind of bifurcation occurs at a = 1. In this section we present some standard
analysis of the dynamics of F. Then, in Section 3 the results are interpreted in terms
of the center bifurcation occurring for a fixed point of the map F which is located
on the Poincaré Equator.

2.1 Triangular map F1

To investigate the dynamics of the map F defined by the maps F1 and F2, let us
first describe the behavior of trajectories in each of these maps separately. In this
subsection we consider the map F1 which is triangular: The variable y is mapped
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independently on x by a 1D map f :

f : y 7→ f(y) = c+ a− a

y
. (4)

The function f(y) is a hyperbola with asymptotes y = 0 and f(y) = c + a. Using
a usual convention, we define f(∞) = c + a and f(0) = ∞, so that the map f is
defined for all y ∈ R.

The map f has two fixed points denoted y+ and y−

y± =
c+ a±

√
(c+ a)2 − 4a

2
, (5)

which have real values for

c ≥ c∗(a) = 2
√
a− a. (6)

(Note that c > 0, so, we don’t consider the branch c(a) = −2
√
a− a). At c = c∗(a)

these fixed points appear due to a fold bifurcation.
The related fixed points of the map F1 are (a, y+) and (a, y−). Obviously, F1 has

no other fixed points, but it has an invariant straight line {x = a} , and indeed, the
fixed points, when they exist, belong to this line.

Let us check the stability of the fixed points (a, y+) and (a, y−). The eigenvalues
of F1 depend only on y: λ1(y) = a/y2, λ2(y) = 1/y. For the parameter range
considered 0 < λ1(y+) < 1, λ1(y−) > 1. As for the eigenvalue λ2(y), the following
inequalities hold: λ2(y+) > 1, λ2(y−) > 1 for a < 1, and 0 < λ2(y+) < 1, 0 <
λ2(y−) < 1 for a > 1. Thus, the fixed points, when they exist, are such that for
a > 1 the point (a, y+) is attracting and (a, y−) is a saddle, while for a < 1 the point
(a, y+) is a saddle and (a, y−) is repelling.

Indeed, we are interested in the parameter range 0 < c < c∗(a) (see Fig.2 in
which the curve c = c∗(a) is shown), related to the case in which the map f (and,
respectively, the map F1) has no (finite) fixed points. The dynamics of the map f
for such parameter range is described in the following proposition:

Proposition 1. Let 0 < c < c∗(a). Then at c = cm/n(a), where

cm/n(a) = 2
√
a cos(πm/n)− a, (7)

any trajectory of the map f is n-periodic with rational rotation number m/n. At
c = cρ(a), where

cρ(a) = 2
√
a cos(πρ)− a (8)

any trajectory of f is quasiperiodic with irrational rotation number ρ.
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To see that the statement is true note that the map f can be written as a first
order difference equation

yn+1 =
(c+ a)yn − a

yn
, (9)

which is a particular case of the so-called Riccati difference equation with constant
coefficients1, for which an analysis of the behavior of solutions is presented in [3], see
also [10]. Namely, it is proved that if the roots of the equation y2− (c+a)y+a = 0,
i.e., the values y±, given in (5), are complex-conjugate, that is, y± = r(cos θ±i sin θ),
where

r =
√
a,

cos θ = (c+ a)/2r, (10)

sin θ =
√

4a− (c+ a)2/2r, (11)

then
1) if θ/π = m/n for some integer n > 0 and m with (m,n) = 1, then every

solution of (9) is periodic with minimal period n;
2) if θ/π = ρ is irrational, then every solution {yi}∞i=0 of (9) is aperiodic and the

set of accumulation points of {yi}∞i=0 is the set of real numbers.
For the map f the first case occurs at parameter values given in (7) and the

second case corresponds to the parameter values given in (8).

Note that the notion of rotation number for a trajectory {yi}∞i=0 of the map f
when its fixed points are complex-conjugate, can be used in a quite natural way:
Starting from some positive initial value y0 > 0, the right branch of the hyperbola
f is applied under the iterations, so that the points of the trajectory approach the
discontinuity point y = 0, and after some number j of iterations we necessarily get
a negative value yj < 0, to which the left branch of f is applied giving a positive
value again: yj+1 > 0. If the trajectory is n-periodic, it can in general make m
such rounds before reaching the initial point. The number m can be considered as
a counter of applications of the left branch of the hyperbola f(y), or, equivalently,
m is the number of periodic points on the left of the discontinuity point y = 0,
and, respectively, the trajectory has n−m points on the right of the discontinuity.
We say that such a trajectory has the rational rotation number m/n. In Fig.3 we
present the function f at a = 1.5, c = c2/7(a) ≈ 0.027: In this case any initial point
y0 is periodic of period 7 with the rotation number m/n = 2/7. As an example, two
such cycles, with y0 = 5 (gray circles) and y0 = 6 (black circles), are also shown.

1The Riccati difference equation with constant coefficients is given by xn+1 = axn+b
cxn+d , n = 0, 1, ...,

where a, b, c, d are real numbers such that ad− cd 6= 0, c 6= 0 (see, e.g., [3]).
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Figure 3: The function f at a = 1.5, c = c2/7(a) ≈ 0.027; Any initial point y0 is
7-periodic with rotation number 2/7.

If a trajectory is quasiperiodic, it can be associated with a corresponding irrational
rotation number.

In the (a, c)-parameter plane the curves (7) for different values of m/n fill densely
the parameter region 0 < c < c∗, approaching the limit curve c∗ = 2

√
a − a as

n → ∞ with fixed m (see Fig.4 on which the curves cm/n(a) are plotted for n < 100,
m = 1, 2).

Let us come back now to the map F1 for which the dynamics of its y variable
for any initial value y0 are either periodic (for c = cm/n(a)) or quasiperiodic (for
c = cρ(a)) independently on x. Below we show that the following proposition is
true:

Proposition 2. For the map F1 the invariant line {x = a} is globally attracting
for a > 1 and globally repelling for a < 1. Any point (x0, y0) = (a, y0) is either
periodic (for c = cm/n(a) ), or quasiperiodic (for c = cρ(a)).

The second part of the above statement follows immediately from Proposition 1:
Given that the straight line {x = a} is invariant under F1, any point of this line is
either periodic, or quasiperiodic. Thus, let us prove the first part of the proposition.

We consider first the case c = cm/n(a). Then for any (x0, y0) we have (xn, yn) =
(xn, y0), so that one can consider a 1D map of x on the line {y = y0}. Let us define
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Figure 4: The curves c = cm/n(a) given in (7) for n < 100, m = 1 (dashed lines)
and m = 2 (solid lines).

such a map. Indeed, the x variable is driven by the function g(x, y) = (x−a)/y+a.
It is convenient to make the following shift of the variable x:

x̃ := x− a,

after which the function g gets the form g̃(x̃, y) = x̃/y. The image of y0 after n
iterations can be obtained using the following equality:

yn =
bn+1y0 − abn
bny0 − abn−1

, (12)

where bj, j > 1, is defined by the second order linear difference equation

bj = (c+ a)bj−1 − abj−2, b0 = 0, b1 = 1. (13)

The solution of the equation (13) can be written as

bj =
(
√
a)j−1 sin(θj)

sin θ
. (14)

Given that the point y0 is n-periodic, that is, yn = y0 and θ = πm/n, we get that

bn = 0. (15)
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Now we can get the image of x̃0 after n iterations:

x̃n =
x̃0

n−1∏
i=0

yi

=
x̃0

bny0 − abn−1

=
x̃0

−abn−1

=

{
x̃0/(

√
a)n, if m is even;

−x̃0/(
√
a)n, if m is odd;

(16)

where the equality
n−1∏
i=0

yi = bny0− abn−1 follows from (12) and bn−1 is obtained from

(14) with j = n− 1, θ = πm/n, using (10) and (11).
So, on the line {y = y0} the x̃-variable is mapped by the 1D linear map given by

the function g1(x̃) = x̃/(
√
a)n for even m, and by the function g2(x̃) = −x̃/(

√
a)n

for odd m. In both cases the fixed point is x̃∗ = 0 (which corresponds to the point
x∗ = a in the x variable). It is attracting for a > 1 and repelling for a < 1 (recall
that for our model a > 0). At a = 1 any initial point x̃0 for the map g1 is fixed, and
is of period 2 for the map g2.

Now, coming back to the variables (x, y), we conclude that the straight line
{x = a} is globally (transversely) attracting for a > 1 (the trajectory of any initial
point (x0, y0), x0 6= a, tends to them/n-cycle {(a, yi)}n−1

0 ); It is transversely repelling
for a < 1 (the limit set of the trajectory is {(xi, yi)}n−1

0 , where xi is either +∞ or
−∞). At a = 1 any point (x0, y0) is n-periodic for even m and 2n-periodic (for
x0 6= a) if m is odd.

Let us consider now c = cρ(a), then the trajectory {(xi, yi)}∞0 of any initial point
(x0, y0) is such that the sequence yi is quasiperiodic as i → ∞, while the sequence
xi for a > 1 tends to x∗ = a as i → ∞, and it tends to ±∞ for a < 1. Thus, for
a > 1 the limit set of the trajectory is the line {x = a} .

The following proposition describes the dynamics of F1 at a = 1 :

Proposition 3. Let a = 1, c = cm/n(1) as given in (7). Then for the map F1

any point (x0, y0), x0 6= 1, is n-periodic if m is even and 2n-periodic if m is odd;
any point (1, y0) is n-periodic. For c = cρ(1) as given in (8) the trajectory of any
point (x0, y0) is quasiperiodic. Moreover, the trajectory of any initial point (x0, y0)
belongs to the invariant hyperbola with center (xc, yc) = (1, (c+ 1)/2) of equation

(x− 1)2

(x0 − 1)2
=

y2 − (c+ 1)y + 1

y20 − (c+ 1)y0 + 1
. (17)

The equation (17) is obtained from the general equation of a hyperbola with
center (xc, yc) = (1, (c+ 1)/2), that is from

(x− 1)2

k2
1

− (y − (c+ 1)/2)2

k2
2

= 1.
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Substituting to this equation first (x, y) = (x0, y0) and then (x, y) = (x1, y1) =
((x0 − 1)/y0, c + 1 − 1/y0), we get the coefficients k1 and k2 : k2

1 = (x0 − 1)2(1 −
(c + 1)2/4)/(y20 − (c + 1)y0 + 1) and k2

2 = 1 − (c + 1)2/4. After rearranging of the
general equation of a hyperbola with such coefficients and center (xc, yc), we get the
equation (17).

So, we have described the dynamics of the map F1, showing that for a > 1
its invariant line {x = a} is globally attracting (and any point of this line is either
periodic or quasiperiodic) and globally repelling for a < 1. At a = 1 the trajectory
of any initial point (x0, y0) is either periodic or quasiperiodic and belongs to the
related invariant hyperbola (17).

2.2 Reduction of the map F2 to a 1D map g on LC

Let us describe now the dynamics of the map F2 which is quite simple. Note that
the map F2 doesn’t depend on the parameter a. The eigenvalues of the Jacobian
matrix of F2 are η1 = 0; η2 = ((1 − r)y + rx)/y2, so F2 is reduced to a 1D map
on the straight line LC. If x is the first coordinate of a point (x, y) ∈ LC, then its
image by F2 on LC is given by a 1D map g:

g : x 7→ g(x) =
x(1− r)2

c(1− r)− rx
. (18)

The map g has two fixed points: x∗
1 = 0 and x∗

2 = (1− r)(c− 1 + r)/r. If c < 1− r,
then x∗

1 is repelling and x∗
2 < 0 is attracting (see Fig.5b), while if c > 1 − r, then

x∗
2 > 0 is repelling and x∗

1 is attracting (see Fig.6b). At c = 1− r these fixed points
merge: x∗

1 = x∗
2 = 0.

The corresponding fixed points of the map F2 are p1 = (0, c) and p2 = (x∗
2, (1−r)).

2.3 Invariant regions of F at a = 1

In the following two sections we describe the dynamics of the map F , using the
properties of F1 and F2 presented in the previous sections.

Recall that for 0 < c < c∗(a) the map F1 has no fixed points, while the fixed
points of F2 are such that for c < 1− r the repelling fixed point p1 = (0, c) belongs
to the border line separating the regions R1 and R2, and the attracting fixed point
p2 ∈ R1. Thus, with respect to the map F we have that for c < 1 − r the point p2
is not a fixed point of F , while p1 is right-side repelling along LC (which gives the
eigendirection related to the eigenvalue η2) and attracting in the vertical direction
related to η1 = 0 (see Fig.5, where c = 0.5, r = 0.2). For c > 1 − r the point p1
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Figure 5: The fixed points p1 and p2 of the map F2 in the (x, y)-plane (a) and the
related function g given in (18) (b) at c = 0.5, r = 0.2 (the case c < 1− r).

is right-side attracting and p2 ∈ R2 is a saddle fixed point of F (see Fig.6, where
c = 0.9, r = 0.5). In Fig.6 it is also shown the eigendirection of F2 at p2 related to
η1 = 0, of equation y = rx/(c− 1+ r), whose segment [0, b] is one of the boundaries
of the immediate basin of attraction of p1, which is a triangle: Two other boundaries
of this triangle are the segment [0, 1] of the straight line {x = 0} and the segment
[1, b] of LC−1. The dashed region denoted B is the total basin of attraction of the
point p1 (its boundary is made by the segments which are preimages of [0, b] by F1

and the segment of {x = 0}).

Thus, for c > 1− r there is a set of initial points of the (x, y)-plane attracted by
p1, so that at the bifurcation diagram shown in Fig.2 the parameter region c > 1− r
is related to the coexistence of the right-side attracting point p1 (whose basin of
attraction is relatively small) with other attractor (for a > 1).

Let us describe now the dynamics of F at the bifurcation value a = 1. As it was
shown (see Proposition 3), at a = 1 any initial point (x0, y0) is either periodic, or
quasiperiodic under the map F1, moreover, each trajectory belongs to the related
invariant hyperbola (17). We can find a subregion of R1 denoted Q such that the
trajectory of any initial point (x0, y0) ∈ Q stays forever in R1. To define the border
of Q we need to find a hyperbola (17) tangent to LC−1 (and this hyperbola will
be tangent to all consecutive images by F1 of LC−1). It is not difficult to get the
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Figure 6: The fixed points p1 and p2 of the map F2 in the (x, y)-plane (a) and the
related function g given in (18) (b) at c = 0.9, r = 0.5 (the case c > 1− r).

coordinates (xt, yt) of the tangent point of the hyperbola (17) with LC−1:

xt =
(2− r) (1− c)

(1− 2r − c) r
, yt =

c− 1− (c+ 1)r

1− 2r − c
, (19)

so that the equation of the hyperbola, tangent to LC−1, denoted by H, is

H :
(x− 1)2

(xt − 1)2
=

y2 − (c+ 1)y + 1

y2t − (c+ 1)yt + 1
. (20)

Note that at c = 1 − 2r the straight line LC−1 is one of two asymptotes of H, so
that for c > 1 − 2r we have xt < 0, yt > 0, while for c < 1 − 2r the inequalities
xt > 0, yt < 0 hold.

Two branches of the hyperbola H are the boundaries of the region Q, consist-
ing of two disjoint parts. If c = cρ(1), a = 1, then any initial point (x0, y0) is
quasiperiodic under the map F1, thus the trajectory of any initial point (x0, y0) ∈ Q
is quasiperiodic and belongs to the corresponding invariant hyperbola (17) through
this point. Obviously, Q is invariant under the map F . Moreover, below we show
that for c < 1− r the trajectory of any point (x0, y0) /∈ Q (where (x0, y0) 6= (0, c)) is
attracted to a quasiperiodic trajectory on H, while for c > 1− r we have to exclude
the initial points belonging to the basin of attraction of the point p2 (see Fig.6 and
the comments related to this figure), that is for c > 1− r the trajectory of any point
(x0, y0) /∈ (Q ∪B) is attracted to H.
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1) Let us first consider 1− 2r < c < 1− r. To clarify the consideration, we will
follow an example presented in Fig.7, in which the invariant region Q, bounded by
the hyperbola (20), tangent to LC−1 at the point (xt, yt), xt < 0, yt > 0, is shown
at a = 1, r = 0.8, c = 0.1. As it was already mentioned, any point (x0, y0) ∈ R2

is mapped in one step into a point of LC, on which the dynamics is defined by the
map g, given in (18). For c < 1 − r the attracting point p2 of F2 is in R1, so the
trajectory, approaching p2, necessarily enters R1 and then a number of consecutive
points of the trajectory belongs to some invariant hyperbola, say, H1. If such a
hyperbola is not H, it intersects LC−1 and, thus, after a finite number of iterations
we get a point belonging R2. So, the trajectory comes back to LC and again begins
to approach p2 ∈ R1. Repeating the steps described above, to prove the statement
we need to shown that the next hyperbola, which trajectory follows in R1, say H2,
will be closer to H. We take the hyperbola most distant from H which a trajectory
can follow after entering the region R1, which is a hyperbola passing through the
point a0 = LC−1∩LC, a0 = ((1− c)(r−1)/r2, (1− c+ cr))/r). Note that x(a0) < 0,
y(a0) > 0 for any 0 < c < 1, 0 < r < 1.

So, let H2 be the hyperbola through the point a0, and consider as initial point of
the trajectory exactly a0. Then a1 = F2(a0) = F1(a0) ∈ LC; a1 ∈ H2. Following the
hyperbola H2 the trajectory makes one ”round” and comes back to the region R2

(namely, to its part with x < 0). Let it be a point ai ∈ H2 (in our example, it is the
point a6 ∈ H2, see Fig.7); ai 6= a0 because we consider the case c = cρ(1) in which
the trajectory on H2 is quasiperiodic, thus ai is either ”above” a0 on H2, i.e., y(ai) >
y(a0), or ”below”, that is y(ai) < y(a0). If y(ai) > y(a0), then F2(ai) = ai+1 ∈ LC
is such that c < y(ai+1) < c + 1 because F2(R2 : x < 0) = {LC : c < y < c+ 1} .
So, ai+1 ∈ (a0, a1) ⊂ R1 (in our example, y(a7) ∈ (0.1, 1.1), a7 ∈ (a0, a1), see Fig.7),
and the next hyperbola (through the point ai+1) which the trajectory will follow
being in R1, say, the hyperbola H3, is located closer to H so that our statement
is proved. If y(ai) < y(a0), which means that ai ∈ R1, then we come to the same
conclusion: Namely, after some number of iterations by F1 (following the same
hyperbola H2) the point of the trajectory eventually will be mapped in a point aj
such that y(aj) > y(a0), because the trajectory is quasiperiodic on H2 and, thus, its
points are dense on H2.

2) If c > 1− r (and, thus, c > 1− 2r, so that xt < 0, yt > 0, as in the example
presented above) the consideration can be repeated for the trajectory of any initial
point (x0, y0) /∈ (Q ∪ B). Note that in such a case the trajectory, once entered the
region R2, and thus is mapped into a point on LC, necessarily enters the region R1

(namely, its part with x < 0) approaching the point p1 = (0, c) ∈ LC (which is
attracting for F2).
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Figure 7: The invariant region Q bounded by the hyperbola H at a = 1, r = 0.8,
c = 0.1.

3) As for the case c < 1 − 2r (in which xt > 0, yt < 0) we only note that a
trajectory starting from the initial point a0 = LC−1 ∩LC, and then following under
the map F1 the hyperbola H2 through a0, after some number i of iterations we get
a point ai ∈ {R2 : x > 0, y < 0} , and then, similarly to the first case, we can show
that F2(ai) = ai+1 ∈ (a0, a1) ∈ LC, so that the next hyperbola touched by the
trajectory is located close to the hyperbola H. Thus, also in this case any initial
point (x0, y0) /∈ Q is attracted to the boundary of Q, i.e., to H.

Thus, the following statement is proved:

Proposition 4. Let a = 1, c = cρ(1). Then in the (x, y)-phase plane of the map
F there exist an invariant region Q bounded by the hyperbola H of the equation
(20) such that any point (x0, y0) ∈ Q is quasiperiodic. Moreover, for c < 1− r any
point (x0, y0) /∈ Q is attracted to H; and for c > 1− r any point (x0, y0) /∈ (Q ∪B)
is attracted to H, where B is the attraction basin of the right-side attracting point
p1 = (0, c).

Now let us construct an invariant region in the case c = cm/n(1). Denote such a
region by P . It obviously includes the region Q, bounded by H, but for c = cm/n(1)
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Figure 8: The invariant region P bounded by the segment [a0, a1] ⊂ LC and its 6
images by the map F1 at a = 1, c = c2/7(1) ≈ 0.247, r = 0.6. Any point (x0, y0) ∈ P
is 7-periodic.

the invariant region is wider. To see this, let us consider an example presented in
Fig.8, where a = 1, c = c2/7(1) ≈ 0.247, r = 0.6. In such a case any point (x0, y0) ∈ Q
is periodic of period 7 (the region Q is indicated in light gray in Fig.8; The invariant
region P includes, besides Q, also the ”additional” dark gray regions).

Consider the hyperbola H2 through the point a0 = LC−1 ∩ LC and the seg-
ment [a0, a1] , called generating segment, where a1 = F1(a0) ∈ H2. The segment
[a0, a1] ∈ LC and its 6 images by F1, belonging to corresponding images of LC by
F1, constitute the boundary of the region P such that any point (x0, y0) ∈ P is
periodic of period 7. To see this, first note that F1([a1, a2]) = [a2, s−∞] ∪ [s+∞, a3]
and F1([a5, a6]) =

[
a6, s

′
−∞

] ∪ [
s′+∞, a7

]
, where a7 = a0. Here s−∞ ∈ LC2 and

s+∞ ∈ LC2 denote two points at infinity of LC2, which are the images by F1 of the
point s = [a1, a2] ∩ {y = 0} at y(s) → 0+ and y(s) → 0−, respectively. Similarly,
the points s′−∞ ∈ LC−1 and s′+∞ ∈ LC−1 denote two points at infinity of LC−1,
which are images by F1 of the point s′ = [a5, a6] ∩ {y = 0}, at y(s′) → 0+ and
y(s′) → 0−, respectively. Note also that F1([a2, s−∞] ∪ [s+∞, a3]) = [a3, a4] and



Center Bifurcation on the Poincaré Equator 271

Figure 9: The enlarged part of the invariant region P bounded by the segment
[a′0, a

′
1] ⊂ [a0, a1] and its 19 images by the map F1at a = 1, c = c3/10 ≈ 0.176,

r = 0.3. Any point (x0, y0) ∈ P is periodic of period 20.

F1(
[
a6, s

′
−∞

] ∪ [
s′+∞, a7

]
) = [a0, a1] , where the point F1(s±∞) = b ∈ [a3, a4] ⊂ LC3

is such that y(b) = f(±∞) = c + 1; and F1(s
′
±∞) = b′ ∈ [a0, a1] ⊂ LC such that

y(b′) = f(±∞) = c + 1. Given that all the points ai ∈ R1 and ai ∈ H2, i = 0, 6,
they are periodic of period 7, that is a7 = a0. Moreover, all images of the segments
[a0, a1] are in R1, thus any point of these segments is also 7-periodic. So, the region
P bounded by the generating segment [a0, a1] and its 6 images by F1, is such that
P ⊂ R1, thus, any point of it is periodic of period 7.

In the example considered abovem = 2 is even. As it was shown (see Proposition
3), if m is odd, for c = cm/n(1) any point (x0, y0) is 2n-periodic under the map F1,
thus, any point (x0, y0) ∈ Q is 2n-periodic. So, it is clear that to construct the
invariant region P for odd m we have to consider 2n − 1 images of the generating
segment of LC, which is the segment [a0, a1] for m = 1 and m = 2, but for m > 2
the generating segment is [a′0, a

′
1] ⊂ [a0, a1]. As an example, we show in Fig.9 an

enlarged part of the (x, y)-plane with a part of the invariant region P in the case
a = 1, m/n = 3/10, c = c3/10 = 2 cos(3π/10) ≈ 0.176, r = 0.3 : For such parameter
values the region P is bounded by the segment [a′0, a

′
1] ⊂ [a0, a1] and its 19 images

by F1; Any point (x0, y0) ∈ P is periodic of period 20.

Given that for c = cm/n(1) the boundary of P is made by the images of the
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generating segment of LC, it is obvious that the trajectory of any point (x0, y0) /∈ P
(for c < 1− r), or (x0, y0) /∈ (P ∪ B) (for c > 1− r) is mapped to the boundary of
P. So, we can state

Proposition 5. Let a = 1, c = cm/n(1). Then in the (x, y)-phase plane of
the map F there exist an invariant region P, bounded by the generating segment
[a′0, a

′
1] ⊂ LC and its n − 1 images by F1 for even m, or 2n − 1 images for odd

m. Any initial point (x0, y0) ∈ P is n periodic for even m and 2n-periodic for odd
m. Any point (x0, y0) /∈ P (for c < 1 − r), or (x0, y0) /∈ (P ∪ B) (for c > 1 − r),
is mapped to the boundary of P, where B is the attraction basin of the right-side
attracting point p1 = (0, c).

Note that when m is odd, two branches of the boundary of P are symmetric
with respect to {x = 1} .

2.4 Dynamics of F for a > 1

Recall that for the map F1 the line {x = a} is invariant and, as it was shown in
subsection 2.1, for a > 1 it is transversely attracting. So, for a > 1 any trajectory
by the map F with an initial point in R1, tends towards this line. It is easy to show
that the trajectory of any initial point (x0, y0) = (a, y0) ∈ R1 necessarily enters
R2 (Indeed, such a trajectory is either periodic, or quasiperiodic under the map
F1 (see Proposition 2), and at least one point of the trajectory is with y < 0, but
LC−1∩{x = a} = (a, 1− r), 1− r > 0, thus, the trajectory has a point in R2). As it
was already mentioned, the image of any point of R2 belongs to LC, on which the
dynamics is defined by the map g given in (18). So, the trajectory comes back to
R1. Thus, there exists a kind of backward mechanism to generate cyclic behavior.

Indeed, as we have shown in the previous subsection, at a = 1 in the phase plane
of the map F there exist an invariant region Q bounded by the hyperbola H for
c = cρ(1), and for c = cm/n(1) there exists the invariant region P , bounded by the
generating segment of LC and its n − 1 images (for even m), or its 2n − 1 images
(for odd m). Increasing a only the boundary of such a region remains invariant,
being transformed in an attracting invariant set denoted by C, with periodic or
quasiperiodic trajectories on it. Namely, if the parameter values (for a > 1) belong
to some n-periodicity region (see Fig.2), then a pair of cycles (one attracting and
one saddle) of period n exist on the set C, which in such a case is made by the
unstable set of the saddle cycle approaching the points of the attracting cycle. On
other hand, the set C is formed by the generating segment of LC and its n images.

Without going into details we present one example of the invariant attracting set
C of the map F existing for a > 1, 0 < c < c∗(a). Fig.10 shows the set C at a = 1.3,
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Figure 10: The invariant attracting set C made up by 7 images of the segment [a0, a1]
at a = 1.3, c = 0.25, r = 0.2.

c = 0.25, r = 0.2 (the (a, c)-parameter point belongs to the 7-periodicity region
shown in Fig.2). In this figure the points of the attracting 7-cycle are indicated
by black circles, and points of the saddle 7-cycle are marked by the white circles.
The generating segment is [a0, a1] , where a0 = LC−1 ∩ LC, ai = F (ai−1), i = 1, 8.
This segment and its 7 images constitute the set C. Note that as soon as an image
of [a0, a1] intersects LC−1 (such as the segment [a5, a6] in our example), then the
image of the intersection point, denoted b0, gives a corner point on the set C (such
as the point b1 in Fig.10). And as soon as some an image of [a0, a1] intersects the
line {y = 0} (such as, for example, the segment [a2, a3] intersecting {y = 0} in a
point denoted s), then its next image is given by two half lines, belonging to the
same image of LC (which are (s−∞, a3] and [a4, s+∞) , where s−∞ and s+∞ denote
two points at infinity of LC3). These two half lines are mapped to one segment (the
segment [a4, a5]).

Indeed, the dynamics of the map F for a > 1 can be quite efficiently studied by
means of a first return map on the segment [a0, a1] . Some results of such a study
are presented in [21]. In particular, the first return map was used to show that
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the boundaries of the periodicity regions in the (a, c)-parameter plane are related to
border-collision bifurcations occurring for the points of the cycles. Namely, one of the
boundaries corresponds to the so-called ”saddle-node” border-collision bifurcation
at which points of the attracting and saddle cycles are pairwise merging at the
related critical lines and disappear after the collision. Another boundary is related
to a collision of the points of these cycle with the related images of the discontinuity
point.

3 Center bifurcation of the fixed point of F on

the Poincaré Equator

In this section we show that the bifurcation occurring for the map F at a = 1
described in the previous sections, can be seen as the center bifurcation of the fixed
point of F located ”at infinity”. To study the behavior of the trajectories of the
map F at infinity we can use the Poincaré sphere (see, e.g., [13])

S2 =
{
(X, Y, Z) ∈ R3 : X2 + Y 2 + Z2 = 1

}
,

from the center of which a point (X,Y, Z) ∈ S2 is projected onto the (x, y)-plane
tangent to S2 at north pole. The equations defining (x, y) in terms of (X, Y, Z) are
given by

x =
X

Z
, y =

Y

Z
;

and the equations

X =
x√

1 + x2 + y2
, Y =

y√
1 + x2 + y2

, Z =
1√

1 + x2 + y2

define (X, Y, Z) in terms of (x, y). In such a way the origin (0, 0) of the (x, y) plane
corresponds to the north pole (0, 0, 1) ∈ S2; Points on the equator of S2, i.e., points
(X,Y, 0) ∈ S2, called Poincaré Equator (PE), correspond to the ”points at infinity”
of the (x, y)-plane. Any two antipodal points on S2 belong to the same point at
infinity.

Indeed, the behavior of the trajectories at infinity can be investigated using the
projection of S2 on the planes X = 1 and Y = 1, so that to describe the behavior
of the trajectories at x → ∞ the following change of variables is used:

x =
1

Z
, y =

Y

Z
; (21)
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and to study dynamics at y → ∞ we can use the change of variables

x =
X

Z
, y =

1

Z
. (22)

Given that the map F1 is triangular and its y variable is mapped by the 1D map
f given in (4), for which we have shown that any initial point y0 is either periodic,
or quasiperiodic (see Proposition 1), it is clear that the map F1 cannot have fixed
points at y → ∞. And, indeed, one can easy check that the change of variables (22)
leads to a map with no fixed points at Z = 0.

So, let us make the change of variables (21). Then the map F1 is transformed
into

F̃1 :

(
Z
Y

)
7→

(
Y

1+a(Y−Z)
cY+a(Y−Z)
1+a(Y−Z)

)
. (23)

Fixed points of F̃1 are (Z, Y ) = (1/a, ((c + a) ±
√

(c+ a)2 − 4a)/2a) (which have
complex-conjugate values and are not related to the fixed points on the PE of F1,
given that Z = 1/a 6= 0), and one more fixed point of F̃1 is (Z, Y ) = (0, 0), which
corresponds to the fixed point of F1 on the PE.

The map F2, which is reduced to the 1D map g given in (18) obviously has no
fixed points ”at infinity”. Thus, the only fixed point on the PE of the map F is the
one of the map F1. Note that Y = 0 means that all horizontal lines (i.e., the straight
lines having the slope s = y/x = 0) of the (x, y)-phase plane have the same fixed
point on the PE.

The stability of the fixed point (Z, Y ) = (0, 0) of the map F̃1 is defined by the

eigenvalues of the Jacobian of F̃1 at this point, which are

λ1,2 = (c+ a±
√

(c+ a)2 − 4a)/2.

One can see that λ1,2 are complex-conjugate for the parameter range considered,
that is for 0 < c < c∗(a), a > 0, where c∗(a) is given in (6). For a < 1 the inequality
|λ1,2| < 1 holds, so the fixed point (Z, Y ) = (0, 0) is an attracting focus; |λ1,2| > 1
for a > 1, so the fixed point is a repelling focus. At a = 1 we have |λ1,2| = 1 and
the fixed point (Z, Y ) = (0, 0) is a center: The related invariant curve, denoted G,
through any point (Z0, Y0) is obtained from (17) making the variable transformation
(21):

G :
(1− Z)2

(1− Z0)2
=

Y 2 − (c+ 1)Y Z + Z2

Y 2
0 − (c+ 1)Y0Z0 + Z2

0

.

Some of these curves for different (Z0, Y0) are shown in Fig.11 at c = 0.8. For
(Z0, Y0) = (1, Y0) the curve G becomes the straight line Z = 1. Similar to the fixed
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Figure 11: Invariant curves G (through five different points (Z0, Y0)) of the map F̃1

at a = 1, c = 0.8.

point of a 2D linear map, which is a center (see, e.g., [20]), any point on G is either
n-periodic with rotation number m/n (for c = 2 cos(2πm/n) − 1, obtained from
Reλ1,2 = (c+ 1)/2 = cos(2πm/n)), or quasiperiodic (for c = 2 cos(2πρ)− 1).

Thus, the bifurcation which occurs for the map F at a = 1 is related to the
center bifurcation occurring for the fixed point of F on the PE.
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