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We recall three well-known theorems related to the simplest codimension-one bifurcations occur-
ring in discrete time dynamical systems, such as the fold, flip and Neimark—Sacker bifurcations,
and analyze these bifurcations in presence of certain degeneracy conditions, when the above men-
tioned theorems are not applied. The occurrence of such degenerate bifurcations is particularly
important in piecewise smooth maps, for which it is not possible to specify in general the result
of the bifurcation, as it strongly depends on the global properties of the map. In fact, the degen-
erate bifurcations mainly occur in piecewise smooth maps defined in some subspace of the phase
space by a linear or linear-fractional function, although not necessarily only by such functions.
We also discuss the relation between degenerate bifurcations and border-collision bifurcations.
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1.

The present work contributes to the study of bifur-
cations occurring in discrete dynamical systems
defined by continuous nonsmooth functions. This
research argument is of wide interest nowadays due
to applied problems arising in different fields of sci-
ence when some real process characterized by sharp
switching is modeled by piecewise smooth functions.
In fact, many works on piecewise smooth (PW for
short) dynamical systems have been motivated by
the study of models describing particular electri-
cal circuits, systems for the transmission of sig-
nals, etc. (see, e.g. [Maistrenko et al., 1993, 1995;
Banerjee & Grebogi, 1999; Banerjee et al., 2000a,
2000b; Feely et al., 2000; Fournier-Prunaret et al.,
2001; Halse et al., 2003; Avrutin & Schanz, 2006;
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Zhusubaliyev et al., 2006]). The PW smooth models
are used in several context also in economics and
other social sciences (see [Gallegati et al., 2003;
Puu & Sushko, 2002, 2006; Sushko et al., 2003,
2005, 2006; Gardini et al., 2008; Tramontana et al.,
2008]). For other relevant examples coming from
engineering, physics, biology, economics and other
fields, we refer to the books by Zhusubaliyev and
Mosekilde [2003], di Bernardo et al. [2008] and the
references therein.

The bifurcation theory for smooth systems is
quite well developed, while for PW smooth systems
it is still far from being complete. The main point
is that besides the standard bifurcations (either
local or global) well-studied for smooth maps, the
bifurcation theory of PW smooth maps must deal
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with new dynamic phenomena, related to the exis-
tence of borders in the phase space, or so-called
switching manifolds, in which the function defin-
ing the system changes, and thus has discontinuous
Jacobian. An invariant set of the PW smooth map
may collide with such a border, and this collision
may lead to a bifurcation often followed by dras-
tic changes such as, for example, direct transition
from an attracting fixed point to a chaotic attrac-
tor. All the new bifurcation phenomena related to
the border collisions are nowadays collected under
the term Border Collision Bifurcations (BCB for
short). First introduced in Nusse and Yorke [1992]
(see also [Nusse & Yorke, 1995]), this term is now
commonly used. However, we have to mention also
earlier works by Leonov [1959] and Feigin [1970]
describing quite powerful methods to study bifur-
cation phenomena in PW smooth systems. The
works by Feigin (in which the related bifurcation is
called C-bifurcation), came to wide knowledge only
recently due to the republication and elaboration of
his main results in [di Bernardo et al., 1999], while
the works by Leonov are still mainly unknown (in
[Gardini et al., 2009b; Avrutin et al., 2009b] the
Leonov’s method is effectively improved and applied
to the study of BCB in a one-dimensional PW linear
discontinuous map).

The actual state of the art in the understand-
ing of the BCB is such that the only well establi-
shed field is the classification of the BCB occurring
in one-dimensional (1D for short) continuous PW
smooth maps (as we shall recall in Sec. 3), while
for 2D PW smooth maps only the simplest cases
are classified (see [Banerjee et al., 2000b]). Indeed,
the BCB in 1D and 2D PW smooth continuous
maps can be classified according to the param-
eters of the related mormal forms first proposed
in [Nusse & Yorke, 1992, 1995]. Namely, the 1D
BCB normal form is the well-known skew-tent map
whose dynamics are completely described (see, e.g.
[Maistrenko et al., 1993]), while in the 2D case the
normal form is a 2D PW linear map given by two
linear functions (see Sec. 4), which possesses quite
rich and complicated dynamics not yet well investi-
gated (see [Banerjee & Grebogi 1999; Zhusubaliyev
et al., 2006; Sushko & Gardini 2008; Simpson &
Meiss 2008; Gardini et al., 2009a; Avrutin et al.,
2009a]). Note that the well-known Lozi map [Lozi,
1978] is a special case of the 2D BCB normal form.

While studying the bifurcation sequences
in PW linear maps, particular bifurcations are
observed and described by several authors, related

to the eigenvalues of some cycle crossing the unit
circle: For example, an eigenvalue of the attract-
ing cycle crossing —1 may not lead to an attract-
ing cycle of double period, as it occurs in smooth
maps, but to a two-piece cyclical chaotic attractor
(it occurs, for example, in the skew-tent map for cer-
tain parameter values, as we shall recall in Sec. 3.1).
Such a bifurcation is related to the BCB of this
chaotic attractor given that it appears exactly at
the border in which the map changes its definition.
One more relevant example is the so-called center
bifurcation, first described in [Sushko et al., 2003],
occurring in a 2D PW linear map when a pair of
complex eigenvalues of an attracting focus crosses
the unit circle: For such a map the Neimark—Sacker
bifurcation theorem is not applied and, as a result,
an invariant closed curve is not born in the neigh-
borhood of the fixed point (in Sec. 4.2, we recall
what can be the result of a center bifurcation and,
in particular, we present an example of a cyclical
chaotic attractor born due to the center bifurca-
tion). It is clear that the absence of the period-
doubling cascade in a PW linear map, as well as
other nonstandard bifurcations occurring when the
eigenvalues cross the unit circle, can be explained by
certain degeneracy of linear functions, so that the
well-known flip-, fold- and Neimark—Sacker bifurca-
tion theorems are not applied. But indeed not only
in PW linear maps such particular bifurcations are
observed (see, e.g. [Gardini et al., 2008] where a
1D power-hyperbolic map is considered, while a 2D
PW smooth example is given in [Fournier et al.,
2008]). So, among others, the following questions
arise: What kind of degeneracy leads to the non-
standard local bifurcations related to the eigenval-
ues crossing the unit circle? How can we classify the
results of such bifurcations?

The aim of the present paper is to partially
answer the above questions. In Sec. 2, we recall
the flip-, fold- and Neimark—Sacker bifurcation the-
orems and show which conditions are not fulfilled in
the case of linear and linear-fractional maps. Then
we define Degenerate Bifurcations for generic PW
smooth maps. In Sec. 3, we illustrate the occurrence
of degenerate bifurcations in 1D PW smooth maps
via three different examples: First, we recall the
dynamics of the well-known skew-tent map, then
we consider a 1D PW smooth map defined by lin-
ear and logistic functions, and then one more map
defined by power and linear-fractional functions. In
particular, we show how the degenerate bifurcations
may lead to cyclical chaotic intervals of period 2*
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for any integer £ > 0, as well as how the skew-
tent map is used to classify the BCB in 1D PW
smooth maps. In Sec. 4, we consider 2D PW lin-
ear map which is the normal form to study BCB
in 2D PW smooth maps. For this map, we describe
the degenerate bifurcation of the fixed point lead-
ing to cyclical chaotic attractors of period 2* for
any integer £ > 0, and the super- and subcritical
center bifurcations. The degenerate bifurcations of
an attracting cycle of period 3 are also described.

2. Fold, Flip and Neimark—Sacker
Bifurcation Theorems and the
Related Degenerate Bifurcations

In this section we recall three well-known theorems
giving the conditions for the simplest codimension-
one bifurcations occurring in discrete time dynam-
ical systems, such as the fold bifurcation (related
to an eigenvalue 1), the flip bifurcation (an eigen-
value —1) and the Neimark-Sacker bifurcation (a
pair of complex-conjugate eigenvalues with mod-
ulus 1). As usual, we use the maps of the lowest
possible dimensions in which the bifurcations listed
above can occur, which are 1D maps for the fold and
flip bifurcations, and 2D maps for the Neimark—
Sacker (NS for short) bifurcation, also known as
Hopf bifurcation for maps, or secondary Hopf bifur-
cation. This is not a loss of generality because these
results can be applied to an n-dimensional system
by using the related center manifold theorems (for
details we refer to [Guckenheimer & Holmes, 1983],
or [Kuznetsov, 1998]).

So, let us consider a one-parameter family f, :
R — R of 1D maps. Assume that f, has a fixed
point zo and let f}(zo) = A(u). We formulate the
fold and flip bifurcation theorems following Guck-
enheimer and Holmes [1983]; see also [Sharkovsky
et al., 1997].

Fold bifurcation theorem. Let f, : R — R
be a one-parameter family of C%-maps depending
smoothly on the parameter u. Let xg be a fized point
of fu and Npo) = 1. If at p = po,x = o

(1) (d/d2) fuy(20) = £1 (20) > O and
(2) (d/du)fpue(w0) <O

then there exist € > 0 and 6 > 0 such that for
w € (o — 9, po) the map f,, has no fived points in
the interval (xo—e,x0+¢€), and for p € (po, o +9)
the map fu has two fized points (one attracting and
one repelling) in the interval (zg — e, x0 + €).

The theorem remains true if the signs of both
inequalities (1) and (2) are reversed, while if only
one sign is changed then the fixed points appear at
decreasing fi.

Recall that there are two more bifurcations
associated with the eigenvalue A(uo) = 1': The
pitchfork bifurcation, occurring when condition (1)
of the above theorem becomes f} (z9) = 0, leads
from one attracting (respectively repelling) fixed
point, to three fixed points, one repelling and
two attracting (respectively one attracting and two
repelling). The transcritical bifurcation, occurring
when condition (2) of the above theorem becomes
(d/dp) fuo(xg) = 0 is related to two fixed points,
one attracting and one repelling, existing for p €
(o —9, o+9), which merge at u = pp and exchange
their stability.

For a 1D linear map,? say fu i x— px+bwith
p > 0, the condition (1) of the above theorem is
not satisfied, as we have f//(x) = 0 not only at the
fixed point (as it occurs in the pitchfork bifurca-
tion), but in the whole region of definition. At the
bifurcation value p = 1 one can distinguish between
two cases:

(1) for b =0 (a proper linear map) f,(z)|u=1 = =,
that is any point € R is fixed; The fixed point
zo = 0 just changes its stability when p passes
through 1.

(2) for b # 0 (an affine map) f,, has no real fixed
point, as g = b/(1 — p)|,=1 = oo. If we include
in our considerations the second fixed point of
fu located at infinity then this bifurcation can
be seen as a particular kind of the transcritical
bifurcation: When p passes through 1 we have
an exchange of stability between these two fixed
points.

So, it follows that for a linear map the result
of the bifurcation associated with the eigenvalue
+1 is trivial, but considering some attracting k-
cycle of a PW smooth map f,, the same bifurca-
tion (with eigenvalue +1) may occur, as the related

'We recall that the normal form for these bifurcations are as follows: ' = x4y — 2?2 (fold); 2’ = (1 + p) — 2 (transcritical);

x' = 2(1+ p) — 23 (pitchfork).

2We remark that in this paper we call linear map what is more properly an affine map, as it is almost of standard use in the

theory of dynamical systems.
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map fl’j may satisfy in suitable intervals the condi-
tion f(x) =z (as in the first case above), and one
can observe quite complicated dynamics as a conse-
quence of this bifurcation. In Sec. 3 we shall give an
example of a 1D PW smooth unimodal map defined
by linear and logistic functions, in which the bifur-
cation associated with the eigenvalue +1 can lead to
cyclical chaotic intervals of period 2* where k > 0
can be any integer (depending on the parameter of
the logistic map).

We can consider also the case in which a PW
smooth map f,, has a fixed point zo(x) which tends
to infinity as A\(u) tends to 1 (as in the second case
related to the linear map; obviously it may occur
also in 1D nonlinear maps). As we shall see in Sec. 4,
this occurs for cycles of the 2D BCB normal form,
points of which tend to infinity as one of the eigen-
values tends to 1 (other examples can be found in
[Sushko & Gardini, 2008; Avrutin et al., 2009al).

So, we can introduce the following definitions
of degenerate bifurcations related to the eigenvalue
1: The first one (DBI1 for short) refers to fixed
points which are in the real phase space at the
bifurcation value, while the second one, Degenerate
Transcritical Bifurcation (DTB for short), refers to
fixed points which are at infinity at the bifurcation
value.

Let f, : R — R be a one-parameter family
of 1D PW smooth maps depending smoothly on
the parameter i, and A(u) = f/,(zo(p)) at a fixed
point xg.

Degenerate Bifurcation 1 (DB1). Let 6 > 0 be
such that for p € (o — 9, po + 0) the fized point xg
of the map f,, is not a break point, and A(po) = 1.
Then the fived point xo of f,, undergoes the degen-
erate bifurcation DB1 when the eigenvalue A(u)
crosses 1 as pu crosses g and f,,(x) = axVao eI, 1
being a suitable interval including xg.

It is clear that the interval I in the above definition
is bounded either by break points, or their proper
images, or I can be unbounded from one side.

Degenerate Transcritical Bifurcation (DTB).
If the fized point xo(p) tends to infinity and its
eigenvalue () tends to 1 as u tends to ug, then
a DTB occurs as p crosses [ig.

We turn now to the

Flip bifurcation theorem. Let f, : R — R
be a one-parameter family of C3-maps depending
smoothly on the parameter u; let xg be a fixed point
of fu: M) = filzo(p)) and Muo) = —1. If at
W= Mo, T = Z0

(1) (d®/d3z)f2, (o) < 0 and
(2) (d/dp)f;,(20) <O,

then there exist € > 0 and 6 > 0 such that for
€ (o — 6, po) the map f, has exactly one fized
point in the interval (xg — e,x0 + €) and this fized
point is attracting; while for u € (uo, o + 0) the
map f, has a repelling fized point and an attracting
2-cycle in the interval (xg — €, + €).

This theorem describes the supercritical (or
“soft”) flip bifurcation, while if one changes the
sign of (1) and replaces the word “attracting”
by “repelling” and vice versa, then the theorem
describes the subcritical (or “sharp”) flip bifurca-
tion. As for the inequality (2), changing its sign the
2-cycle appears for decreasing values of u. So, to
get the flip bifurcation (super- or subcritical) at
W = po,xr = xo, the following conditions have to
be satisfied: A(po) = —1, (d3/d3x)f30(x0) # 0 and
(d/dp) (o) 0.

Note that in the proof of this theorem (see for
example in [Sharkovsky et al., 1997]), it becomes
evident that the condition in (1) (d*/d®z)f2 (x0) #
0 is equivalent to Sf, # 0 where Sf = (f"/f') —
(3/2)(f"/f")? is the Schwarzian derivative of f
(where it is understood evaluated at p = pg and
r = x0).> Moreover, it is possible to see that
Sf(x) = OVax iff f is linear or linear-fractional®
(see, e.g. [De Melo & van Strien, 1993]), and for such
maps the condition Sf,(z) # 0 is not satisfied not
only at a fixed point, but in the whole region of defi-
nition. Thus the bifurcation related to an eigenvalue
equal to —1 for linear and linear-fractional maps
does not lead to the appearance of a cycle of double
period (attracting or repelling). This fact is quite
obvious for the 1D linear map: For f, : x + px +0b
at p = —1 any point « € R, except for the fixed
point xg = b/(1 — p), is periodic of period 2, while
for 4 < —1 the trajectory of any point z # xg is
divergent.

3This condition corresponds to that of the parameter a in Theorem 3.5.1 in [Guckenheimer & Holmes, 1983], in fact it is easy

to see that a = —Sf/3 at u = pg and = = zg.

4 A linear-fractional map, also called real Mébius transformation [De Melo & van Strien, 1993], and Riccati difference equation
with constant coefficients [Kocic & Ladas, 1993], is given by 3’ = (ay + b)/(cy + d) where a, b, c, d are real numbers such that

(bc — ad) # 0,¢ # 0.
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To see the result of the considered bifurcation
in a 1D linear-fractional map g : y — (ay+0b)/(cy +
d),bc — ad # 0,c # 0 in which, without loss of gen-
erality, we consider ¢ > 0, we first note that it is
topologically conjugate to the map f:x— k/z+p
(via the homeomorphism h(z) = x//c — d/c and
k= (bc—ad)/v/c,n = (a+d)/+\/c). The fixed points
of the map f are z1 9 = (ut+/p? + 4k)/2, which are
real for u?+4k > 0. The eigenvalues of f at x = 1 9
are \ = _k/$%727 and A = —1 occurs only for u = 0.
So, at the bifurcation value we have f : x — k/x,
moreover, f2:x+— x for any k # 0 and = # 0, i.e.
any point € {R/0} is 2-periodic, except for the
fixed points x1 9 = +vk. For k > 0 the map f has
two real fixed points 12, one attracting and one
repelling, existing for any p, which exchange their
stability at the bifurcation value y = 0 (note that
the fold bifurcation cannot occur for k£ > 0). Just
for completeness, let us comment also the dynamics
of f(z) for k < 0: For |u| < 2+/]k| the map f has
no real fixed points, and the points x € R either are
all periodic, of the same period (which depends on
w and k), or all are quasiperiodic, with a trajectory
dense in R [Kocic & Ladas, 1993; Sushko & Gardini,
2009]. In particular, at g = 0 any point is 2-periodic.
At p = j:2\/m the fixed points 12 undergo the
standard fold bifurcation, followed by two real fixed
points x1 2, one attracting and one repelling, exist-
ing for any p in the range || > 2/]k].

Coming back to the bifurcation related to
A = —1, we have seen that for linear and linear-
fractional maps this bifurcation is characterized by
infinitely many 2-cycles at the bifurcation value,
and it gives rather trivial results after the bifurca-
tion. But dealing with a PW linear or PW smooth
map f, (with components not necessarily all linear
or linear-fractional, as we shall see in the exam-
ples in Sec. 3), then for some k-cycle (fixed point
of the kth iterate of the map) the same bifurcation
may occur, with eigenvalue A = —1, and in this case
what occurs after is not trivial (and clearly depends
on the global shape of the function): It can give rise
to several quite complicated dynamics. This moti-
vates our definition:

Degenerate Flip Bifurcation (DFB for short).
Let f, : R — R be a one-parameter family of piece-
wise C3-smooth maps depending smoothly on the
parameter p; Let xo be a fived point of f,,0 > 0
be such that for p € (po — 0,p0 + &) the fived
point xo is not a break point of f, and A(po) =

o (@o(po)) = —1. At p = po a degenerate flip

bifurcation occurs if

(1) Sfu(x) =0Vx in a neighborhood of xy and
(2) (d/du)f,(x0) # 0.

Stated in other words, we say that a k-cycle of
a PW smooth 1D map f,, undergoes a DFB when
no point of the cycle coincides with any of the break
points of f,, A(11) crosses —1 as u crosses jug and at
the bifurcation value the map fl]f is locally (in suit-
able interval) linear or linear-fractional. Note that
we have immediately a necessary and sufficient con-
dition: A k-cycle of a PW smooth map f,, undergoes
a DFB iff at the bifurcation value (A = —1) the map
fl’j has locally (in a neighborhood of the related fixed
points) infinitely many 2-cycles. Moreover, in anal-
ogy with what occurs in smooth maps, if a k-cycle
of a PW smooth map f, undergoes a DFB then
the same k-cycle of the map fﬁk undergoes a DBI,
as locally (in suitable intervals) the map satisfies

Clearly it is also possible to have the degen-
erate analogues of a supercritical or subcritical flip
bifurcation but, as we shall see from the examples
in Sec. 3.1, the dynamic effects associated with a
DFB may be of many different kinds.

The three degenerate bifurcations defined
above may clearly occur in higher-dimensional maps
associated with one eigenvalue which crosses +1, as
we shall see in the examples in Sec. 4. In such cases,
the conditions given above refer to the center mani-
fold, and the dynamic effect clearly depends also on
the other eigenvalues and on the global definition of
the map.

Let us consider now a family of 2D maps
F, : R? — R? and formulate the Neimark-Sacker
(or secondary Hopf) bifurcation theorem following
Guckenheimer and Holmes [1983]:

Neimark—Sacker bifurcation theorem. Let F), :
R? — R? be a one-parameter family of 2D maps
which has a smooth family of fized points xz(u)
at which the eigenvalues are complex conjugated

M), M), Assume

(1) [A(uo)| =1, but N (po) # 1 for j =1,4;
(2) (d/dp)([A(po)]) = d # 0.
Then there is a smooth change of coordinates
H so that the expression HF/LH_1 i polar co-
ordinates has the form
HE,H Y(r,0) = (r(1 +d(u — po) + ar?),0 +
¢+ br?) + higher-order terms.
If, in addition,




2050 1. Sushko & L. Gardini

(3) a#0,
then there is a 2D surface ¥ (not necessar-
ily infinitely differentiable) in R? x R having
quadratic tangency with the plane R? x {ug}
which is invariant for F,. If ¥ N (R* x {uo})
1s larger than a point, then it is a simple closed
curve.

For the explicit expression of the coefficient a in
(3) we refer to [Guckenheimer & Holmes, 1983] (see
also [Kuznetsov, 1998]). The signs of the coefficients
d and a determine the direction and stability of the
bifurcating orbits, while ¢ and b give information
on the rotation numbers. In particular, similarly to
the flip bifurcation case, the NS bifurcation can be
supercritical (or “soft”, when a < 0) and subcritical
(or “sharp”, when a > 0). We remark that numeri-
cally it is possible to deduce which kind of bifurca-
tion occurs just from the local behavior of the fixed
point at the bifurcation value: If the fixed point is
locally attracting (respectively repelling), then the
NS bifurcation is supercritical (respectively subcrit-
ical). Notice that when a = 0 the theorem cannot
be applied.

For 2D linear maps the condition a # 0 is
obviously not satisfied, and, again, not only at the
fixed point, but in the whole region of definition
of the map. Indeed, considering a linear map, say,
E, : R? — R2?, with complex-conjugate eigenval-
ues A(u), A(p), if [A(po)| = 1 then the fixed point
xo(po) of F, is a center, so that the phase plane is
filled with invariant ellipses having center in (1)
and the trajectory of any point x # xo(ug) belongs
to one of such ellipses, on which it can be either
periodic, or quasiperiodic, depending on the rota-
tion number, rational or irrational, respectively (i.e.
depending on the parameters). For u # po the
fixed point is either a globally attracting focus, or
a repelling focus and the trajectory of any point
x # xo(p) spirals away and goes to infinity. How-
ever, as commented for the previous bifurcations, in
the case of a 2D PW smooth map with some linear
components we may have locally the same kind of
dynamic behavior, so that we are led to the follow-
ing definition:

Center bifurcation. Let F), : R? — R? be a one-
parameter family of 2D PW smooth maps which has
a smooth family of fized points xo(p) at which the
eigenvalues are complex conjugated \(p), (i), and
let |A\(po)| = 1. We say that the fized point under-
goes a center bifurcation at p = po if xo(po) s
locally a center.

Clearly we can have the same bifurcation for a
k-cycle of a 2D PW smooth map F), when the cycle
is not at a BCB and the fixed points of F z]j undergo
the center bifurcation, so that at ;1 = pg in suitable
neighborhoods of the fixed points of Fl’f the phase
space is filled with closed invariant curves.

The center bifurcation was first described in
Sushko et al. [2003] (see also [Sushko & Gardini,
2008]) to indicate a bifurcation occurring in a 2D
PW linear map when the complex conjugate eigen-
values at the fixed point cross the unit circle, and
it was shown that such a bifurcation has analogies
with the Neimark—Sacker bifurcation: Namely, as
in a supercritical bifurcation, a pair of cycles can
appear due to the bifurcation, one attracting and
one saddle, and the unstable set of the saddle cycle,
approaching points of the attracting cycle, forms a
closed invariant attracting curve (and similar ana-
logue exists with the subcritical case, leading to a
repelling closed invariant curve). Differently from
the smooth case such a curve is a piecewise lin-
ear set (generally made up by an infinite number
of segments, which may be finite in number only
in a particular kind of noninvertibility of the map).
After the bifurcation value the closed curve does not
appear in a neighborhood of the fixed point or cycle,
but at a finite distance from it (depending on the
distance of the cycle from the boundary separating
the regions of different definitions of the map).

In Sec. 4 we give examples of the center bifur-
cation occurring in 2D PW linear maps. We shall
see that besides the appearance of attracting closed
curves, due to a supercritical center bifurcation
(analogue of a supercritical NS bifurcation) we can
have also a subcritical center bifurcation (analogue
of a subcritical NS bifurcation), when a repelling
closed curve surrounds the stable focus cycle. Also
we shall see that as a consequence of a center bifur-
cation we may have a direct transition to a chaotic
attractor.

To end this section it is worth to mention
the codimension-two bifurcations occurring when
the nondegeneracy conditions are not satisfied (at
a fixed point), such as the cusp bifurcation, the
generalized flip bifurcation, and the Chenciner, or
generalized NS, bifurcation: See [Kuznetsov, 1998|
for the details and additional conditions which
have to be fulfilled. These bifurcations are not
related to the degenerate bifurcations we are inter-
ested in, as described in this work, because the
additional conditions require nonzero derivatives of
order larger then 2. Moreover, for such bifurcations
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the nondegeneracy conditions are not satisfied only
at the fixed point, and not in an open subset
of the phase space, as in case of the degenerate
bifurcations.

Summarizing, we have shown that for linear 1D
and 2D maps the nondegeneracy conditions of the
theorems recalled above are not satisfied, as well as
the nondegeneracy condition (1) of the flip bifurca-
tion theorem for the 1D linear-fractional maps, and
these conditions fail not only at the fixed points,
but in the whole region of definition of the related
maps. As a consequence, the results of the transi-
tion of the eigenvalues through unit circle are triv-
ial, while these results can be not trivial at all
when dealing with PW smooth maps whose fixed
points or cycles undergo the degenerate bifurcations
described above.

3. Examples of Degenerate
Bifurcations in 1D PW
Smooth Maps

In this section we present three examples of 1D
PW smooth unimodal maps in which the degenerate
bifurcations can occur leading to different dynamic
behaviors. As a first example, we consider the well-
known skew-tent map which is a 1D PW linear
map defined by two linear functions. We recall that
the DFB of an attracting k-cycle, £k > 3, of the
skew-tent map leads to 2k-cyclical chaotic intervals,
the DFB of the 2-cycle results in 2*-cyclical chaotic
intervals, where ¢ > 2 can be any integer depending
on parameters; while the fixed point of the skew-
tent map can undergo a subcritical or supercriti-
cal period-doubling DFB, or its DFB can lead to
2i_cyclical chaotic intervals, i > 1. As a second
example we consider a PW map given by linear and
logistic functions, fixed point of which can undergo
the DB1 leading to 2%-cyclical chaotic intervals,
1 > 1. The third map is interesting as an example
of 1D PW smooth map in which the degenerate
bifurcations are associated with nonlinear compo-
nents (not only with linear and linear-fractional
functions). In the second and third examples we
show also how the dynamic behavior of the skew-
tent map is important in the theory of BCB, given
that it is used as a 1D BCB normal form.

3.1. 1D BCB normal form
(skew-tent map)

Consider a 1D PW linear map f given by two linear
functions and defined as

fL($>:Oéx+67 :L'SO,
fR('I) = ﬂx+5a

x>0,
where o, f and ¢ are real parameters.

Due to the linearity the map f has the follow-
ing scaling property: f(kx, o, 3,ke) = kf(x,,(3,¢)
for any k£ > 0, so that if in the phase space the map
f has an invariant (bounded) set, it shrinks to 0 as
¢ — 0. This also implies that for k = 1/|e|,e # 0,
with the change of variable y = x/|e| we are led to
a map in the same form as in (1), where ¢ = —1
or ¢ = 1. However, in order to determine all the
possible bifurcation curves, it is enough to consider
only one of the two cases, say € = —1, as the bifur-
cation curves associated with the second case ¢ = 1
can be obtained by a symmetry property. In fact,
the map = — f(z,«, 3,¢) is topologically conjugate
with y — f(y, 3, o, —¢) through y = —z, so that the
bifurcation structure of the (a, 3)-parameter plane
for e = 1 is symmetric with respect to the line a = (8
to the one for ¢ = —1. We emphasize that for any
fixed € < 0 the bifurcation diagram in the plane
(a, B) is the same as for ¢ = —1, and similarly for
any fixed € > 0 the bifurcation diagram in the plane
(a, B) is the same as for ¢ = 1 (symmetric with
respect to the line o = ( to the one obtained for
¢ = —1, which means that in the equations of the
bifurcation curves it is enough to exchange o with
[ and vice versa).

So, let € < 0. It is shown in Fig. 1 the partition
of the (a, B)-parameter plane into the regions hav-
ing qualitatively the same dynamic for the map f.
If one considers the parameter range o < 0,3 > 0
then the map f is called skew-tent map (or tent map
if @« = —(3), possessing quite rich dynamics which
was intensively studied by many authors (see, e.g.
[Ito et al., 1979; Takens, 1987; Maistrenko et al.,
1993; Nusse & Yorke, 1995]).

Let us describe in detail the bifurcation struc-
ture of the («, 3)-parameter plane for o < 0,3 > 0.
The point = 0 is the point of minimum and the
absorbing interval I is given by I = [£(0), f2(0)] =
[e,e(a + 1)]. For B < 1 the map f has a unique
fixed point 27 = ¢/(1 — o) < 0, which is glob-
ally attracting for « > —1 and repelling for a <
—1, while for B > 1 the map f has one more
fixed point a7}, = €/(1 — 3) which is repelling. For
a > —1,8 > 1, the basin of attraction of z7 is
given by (—oo,z%). When the fixed point z7j is
unstable then the interval (z},_;,}) is the basin of
attraction of the absorbing interval I, which exists
as long as f?(0) = e(a + 1) < 3. The curve

fx+—>f(az):{ (1)
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Fig. 1.

e(a+1) = 2}, that is f = a/(14+«), corresponds to
the contact bifurcation,® or boundary crises, lead-
ing (for > a/(1+ «)) to divergence of the generic
trajectory of f, so that we are led to consider the
parameter range

P:{(a,ﬂ):a<0,0<ﬁ<1ia}.

Depending on the parameters o and § the map f
for (o, ) € P can have an attracting cycle g of any
period k > 2, as well as cyclical chaotic intervals Qg
of any period k£ > 1. In [Maistrenko et al., 1993] the
analytical expressions are given for the boundaries
of the regions in the (o, 3)-parameter plane related
to such attractors. In particular, the cycles having
period k£ > 3 appear in pair, one stable ¢, and one
unstable ¢;.. In order to find the periodic points of
such cycles, we proceed as follows. We know that
a periodic point m’f’s of the cycle ¢ is obtained by
solving the following equation: f 1’%_10 f L(m’f’s) = :Ulf’s
which leads to the point
k
AN i ®)
1—apBk-11-0

while a periodic point a:’f“ of the cycle g}, is obtained
by solving the following equation: f 2‘2 o fg(m’fu) =
a:’lw which leads to the point

aft (1B +1- !

ku €
Ty T 1— a2k 1-3 G

div.

«rep. Xy

4 DTB .

The partition of the («, 3)-parameter plane into regions having qualitatively the same dynamics for the map f at e < 0.

and the BCB occurs when the periodic point ;v'f“
collides with the border, a:'lw =0, that is for:

1— lBk—l
(1—p)pk—2

Thus Eq. (4) gives the BCB curve denoted BCy
crossing which a pair of cycles appear, one attract-
ing cycle g (a periodic point of which is given
in (2)) and a repelling cycle ¢, (a periodic point
of which is given in (3)) for a < a, where ay is
defined below, while both cycles are repelling if o >
ag. The eigenvalue of the stable cycle ¢ is given
by A = a8 ! so that it loses stability via DFB
when

BCy (4)

o= —

1
_ng—l’

So, denoting by II(gx) the stability region of the
cycle g, this region is given by (a, 3) € II(gx) where

_L<a<_1_75k_1}
prt T T A=)

and it is bounded by the two bifurcation curves BCy,
and DFBy, given in (4) and (5), which intersect at
the point (ag, k), where By is the root of the equa-
tion f¥ — 23 +1 = 0 in the interval (0.5,1) and
ap = -1/ 6;:_1.

It has been shown in [Maistrenko et al., 1993]
that the DFB of g, for k£ > 3 leads to cyclical chaotic
intervals of double period 2k, denoted by Qo,

DFB, (5)

i) = { (0.9

5Contact between the invariant interval I and its basin of attraction.
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so that the transition g = Qo is the result of
the DFB of this cycle. The attracting 2k-cyclical
chaotic intervals Qo exist in the parameter region
bounded by the curves BCy, DFBy, (given in (4), (5),
respectively) and by the curve denoted Hy related
to the first homoclinic bifurcation of the cycle gy,
given by

B3 — a4+ 3=0. H, (6)

So the transition Q9 = @ takes place if the
parameter point crosses the curve Hy. The attract-
ing k-cyclical chaotic intervals @Qj exist in the
parameter region bounded by the curves BCy, Hy
(given in (4), (6), respectively) and by the curve
denoted Hj, corresponding to the first homoclinic
bifurcation of the cycle g}, given by

g’ +a—-p=0. H, (7)

Thus we have the transition Q; = @1 if the param-
eter point crosses the curve Hj. For example, the
lower boundary of the region II(gs3) (see Fig. 1) is
the curve BC3 corresponding to the “saddle-node”
BCB which gives birth to the attracting cycle g3
and the repelling cycle ¢5. The upper boundary of
the II(g3) region is the curve DFBj3 corresponding
to the DFB of the attracting cycle g3 which becomes
repelling, leading to 6-cyclical chaotic intervals Qg.
The boundary between the Qg-region and the Q3-
region is the curve Hj corresponding to the first
homoclinic bifurcation of the cycle g3, while the
upper boundary of the @Qs-region is the curve Hj
related to the first homoclinic bifurcation of the
cycle ¢4 and leading to a one-piece chaotic interval
Qr=1=le(a+1).

The bifurcation curves are drawn in Fig. 1 by
using their analytical expressions, and each curve
corresponds to a particular bifurcation. In that por-
tion of the parameter plane only the stability region
of the cycle ¢3 is observable, but note that in the
strip for # € (0,0.5) all the regions II(gx) exist
where k — oo as « tens to —oo. Moreover, all these
cycles of period k > 3 undergo the same bifurcation
sequence (at some fixed a and increasing (3), that
is, the DFB g = Q2. is followed by the transitions
Qo = Qr = Q1.

It is possible to see in Fig. 1 that the DFB of
the 2-cycle g9 is particular. The eigenvalue of ¢
is given by A = «af so that the DFB of ¢ occurs
at f = —1/a. Differently from the cycles ¢ for
k > 3 described above, the DFB of ¢ may lead to
cyclical chaotic intervals of any even period, that is,
we can have the transition go = Qbm, where m > 2,

moreover, m — 0o as « — —1 and = —1/a — 1.
Two contiguous regions ngi and Q’% 41 are separated
by the curve corresponding to the first homoclinic
bifurcation of the 2'-cycle given by

Q1% 4 (=1)"(a = ) =0, Hy

where 6,,,m = 0,1,..., is the solution of the dif-
ference equation d;11 = 26; + (1 + (—1))/2, i =
1,2,..., with 69 = 1 (see [Maistrenko et al., 1993]
for the details).

As the parameter point (o, 5) = (—1,1) is an
accumulation point for the regions related to the
2M-cyclical chaotic intervals Q4 as m — oo, we
can see that crossing through a = —1 the DFB of
the fixed point x7 may also lead to any one of such
2™_cyclical chaotic intervals Q. for any m > 1,
while for —1 < 3 < 1 the DFB of z7 leads to the
cycle gs.

For clarity of exposition, let us comment on the
1D bifurcation diagram obtained for § = 0.5, =
—1 and a € [-4.8,—0.95], shown in Fig. 2. At
a = —1 (the DFB of the fixed point 27} ) each point
of the segment [—1,0] (except z7}) is 2-periodic
for the map f. This bifurcation gives rise to the
attracting 2-cycle gs. The DFB of g9 occurs at o =
—1/0|g=0.5 = —2 and at this bifurcation value there
are two segments, [f(0), £3(0)] and [0, f2(0)], each
point of which (except gq) is 4-periodic for the map
f. The DFB of the cycle ¢y leads (at this value of
B) to 4-cyclical chaotic intervals @), then the homo-
clinic bifurcation of ¢ results in the pairwise merg-
ing of the intervals of @Q, giving rise to @5, which

Fig. 2. 1D bifurcation diagram of the map f for f = 0.5,
e=—1and o € [-4.8,-0.95].
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bifurcates to ()1 due to the first homoclinic bifurca-
tion of the fixed point 23 occurring when f3(0) =
i, at a = (=1 —/1+40)/28|p=05 ~ —2.41. At
a = —(140)/Blg=05 = —3 we have the “saddle-
node” BCB (the lower boundary of II(g3)) giving
rise to the attracting cycle ¢3 and the repelling cycle
g5 At o = —1/ﬂ2|,8:0_5 = —4 the DFB of ¢3 occurs,
and there are three segments of periodic points: the
segment [0, £3(0)] and its two images by f, that is
[£(0), £4(0)] and [f£°(0), £2(0)]. Each point of these
segments (except for the points of ¢3) is periodic
of period 6. The DFB of g3 gives rise to 6-cyclical
chaotic intervals QD¢ which then bifurcates to Q3 due
to the homoclinic bifurcation of ¢3 and, finally, the
homoclinic bifurcation of ¢§ leads to Q1.

In general, at the parameter values related to
the DFB of the attracting cycle ¢, that is for
(,8) : a = —1/p%=1) (before the intersection
point (o, Bk),a < ag, 8 < B), the map f has k
segments each point of which (except for the points
of qi) is 2k-periodic, or, if we consider the related
map f2*, it has k segments, each point of which is
fixed.

To complete the description of the possible
bifurcations occurring for the map f and, in par-
ticular, degenerate bifurcations of the fixed point
x7 and the 2-cycle g2, we note that the DFB of
x7 taking place at @« = —1 for § < —1 is of sub-
critical type: Indeed, a repelling 2-cycle ;. coexists
with the attracting fixed point x7 before the bifur-
cation for « > —1,08 < 1/a, so that at « = —1
the cycle ¢, undergoes the BCB (its points —1 and
0 are the end points of the segment each point of
which except z7} is 2-periodic), and after the bifur-
cation, that is for a < —1, the cycle ¢ disappears,
while 27 becomes repelling. Note also that the curve
B = 1/« corresponds to the eigenvalue A = aff =1
of the 2-cycle, and at such parameter values the
points of the 2-cycle are located at infinity, that is
the curve 8 = 1/« is related to the degenerate tran-
scritical bifurcation (DTB) of the attracting cycle
g2 (for a < —1) or of the repelling cycle ¢} (for
—1<a<0).

As it was mentioned in the Introduction the
map f is used as normal form to study the BCB
occurring in 1D PW smooth maps. In fact, the
border-collision of the fixed point of f occurs at € =
0 (z7 = 2 = 0), so varying e through 0 (from ¢ < 0
to e > 0 or vice versa) at some fixed values (o, 3) =
(a*, %) the dynamics of f changes due to this BCB
(we exclude the trivial case |a] < 1,|8] < 1 when
crossing ¢ through 0 leads from the attracting fixed

point on one side of the break point to the attract-
ing fixed point on the other side). To see what kind
of transition occurs in a nontrivial case, first recall
that the (o, 3)-bifurcation structures of the maps
f(z,a,8,¢) and f(z,a, 3, —¢) are symmetric with
respect to a = 3, thus it is enough to consider in the
(o, B)-bifurcation plane (see Fig. 1) the two points
(0,8) = (o, 5) and (a, 8) = (8*,a"), and then
the dynamics of f changes according to the dynam-
ics related with these two points. For example, if
we fix (o, %) = (—2,0.8) then at ¢ = 0 the BCB
leads from the attracting fixed point (corresponding
to (o, B) = (0.8, —2) in Fig. 1) existing for € > 0 to
the attracting chaotic interval existing for ¢ < 0
(corresponding to (a, 5) = (—2,0.8) in Fig. 1).

All the possible BCB of the fixed point of f
are summarized in Fig. 3, where it is also shown
schematically the related 1D bifurcation diagrams
for € crossing 0 from a positive to negative value;
the dashed region corresponds to the BCB from no
attractor to cyclical chaotic intervals. Due to the
fact that all the bifurcation curves for the map f
have analytical expressions, all the BCB which can
occur at € = 0 are well classified. This allows to
use the map f as the BCB normal form for 1D PW
smooth maps (examples will be presented in the
next subsections).

3.2.

In this subsection we consider a PW smooth uni-
modal map g with one break point defined as

1D linear — logistic map

¢ o(a)
g1(z) =rz, 0<z <7
@) =ax(l-z), T<z<l;
,

T=1-_, (8

=1l @)

where a and r are real parameters: a > 3 and
0<r<a.

The dynamics of the map g were studied in
detail in [Sushko et al., 2005, 2006]. Here, we first
discuss possible results of the degenerate bifurcation
A =1 (DB1) occurring for the fixed point 2} = 0
at r = 1, whose effect is very similar to the DFB
of the fixed point that we have seen in the previous
example. Then we show without going into details
how to apply the 1D BCB normal form (which is the
skew-tent map f presented in the previous subsec-
tion) to classify the BCB of the attracting 2-cycle
of the map ¢ depending on the parameters.
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Partition of the (o, 3)-parameter plane into the regions of qualitatively similar dynamics of the map f (see also Fig. 1);

The related BCB of the fixed point of f occurring at € = 0 are illustrated schematically by 1D bifurcation diagrams.

The fixed point x7 is globally attracting for
r <1. At r = 1 there is a segment (—oo,Z] each
point of which is fixed. To see the result of the DB1,
that is, to see what kind of attractor appears after
this bifurcation, first note that the interval I = [0, 1]
is trapping for the map g if (r,a) € D, where

r2
r—1

Note also that for r > 1,1 < a < 3 the second fixed
point zj, = 1 — 1/a is attracting for any = € I.
In [Sushko et al., 2005, 2006] the bifurcation struc-
ture of the (7, a)-parameter plane of the map g was
described in detail, showing that for (r,a) € D the
map ¢ can have attracting cycles v, of any period k,
as well as k-cyclical chaotic intervals Gy of any
period k.

Figure 4 shows a part of the 2D bifurcation dia-
gram of the map ¢ in the (r,a)-parameter plane
in which the stability region of the fixed point
x} (shown in orange) is bounded by the curve
r = 1 of the degenerate bifurcation DB1. The
stability region of the attracting 2-cycle o of
period 2 (shown in green) is bounded by the BCB
curve denoted By (whose analytic equation is given
below); Hok, for any k& > 1, denotes the curve of
first homoclinic bifurcation of the repelling cycle of
period 2%;H; is the curve of first homoclinic bifur-
cation of the fixed point a%, given by f3(T) = z%,.

D={(r,a):1<r<2,a§

U{(r,a) : r > 2,a < 4}.

For parameter values belonging to the region
bounded by the curves Hor and Hqr+1 the related
attractor of the map g consists in 2¢H!-cyclical
chaotic intervals Gor+1, and for parameter values
taken above the curve H; the map g has a one-piece
attracting chaotic interval Gy. It is possible to see
that the homoclinic curves intersect the curve of
the DB1 given by » = 1 so that, depending on the
value of the parameter a, this bifurcation can lead to
cyclical chaotic intervals Gy of any integer k£ > 0.

.95 1 1.05 1.1 1.45 F 1.z 1.25 1.3 1.35

Fig. 4. A portion of the 2D bifurcation diagram of the map
g in the (r,a)-parameter plane.
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Thus, for example, for a > 3.618 the DB1 of the
fixed point x7 gives rise to the attracting chaotic
interval G1. Note that the point (r,a) = (1,3) of
the (r,a)-parameter plane in particular: It is an
accumulation point for the curves Hor as k — oo,
so that if the parameter point moves transversely
through all the curves Hqyx, approaching the point
(r,a) = (1,3), then we have an infinite cascade of
period-doubling bifurcations for the cyclical chaotic
intervals Go = G92 = G93 = - - -, the size of which
reduces to 0. So, the DB1 of the fixed point 7
can give rise to cyclical chaotic intervals Gyx, where
k — o0 as a — 3.

Figure 5 presents a 1D bifurcation diagram for
parameter values a = 3.2 and r € [0.99,1.1] (see
the straight line with an arrow in Fig. 4), at which
it is possible to observe the following bifurcation
sequence: 7 = Go2 = Go.

Let us now show how the 1D BCB normal form
f given in (1) can be used to study the possible
kinds of BCB of the cycle v, of the map ¢ (for the
details see [Sushko et al., 2006]). Let B,, denote a
curve in the (r,a)-parameter plane related to the
BCB of v,. It is given by B,, = {(r,a) : ¢"(T) = Z}
(see, for example, Fig. 4 in which a part of the curve
By is shown; By is given by a = 1/r+ 14+ 7,1 <
r < rg, where 7o = (V6 + v/2)/2). Let the (r,a)-
parameter point cross B, transversely at some point
(r*,a*) € B, in such a way that -, is attract-
ing before the collision. The result of this collision
depends on the left and right side derivatives of

g" at x = T,(r,a) = (r*,a"), denoted a and [,
respectively:
0.8
——-
x|
0
-0.1

(a)
Fig. 5.

6= tim L), ()

a= lim ——g"(z); n -
r—T4 AT

T—T dSU

Namely, if we consider the map f given in (1) with
such parameters a and § and let the parameter e
vary through 0, then the BCB of the fixed point
of the PW linear map f and the BCB of the fixed
point of the PW smooth map ¢g" are of the same
kind, that is, the border collision occurring for the
cycle v, of the map g at (r,a) = (r*,a*) € B,, is
of the same kind as the border collision of the fixed
point of the map f occurring at £ = 0.

Coming back to our example: The BCB curve
By of the cycle v2 of the map ¢ in (8) in terms
of the related parameters o and [ is given by
B =—4a(v/5 —da+a—1)/(v/5—4a—1)2 8| <1,
and it is the curve denoted L9 in Fig. 6. Let L3
denote the curve symmetric with respect to a = (5.
This curve is located in the range |a] < 1 corre-
sponding to the attracting fixed point of the map
f (see Fig. 1), so, it is related to the attracting
fixed point of g2 (or, in other words, to the attract-
ing cycle 75 of g before the border-collision). Now
it is possible to see which bifurcation curves the
curve Lo intersects and we can deduce which attrac-
tors of g appear due to the BCB of 7, (note that
the period of such attractors of g is doubled with
respect to those indicated in Fig. 6, as the curve
L5 is related to the BCB of the fixed point of g?).
Given that in Fig. 4 only a part of the curve By
is shown (the related part of the curve Ly is the
one shown in red for € [-2.17,—1]), only the
BCBs 72 = Gar,k > 1, are observable in Fig. 4.

0.75

0.6

(b)

(a) 1D bifurcation diagram of the map g at a = 3.2, r € [0.99, 1.1], and (b) its enlargement.
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Y[ div, ' B = a/(l-a2
p=a/(1+a)
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Fig. 6. An enlarged part of the 2D bifurcation diagram of
the skew-tent map f in the («, 8)-parameter plane shown in
Fig. 1: Here a € [—4,—0.5] and 8 € [0, 1.5]; The curve L3 is
related to the BCB of the attracting fixed point of the map
g% where g is given in (8).

In particular, the parameter point (r,a) = (1,3)
corresponding to (a, ) = (—1,1), is an accumula-
tion point not only for the degenerate bifurcations
DBl 2} = Gor (at r =1 and k — o0 as a — 3),
but also for the BCB 72 = Gk, where kK — oo as
r—landa=(1/r+1+r)—3.

3.3. 1D power — linear-fractional
map

Consider now one more example: A 1D PW smooth
map ¢ which is defined as follows:

f(a:)zm:l_%, 0<z<1
¢rx— gx) = re
g(z) = Troz-1 " =1
(10)

where § = (1 — (1/0))'=7,0 > 1,7 > 0. The map ¢
is studied in [Gardini et al., 2008].

The function f(z) is monotonic increasing as
flx)y=r(1- (1/0))9:_§ > 0. It has a unique fixed
point x} = r? which exists (in its region of defini-
tion: x < 1) as long as r < 1, and when it exists, it
is always stable, as 0 < f/(z}) = (1 — (1/0)) < 1.
Furthermore, it is globally attracting except for the
origin. At r = 1 a BCB occurs: 27 = 1, which
we shall comment here below, and can lead to an
attracting 2-cycle, as well as to attracting cyclical
chaotic intervals Q),,, where m = 1,2, 4.

2057

Let us first consider the DFB which can occur in
the map ¢. The function g(x) is monotonic decreas-
ing and convex (as ¢'(z) = —(r(6 — 1)/(1 + 0(z —
1))?) < 0, and ¢”(z) > 0) and it has a unique fixed
point x}, = 1+((r — 1)/0) which exists for any r > 1
(at r = 1 it undergoes a BCB: z}, = 1), but it may
be stable or unstable. From ¢'(z%,) = —(0 — 1)/r we
have that it is locally stable for r > (6 — 1), and it
is easy to see that it is also globally attracting. The
interesting regime is the interval 1 < r < (6 — 1),
and as r varies in this interval the dynamics depend
on the value of the other parameter o. At the bifur-
cation value r = (0 —1) a DFB occurs: all the points
of the segments [1,2},) and (2%, 1] are periodic of
period 2. We can show this by using the change of
variable which puts z7% in the origin. That is, let
Yy =x — xp then

(1-0)y

h(y) = gly +xR) — 2R = oyt

and

(1—0)%
W) = y(0(1—0) +16) + 12

so that at the bifurcation value r = (# — 1) we have
h?(y) =y, and ¢([g(r),7]) = [g(r),r]. In Fig. 7(a)
we show the map ¢ (whose graph is in green) at
the DFB of the fixed point, when ¢?(z) = z in the
interval [g(r),r], leading to a unique attracting 2-
cycle, with periodic points on opposite side with
respect to x = 1.

In Fig. 7(b) we show the DFB of the 2-cycle,
occurring when ¢*(1) = go f o g?(1) = 1, at which
we have ¢*(z) = x in two intervals: [¢?(r),r] and
[9(r), ¢*(r)], leading to 4-cyclical chaotic intervals
4. The rigorous proof of all the bifurcations occur-
ring in the map ¢ are not easy because of the com-
plex analytical expressions. However, a numerical
proof is summarized in Fig. 8(a), where we present
a 2D bifurcation diagram in the (r,o)-parameter
plane in which different colors correspond to differ-
ent dynamic regimes of the map ¢. For any fixed
value of 0, ¢ > 2, as r decreases from a value larger
than (0 — 1), the transition is always of the same
type: the DFB of the fixed point is followed by the
DFB of the 2-cycle occurring at a value r = 74(0)
(at which the condition ¢*(1) = go fog?(1) =1 is
fulfilled), leading to 4-cyclical chaotic intervals Q.
The next bifurcation gives rise to 2-cyclical chaotic
intervals Qs due to the first homoclinic bifurcation
of the 2-cycle when the point = r is preperiodic to
this cycle, occurring at a value r = r9(0), at which
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Fig. 7. (a) The map ¢ (whose graph is in green) at the DFB of the fixed point at r = ( — 1) = 1.441408, o = 5; (b) the DFB
of the 2-cycle at r = 1.0725, 0 = 5.

the condition ¢°(1) = ¢? o f 0 g?(1) = z is ful-  preperiodic to it, occurring at a value r = ri(0)
filled, where zz > 1 denotes the periodic point of  at which the condition ¢3(1) = f o g?(1) = ' is
the 2-cycle in the right side. Then the two chaotic  fulfilled, that is when

intervals of ()9 may merge into a one-piece chaotic ) (1-1)
interval @1 due to the first homoclinic bifurcation . ( r ) 7 1+ u (11)
of the fixed point x%, when the point x = r is ) 0

30

15

i La

(a)

Fig. 8. In (a) 2D bifurcation diagram in the (r,o)-parameter plane. The yellow color corresponds to a stable fixed point in
the map ¢ followed by a region of attracting 2-cycle g2, and in sequence the colored regions correspond to k-cyclical chaotic
intervals Qy, for k = 4,2, 1 respectively. In (b) the BCB curve B in the («, 3) parameter plane.
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To rigorously prove which kind of BCB occurs
at 7 = 1 we make use of the BCB normal form f
given in (1) and described in Sec. 3.1. The result
of the BCB of the fixed point depends on the left
and right side derivatives of ¢(x) evaluated at = =
1forr =1:a=limg_(d/dx)p(x) and f =
lim, .1, (d/dz)¢(x), that is:

a= (1—l> €(0,1), f=(1-60)<0. (12)

g

Substituting first @ = (1 — (1/0))!~7 and then o =
1/(1 — «) into (12) we get the expression of the
BCB curve of the fixed point z* = 1 in terms of the
parameters a and [, which is denoted as B*,

B*:3=1- D, (13)
Its symmetric one is denoted as B:
B:a=1-p3%0-1

and it is plotted in blue in Fig. 8(b).

The curve B in Fig. 8(b) corresponds to the
vertical line » = 1 in the bifurcation diagram in
Fig. 8(a). We can see that B intersects the straight
line &« = —1 at a point P which is («, 3) = (—1,0.5),
related to the DFB of the fixed point at (r,0) =
(1,2) in Fig. 8(a), the intersection with the DFB of
the 2-cycle corresponds to the point o4 in Fig. 8(a),
and the intersections with the homoclinic bifurca-
tion curves Hs, and H, in Fig. 8(b) correspond to
the points o9 and o7, respectively, in Fig. 8(a).

4. Degenerate Bifurcations in the
2D BCB Normal Form

To give examples of the degenerate bifurcations in
2D PW smooth maps we use the 2D BCB normal
form F : R?> — R? proposed in [Nusse & Yorke,
1992], which is nowadays quite intensively studied
by many researchers in order to classify possible
BCB in 2D PW smooth maps (see, e.g. [Baner-
jee & Grebogi, 1999; Zhusubaliyev et al., 2006;
Sushko & Gardini, 2008; Simpson & Meiss, 2008;
Gardini et al., 2009al, etc.). The map F is given by
two linear maps Fp and Fr which are defined in
two half planes L and R:

FL(xvy)’ ($,y) EL;

(14)
FR(xvy)’ (x,y) € R;

F:(az,y)+—>{

where
() (I8, e
(15)
Fr: <§> - <TR$Z:; “), R={(z,y):z >0}
(16)

Here 71, TR are the traces and 97,0 are the deter-
minants of the Jacobian matrix of the map F in the
left and right halfplanes, i.e. in L and R, respec-
tively, R? = L U R.

By using the change of variables (u = z/|u|,v =
y/|u]), and then changing (u,v) into (z,y), we are
lead to the map as in (15) and (16) with 4 = —1 or
1 = 1. However, in order to determine all the possi-
ble bifurcations it is enough to consider only one of
the two cases, say p = +1, as the bifurcations asso-
ciated with the second case u = —1 can be obtained
using a symmetry property. In fact, with the change
of variables (u = —x,v = —y) the two cases are
topologically conjugate, i.e. there is a symmetry in
the (17, TR, 01, 0R)-parameter space with respect to
the surfaces 7, = 7g and d;, = . So, it is enough
to describe the bifurcations of F' at p = 1 (which is
the same for any p > 0), then for p = —1 (which
is the same for any p < 0) we have similar results
exchanging the index L into R and vice versa.

Let L* and R* denote the fixed points of F7,
and Fr determined, respectively, by

M —Oi
1—7‘i+(5i71—7'i+(5i

L* is the fixed point of the map F if u/(1—71+d1) <
0, otherwise it is a so-called virtual fixed point which
we denote by L*. Similarly, R* is the fixed point of
Fif u/(1 —7mr + 0r) > 0, otherwise it is a virtual
fixed point denoted by R*. If the parameter j varies
through 0, the fixed points (actual or/and virtual)
cross the border line z = 0, so that the collision
with it occurs at the value p = 0, at which L* and
R* merge with the origin (0, 0).

The border line x = 0 denoted LC_q, as well
as its backward and forward images by F are called
critical lines [Mira et al., 1996]. The first image of
LC_; is the straight line LC' = F(LC_;) = {(z,y) :
y = 0}, while LC; = FY(LC),i > 0, called critical
line of rank ¢, is in general a broken line.

The stability of the fixed point R* is defined by
the eigenvalues A 5(g) of the Jacobian matrix of the

>, i=L,R.
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map Fr, which are

(Tr £ /T — 40R) a7

2

The triangle of stability of R*, say S(R*), is defined
as follows:

S(R*):{((;R,TR):1+TR+5R>O,
1—7‘R+(5R>0,1—(5R>0}. (18)

Al 2(R) =

The eigenvalues A o(r) of the Jacobian matrix of
Fr, and the triangle of stability S(L*) are defined
as in (17) and (18), respectively, putting the index
L instead of R.

In the next subsections we present examples
of the degenerate flip bifurcation, as well as super-
and subcritical center bifurcation of the fixed point
R*, and also degenerate bifurcations of the cycle of
period 3.

4.1. Degenerate flip bifurcation of
the fixed point R*

So, let pu = 1,((5L,TL) € S(L*>,((5R,TR) € S(R*),
so that the map F' has the attracting fixed point
R* and the virtual attracting fixed point L* (it is
clear that even if the second fixed point is virtual,
its stability defines dynamics in L). In this sec-
tion, we describe the DFB of R* occurring when the
(0r, Tr)-parameter point leaves the triangle of sta-
bility S(R*) crossing the boundary 1+ 75+ dr = 0
which corresponds to Ay(g) = —1.

First note that in [Maistrenko et al., 1998] a 2D
PW linear map was considered, the fixed point of
which undergoes the DFB (to indicate this bifur-
cation the authors have used the term “flip bifur-
cation”). It was shown numerically that depending
on the parameters this bifurcation can lead to an
attracting cycle of period 2, or to a cyclical chaotic
attractor of period 2, where k > 1 can be any inte-
ger. In the present section, we show (without going
into details) that an analogous transition can be
observed due to the DFB of the fixed point R* of
the map F.

Let the eigenvalues Ajyp) be real and W7}
(respectively W7}') denote a local invariant set of
R* related to the eigenvalue A;g) (respectively
Aa(ry)- It is easy to show that at 1+ 7r + dr = 0
corresponding to the DFB of R* we have W} =
[A,B],A = (07)‘1(}%)/(1 - /\I(R))> € LC.,B =
(1/(1=Xi(r)),0) € LC; Each point of [A, B] except
R* is periodic of period 2. If the (dg, Tr)-parameter

point crosses the DFB line the fixed point R*
becomes a saddle.

To see the result of this bifurcation we first
obtain stability conditions for an attracting cycle of
period 2 denoted 2, which, obviously, has one point
in R and one in L. Let Ay o(,,) be the eigenvalues
of the Jacobian matrix of the map F? = Fr o FJ,.
The region S(7y2) of existence and stability of o
can be bounded by at most four straight lines: The
first one denoted BCBs corresponds to the BCB
of 79 and three others are related to the degenerate
bifurcations, namely, to the DTB (A(,,) = 1), DFB

(A2(y,) = —1) and the center bifurcation denoted
CBa (|A12(1)| = 1):
TR =—1—0r; BCBs
(1+6r)(1+ 1)
Tp = , T, 0
f L L7 . DTB,
or =1, 7, =0
(0r —1)(1 —dz)
Tp = , T, 0
f L L7 . DFB,
op = —1, 7, =0
1
5325,&750. CBy

In the (dr, Tr)-parameter plane all the four straight
lines, or only three of them, bound the region S(v2)
depending on 77, and 7. Moreover, this region can
also be unbounded (when the straight lines DTB,
and DFBs are parallel, that holds for é;, = 0,77, #
0, or for 77, = 0). Figure 9 presents S(R*) and S(v2)
at 7, = —0.1,6; = 0.5.

One can immediately note that the equations
for the DFB boundary of S(R*) and the BCB
boundary of S(v2) are the same, so that the DFB of
the fixed point R* can lead to the attracting cycle
~2. Following some simple geometrical reasoning it
can be easily shown that for 77, < 0 the DFB of R*
always leads to the attracting cycle o (as it occurs
in the case presented in Fig. 9): Indeed for 77, < 0
at the intersection point of DFBy and BCBy we
have 0 > 1, so that if the (dg, 7r)-parameter point
crosses the DFB boundary of S(R*) the fixed point
R* can bifurcate only to the attracting cycle vs.

For 71, > 0 the DFB of R* can lead not only
to the attracting 2-cycle, but to a cyclical chaotic
attractor as well. To see this first note that for
d0r, = 0,0g = 0 the dynamics of F' are reduced to
the critical line LC' on which it is defined as the
skew-tent map f given in (1), where a = 71, > 0,
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Fig. 9.
67, = 0.5.

The regions S(R*) and S(y2) at 7, = —0.1,

8 = 1r < 0,u > 0. For such a map the point
(1, 7r) = (1,—1) is particular (see Sec. 3.1) being
an accumulation point for the curves related to a
cascade of the period-doubling bifurcations of the
cyclical chaotic intervals Qor = Qort1, Where k —
oo as (17,7r) — (1,—1). It is natural to suppose
that if the intersection point of DFBy and BCBs
is (0r,7r) = (0,—1), that holds for 77, = 1 — dp,
then this point is also an accumulation point for
the curves corresponding to infinite period-doubling
cascade of cyclical chaotic attractors of the map F.

So, let 7, = 1 — d;,. Recall that we consider
(0r,71) € S(L*), so that if 7, = 1 — dr, then it fol-
lows that 67, > 0 (Fig. 11 shows the regions S(R*)
and S(y2) at 6, = 0.4,7, = 1 — ér, = 0.6). Then,
varying the value of dr through 0 at fixed o7 > 0,
the map F changes its invertibility, being invert-
ible for g > 0 and noninvertible (of Zy — Zs type)
for 6 < 0. At 6g = 0 we have A;(g) = 0, so that
the whole region R is mapped into the critical line
LC (the map F' in such a case is noninvertible of
Zy— Zoo — Z7 type). It can be easily shown that the
dynamics of F' are reduced to a one-dimensional
subset of the phase space, namely, to a tree made
up of a finite number of images of LC. The struc-
ture of such a tree, the attractors on it and their
bifurcations are described in detail for an analo-
gous 2D PW linear map in [Sushko et al., 1999].
In particular, it is proved that one can observe a
cascade of the period-doubling bifurcations of the
cyclical chaotic attractors located on the tree. Let
G, denote a cyclical chaotic attractor of period m
of the map F'. Figure 10 shows two examples of the
tree made up by three halflines with two attractors

on it: An attracting 3-cycle (whose basin of attrac-
tion is bounded by the stable set of the related
saddle 3-cycle) coexists with a one-piece chaotic
attractor Gy (Fig. 10(a), 7, = 0.6,0r, = 0.4,0p =
0,7 = —2, point a in Fig. 12), or with a two-
piece chaotic attractor Gy (Fig. 10(b), 7p = —1.7,
point b in Fig. 12). Increasing the value of 7x, we
observe the cascade of period-doubling bifurcations
of the cyclical chaotic attractors Gor = Gorr1,k =
0,1,..., where k — oo as T — —1 (see Figs. 11
and 12). Thus, for example, the transition Gi = G
occurs at Tg &~ —1.77 due to the homoclinic bifur-
cation of R*. With further increasing of 7p the
homoclinic bifurcation of 7o leads to G4, then the
homoclinic bifurcation of a 4-cycle results in Gp,
and so on.

Let now 7, = 1 — 61,0 # 0. In Fig. 11,
we show a part of the (0g, Tgr)-parameter plane at
7, = 0.6,07, = 0.4 in which the regions S(R*), S(72)
and S(v3) are plotted (the equations for the bound-
aries of S(y3) are given in (22)—(25)). The rectangle
in Fig. 11 is presented enlarged in Fig. 12 where also
shown are the numerically obtained curves related
to the following homoclinic bifurcations: The curve
Hjs is related to the first homoclinic bifurcation
of the saddle 3-cycle giving rise to the contact of
the chaotic attractor G with its basin boundary
(formed by the stable set of the saddle 3-cycle);
The curve Hp separating the regions of G and
G is related to the first homoclinic bifurcation
of R*; the curves separating the regions of Gyri1
and Gor, k > 1, correspond to the first homoclinic
bifurcation of the 2¥-cycle. The parameter point
(0r,7r) = (0,—1) is the accumulation point for
such homoclinic curves: on the right lower corner
of Fig. 12 an enlargement of the window indicated
by the dashed line is shown in which the regions
of 2¥-cyclical chaotic attractors Gor can be clearly
seen for k = 3,4,5.

Thus Fig. 12 demonstrates that the DFB of the
fixed point R* can lead to the 2F-cyclical chaotic
attractor Gor for any k& > 1, as well as the DFB of
the attracting 2-cycle 7 can lead to the 2*-cyclical
chaotic attractor Gy, for any k > 2.

4.2. Super- and subcritical center
bifurcation of the fixed point

In this subsection we give examples of the super-
and subcritical center bifurcations of R*. The super-
critical center bifurcation of the fixed point R*
occurring at 0p = 1,7p € (—2,2), is described in



2062 1. Sushko & L. Gardini

L5 | VL LC,l o4l
y e y
| _
0.5r

N o R*

_ X J.
-3 -2 -1 0 1 x 2
(a)
Fig. 10.

7, =0.6,0, =04,0p =0,7p =

detail in [Sushko & Gardini, 2008] (see also [Simp-
son & Meiss, 2008]) in the case in which the virtual
fixed point L* is attracting, that is for (77,d) €
S(L*). Below we recall some results and give an
example of an attracting invariant closed curve born
due to such a bifurcation. Then we present a new
result related to the subcritical center bifurcation of
R* occurring at og = 1, (71,91) ¢ S(L*).

At the parameter values dp = 1,7z € (—2,2)
(independently on 77, and d1) related to the center
bifurcation of R*, there are two possibilities:

e if F'p is defined by a rotation matriz with an irra-
tional rotation number p, which holds for o = 1,

Fig. 11. Theregions S(R*), S(v2) and S(v3) in the (6, TR)-
parameter plane at 77, = 0.6,07, = 0.4.

LC,

LC,

R*

1 | 0 ' 1
(b)

Attracting 3-cycle (its basin of attraction is shown in grey) coexisting with (a) a one-piece chaotic attractor of F' at
—2;.(b) two-piece chaotic attractor at Tp = —1.7.

and
def
TR = TR, = 2c0s(27p), (19)

then in the phase space of the map F' there exists
an invariant region Q, bounded by the invariant
ellipse E given by

1
$2+y2+7R,p$y*w+y=*Z, (20)

such that any initial point (zo,yo) € Q\R*
belongs to a quasiperiodic orbit dense in the cor-
responding invariant ellipse of Fr;

Fig. 12. Enlargement of the window indicated in Fig. 11,
with the regions corresponding to Zk-cyclical chaotic attrac-
tors Gar, k > 0. The window indicated by the dashed line is
enlarged in the right lower corner.
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e if Fr is defined by a rotation matriz with a ratio-
nal rotation number m/n, which holds for dp = 1,
and

2
TR = TRm/n dof 2COS<Lm> , (21)
’ n

then in the phase space of the map F there
exists an invariant polygon P, with n edges
whose boundary is made up by the generating seg-
ment S_1 C LC_y and its n — 1 images S; =
Fr(Si—1) € LC;, i = 0,...,n — 2. Any initial
point (zg,yo) € P\R* is n-periodic with rotation
number m/n.

(Note that in the case m = 1 the end points of the
generating segment S_; are (0,—1) and (0,0); in
[Sushko & Gardini, 2008] it has been explained how
to obtain S_; for m # 1.)

It can be shown that if (77,d7) € S(L*) then
the invariant region (P, or Q) is attracting. In
such a case after the center bifurcation, that is for
6r = 1 + ¢ at some sufficiently small ¢ > 0, the
boundary of the former invariant region is trans-
formed into an attracting closed invariant curve C
on which the map F'is reduced to a rotation, so that
we have a piecewise linear analogue of the super-
critical Neimark—Sacker bifurcation. Indeed, simi-
lar to the Neimark—Sacker bifurcation occurring for
smooth maps, at a rational rotation m/n two cycles
of period n are born at the center bifurcation, one
attracting and one saddle, and the closure of the
unstable set of the saddle cycle approaching points
of the attracting cycle forms the curve C. Differently
from the smooth case such a curve appears not in
a neighborhood of the fixed point: Obviously, its
position is defined by the distance of the fixed point
from the critical line LC_;. Moreover, the curve C
is not smooth, but a piecewise linear set, which in
general has infinitely many corner points accumu-
lating at the points of the attracting cycle.

To give an example of the supercritical center
bifurcation of the fixed point R* of the map F, we
first present in Fig. 13 a 2D bifurcation diagram in
the (0g, Tr)-parameter plane at 77, = 0.4, = 0.5
(for such parameter values the virtual fixed point
L* is an attracting focus; F is invertible), in which
the regions of existence of the attracting cycles of
different periods n < 31 are shown by different col-
ors; the gray region corresponds to the divergent
trajectories and the white region is related either
to the attracting cycles of higher periodicity, or to
chaotic attractors.

1 1.4

1.8 SR

Fig. 13. 2D bifurcation diagram in the (dr, 7r)-parameter
plane at 7, = 0.4,67, = 0.5.

The bifurcation structure of the (dg,7r)-
parameter plane in case (77,0r) € S(L*) has been
studied in detail (see [Sushko & Gardini, 2008]).
Recall, in particular, that near the center bifur-
cation line dg = 1 the periodicity regions (corre-
sponding to the attracting cycles born due to the
center bifurcation) are organized in a way simi-
lar to the Arnold tongues (being ordered accord-
ing to the Farey summation rule), but differently
from the smooth case the boundary curves of the
periodicity regions, issuing from the line ép = 1,
correspond not to the standard saddle-node bifur-
cation but to the so-called “saddle-node” BCB (not
related to an eigenvalue 1) at which the points
of the related attracting and saddle cycles merge
in pairs at the critical lines of related ranks, and
after the bifurcation such cycles disappear. With-
out going into further details we just present in
Fig. 14 an example of the closed invariant attract-
ing curve C existing in the phase plane at 7, =
0.4,6;7, = 0.5,7g = 0.62,0p = 1.01; this curve is
born due the supercritical center bifurcation, and it
is formed by the closure of the unstable set of the
saddle 5-cycle approaching points of the attracting
5-cycle.

The bifurcation structure of the (dg,7r)-
parameter plane in case (71,0r) ¢ S(L*), has not
yet been studied in detail. We leave its systematic
analysis for future work, but in the context of the
present paper this case is interesting because for
such parameter values we can find examples of sub-
critical center bifurcation of the fixed point R*, as
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Fig. 14. Closed invariant attracting curve C at 7 =

0.4, 5L = 0.5,7’3 = 0.627 5R = 1.01.

well as of center bifurcation leading to a chaotic
attractor.

As it was already mentioned, the invariant
region (P, or () exists in the phase space of F'
at 0p = 1,7r € (—2,2) independently on the values
of 67, and 7. To get an example of the subcritical
center bifurcation we need to find parameter val-
ues such that the fixed point R* is an attracting
focus (that holds for 73/4 < 6r < 1), surrounded
by a repelling closed invariant curve C which at
0rp = 1 becomes the boundary of the invariant
region (P, or Q) and for §g > 1 disappears leav-
ing the unstable focus. So, let 73/4 < dp < 1. To
get the repelling closed invariant curve C formed
by the stable set of a saddle k-cycle issuing from
the points of a repelling k-cycle, we obviously need
to have |dr| > 1 (otherwise, if the determinants
of both maps F; and Fpr are such that |07 < 1
and |dr| < 1, then the determinant of any com-
posite map is also less than 1 in modulus, so we
can have only attracting and saddle cycles). The
simplest case is to consider a repelling focus L*
with the same rotation number as the attracting
focus R*. Figure 15 presents an example of the
repelling closed invariant curve C for m/n = 1/5
at 7, = 0.62,0;, = 1.15,7r = 0.62,6r = 0.96. Such
a curve is formed by the closure of the stable set of
the saddle 5-cycle (the white circles in Fig. 15) issu-
ing from the points of the repelling 5-cycle (the gray
circles). The curve C separates the basin of attrac-
tion of R* shown in gray, from the points whose
trajectories go to infinity. As g — 1 the shape of
the curve C is modified and at g = 1, it becomes
the boundary of the invariant polygon Pj/5 with

-1 0 1 2 x 3
Fig. 15. The repelling closed invariant curve C in the case of
rotation number 1/5 at 7, = 0.62,67, = 1.15, 75 = 0.62, 6 =
0.96; the white (respectively grey) circles are the points of the
saddle (respectively repelling node) cycle of period 5; R* is
an attracting focus.

five edges, which in this case is repelling. One more
example of the repelling closed invariant curve C at
7, = 1,0 = 1.1, 7 = 0.62,0p = 0.99 is presented
in Fig. 16. In such a case the curve is formed either
by the closure of the stable set of a saddle cycle of
some high period, or by the closure of a quasiperi-
odic trajectory.

4.3. Degenerate bifurcations of the
cycle of period 3; transition to
chaos via center bifurcation

Other examples of the present section are related to
the degenerate bifurcations of an attracting cycle of

0.5

y

0_

-0.57

-1.57

2 ‘ . X .
K 2
0.5 0 0.5 1 1.5 X

Fig. 16. The repelling closed invariant curve C at 7, =
1,6, = 1.1, 7 = 0.62, 0 = 0.99.
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period 3. Let 3 = {po, p1, p2} be an attracting cycle
of period 3 of the map F such that pg,p1 € L and
p2 € R. Consider the region of existence and stabil-
ity of the cycle 73 denoted S(73). The equations
of the BCB boundaries of S(v3) in the (g, 7r)-
parameter plane at some fixed 7, and J7 are the
following straight lines:

_53(1*5[/)*1*7'[/

for 0 —TL;
TR P , for dp # —71;
dr =1, for 6, = —711;
BCB}
(22)
- —1
- dr(or +7) + 4L for 7, £ —1;
1471
orp =1, for 77, = —1.
BCB3
(23)

It is not difficult to obtain also the equations defin-
ing the stability of 73. Indeed, the map F® corre-
sponding to the considered cycle is F? = Fg o F?,
for which the related eigenvalues A; y(,,) are less
than 1 in modulus for

Sp(tp —62) —1+6,711
TR > ( TQL)(S y
L L
for T% > 0r;
Sp(TL +62) +1+ 4,71
R > ) ’
L L
R TL*52 — 14+ 6,7
TR < ( TQL)(S y
L L
for T% <dr;
Sp(TL +62) +1+ 4,71
TR < 2 _5 s
L L
1
5R < =,
( o7

so that the curve related to the DFB (Ay(,,) = —1)
is given by

Or(Tr, — 5%) —1+4+ér7r

— f 2 Sr:
TR Tg e , forr; #6r;
ot — 1 9
(SR:W, for TL:(SL;
DFB;
(24)

the curve related to the DTB (A(,,) = 1) is given by

Sp(TL +02) +1+ 8.7

— f 2 Sr:
TR 7_[2/76[/ y or TL# L
ot +1
R 5%+TL ) or 77, L
DTB4
(25)

and the curve related to the center bifurcation
(related to [Aq g(4y)| = 1 for the complex-conjugate

A1,2(v4)) is given by

1

Sp — —
R 6%7

or, #0. CBs. (26)

Thus, at fixed (dr,77) € S(L*) in the (dr, Tr)-
parameter plane we have five straight lines such that
each of them can be involved or not as a bound-
ary of S(v3) depending on ¢r, and 7. It may also
happen that S(v3) = @ as well as S(v3) may be
an unbounded set (as, for example, in the case
dr, = 0,7 = 0.5 such that in the (0g, Tr)-parameter
plane the boundaries of S(v3) are the straight line
BCBJ, BCBZ and DFB3, such that BCB} is parallel
to DFB3).

Note that the region S(v3) shown in Fig. 13 in
blue is overlapping with the stability region S(R*)
of the fixed point R* and with some other periodic-
ity tongues (not indicated in this figure), in partic-
ular, with those issuing from the center bifurcation
line 6p = 1 for 7 < —1. The two boundaries of
S(73) shown in Fig. 13 are the BCB curves given
in (22) and (23).

Now we give examples of the DFB of 3 and in
the meantime we show that the center bifurcation
of the fixed point R* can lead to a chaotic attractor.

Let 71, = —1.6,0r, = —0.9 (for such parameter
values the virtual fixed point L* is a flip saddle,
i.e. its eigenvalues have opposite sign). In Fig. 17
we show the (dgr, Tr)-parameter plane in which the
straight lines BCBS, BCB3, DFB3, DTB3 and CB3
(see (22)—(26)) are plotted, being the boundaries
of the region S(v3) (the dashed region) related to
the existence and stability of the 3-cycle ~3. Recall
that 73 (having 2 points in L and 1 point in R) is
born due to the BCB either at (0, 7r) € BCB], or
at (0r,Tr) € BCB3, together with another 3-cycle
denoted ~4 (having 1 point in L and 2 points in
R); These two cycles exist for the parameter values
above the BCB lines BCB% and BCB% and below
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12 ox 125

Fig. 17. The straight lines corresponding to the border-
collision bifurcations (BCB, BCB3) and the degenerate
bifurcations (DFB3,DTB3 and CBg3) of the 3-cycle v3 at
T, = —1.6, 5L = —0.9.

1.1 1.15

DTBg3, moreover, the cycle 3 is a flip saddle for
the parameter values below DFB3.

Now let us take the (0r, 7r) € S(73), for exam-
ple, 0 = 1.1,7g = —0.5, and move the parame-
ter point towards (dr,7r) = (1,—1) (the related
parameter path, indicated in Fig. 17 by the straight
line with an arrow, is given by 7gr = 5dr —6 for dp €
[0.99,1.1]). In Fig. 18 we present the corresponding
1D bifurcation diagram in the (dg, (x +y)/2)-plane
(note that there is another coexisting attractor for
the same parameter values, which is not shown here,
but some examples of such attractor will be pre-
sented later). In Fig. 18 we use the projection of the

0.8
(x+y)

0.4} o ]

1 1.02 1.04 1.06 1.08 1.1

Fig. 18. 1Dim bifurcation diagram of the map F for dr €
(0.99,1.1),7r = 5dr — 6,7, = —1.6,6, = —0.9 (the straight
line with an arrow in Fig. 17).

trajectory to the diagonal y = x versus g, instead
of more standard projection either to z-, or to y-
axes, in order to avoid overlapping branches of the
attractor.

Let us comment the bifurcation sequence occur-
ring when the parameter point follows the path indi-
cated in Fig. 17 starting from the value ép = 1.1, at
which F' has the attracting and saddle cycles 3 and
5. For the parameter values corresponding to the
intersection point of DF B3 and our parameter path
(0r =~ 1.076, 7T ~ —0.622, see Fig. 17), for which
the cycle v3 undergoes the DFB, in the (z,y)-plane
there exist three segments denoted S;,i = 1,2, 3,
each point of which, except the points of =3, is peri-
odic of period 6: See Fig. 19 at which the segments
S; are shown being the local invariant sets of the
points of -3, related to the eigenvalue —1; the sta-
ble invariant set of the saddle cycle ~4 is also plotted
as a boundary of the basin of attraction of the coex-
isting chaotic attractor. So, the cycle 3 undergoes
the DFB giving rise to the cyclical chaotic attrac-
tors Gg of period 6 (see an example in Fig. 20).

We continue to decrease the value of dpr, and
at dp =~ 1.0723 the first homoclinic bifurcation
of 3 occurs which results in pairwise merging of
the pieces of Gg, giving rise to the cyclical chaotic
attractor Gz of period 3 (an enlarged piece of G is
shown in Fig. 21(a) together with stable invariant
set of a point of 3 approximately at the moment

1 7
y
Q.51
el |
e
oR*

-0.5

o
%]
t2 gt

S1
-1.5 /

-0.5 0 0.5 1

y L5
Fig. 19. The phase portrait of the map F' at the parameter
values related to the DFB of y3: 77, = —1.6,0;, = —0.9,0p =
1.075596, T = —0.622019. The segments S; are the local
invariant sets of the points of 3, related to the eigenvalue
—1; The invariant stable set of the saddle cycle v5 gives
the boundary separating the basins of the two coexisting
attractors.
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0.57)

o p gt
-0.5

-1.5 /

2 |

-0.5 0 0.5 1 Ls
X

Fig. 20. The phase portrait of F at 77, = —1.6,0p =
—0.9,0r = 1.073,7r = —0.635. Here two chaotic attractors
coexist: The 6-cyclical chaotic attractor Gg born after the
DFB of the cycle 3 and the one-piece chaotic attractor Gy .

of the first homoclinic bifurcation of 73). The next
bifurcation is the transition G5 = Gg (which can-
not be seen in the 1D bifurcation diagram in Fig. 18
due to the overlapping pieces of Gg), occurring as
a result of the last homoclinic bifurcation of 3 at
dr ~ 1.02865 (see Fig. 21(b)). Note that the sta-
ble set of the saddle cycle 74 remains a separator of
the basin of attraction of the considered attractors
G and G5 from the basin of attraction of another
coexisting attractor, while the basin of the points
whose trajectories go to infinity is separated by the
stable set of a saddle cycle of period 2.

o \
yi
-0.1
.02
203 -0.28 026 y 024
(a)
Fig. 21.

2067

At 6 — 1 the pieces of Gg tend in pair one
to another, decreasing in size without merging, and
at 0p = 1 they finally merge forming the 3-cycle
which defines the vertexes of the invariant triangle
Py 3, while the cycle 75 becomes one of infinitely
many 3-cycles belonging to the edges of Py /3. Thus
we have the center bifurcation of R* (considered in
the reverse order). Note that at g = 1 the second
coexisting chaotic attractor undergoes the bound-
ary crises.

Summarizing, the following bifurcation sequ-
ence can be observed if the (dgr, Tr)-parameter point
follows the path indicated in Fig. 17 at 7, = —1.6,

s D:F>B Ge 1%t Hom ~3 Gy ond Iigm ~3 Ge Cengr B R*.
4.3.1.  Center bifurcation of the 3-cycle

To end this subsection we consider also an exam-
ple of center bifurcation of the cycle v3 occurring
when the (dg, Tr) -parameter point crosses the cen-
ter bifurcation line CBj3 given in (26) (see Fig. 17).
Recall that v3 = {po,p1,p2} is such that pg,p; € L
and ps € R, so, the center bifurcation of 3 obvi-
ously corresponds to the center bifurcation of the
fixed point pg of the map F? = Ff o Fg (or, of the
fixed points p1, ps of the maps FroFroFr,, FroF3,
respectively). So, we can apply the results obtained
for the center bifurcation of the fixed point R*: In
particular, at the center bifurcation parameter val-
ues in the phase plane of the map F there exist

-0.1}

-0.08 -0.04 X 0

(b)

Enlargement of the phase space of the map F, showing one of the three parts of the cyclical attractor. The first (a)

and the last (b) homoclinic bifurcations of 3, occurring, respectively, at 0p &~ 1.0723 and 0 ~ 1.02865. Here 77, = —1.6,0, =

—0.9,7r = 5dr — 6.
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3-cyclical regions invariant under the proper com-
posite map F3. For an irrational rotation number
each of the regions is bounded by an F®-invariant
ellipse tangent to the critical lines of proper ranks,
while for a rational rotation number m/n there exist

3-cyclical F3-invariant polygons denoted Pg}n,i =

1,2, 3, each of which has n edges which are proper
segments of the critical lines of the related ranks.

Let, as before, 7, = —1.6,6p = —0.9 (see
Fig. 17) and let §p = 1/6%2. It is not difficult to
obtain the value of Tr related to the rotation num-
ber m/n: We write down the eigenvalues A; o, of
F3 and solve the equation Rej o = cos(2mm/n)
with respect to 7R :

2
2C08<ﬂ> +TL(5L + 53)
n

2
T — 0L

TR = TRym/n = ; (27)
(note that we have to consider 75, < 7r < 75", where
the values 75,75  correspond to the intersection
points of CB3 with DFB3 and DTBg3). For exam-
ple, at TR = TR/ ~ 0.1343,0r = 1/67 ~ 1.2346,
in the phase plane of F there exist three cyclical F3-

invariant polygons Pl(%,
each point of which, except the points of 73, is peri-
odic of period 18.

Figure 22 presents the phase portrait of the
map F at 7, = —1.6,0, = —0.9,0gr = 1/6%,7p =

Tr,1/6: the polygons Pl%,i = 1,2,3, are shown in

dark grey; the basin of attraction of the chaotic

1 = 1,2,3, with six edges,

-10

D T T T R
Fig. 22. The phase portrait of F at 77, = —1.6,0p =
—0.9,6p = 1/62, 75 = Tr,1/6 given in (27), related to the
center bifurcation of the cycle v3: there exist three polygons
(invariant for F'3) with six edges shown in dark grey, each
point of which is periodic of period 18.

0 L
y
-0.004
-0.008 1
-3.51 -3.5 -3.49 -3.48 y 34
Fig. 23. An enlarged piece of 18-cyclical chaotic attractor

at 7, = —1.6,6, = —0.9,6p = 1/67 +0.001,7r = 716 —
0.001.

attractor shown in light grey, is bounded by the sta-
ble invariant set of the saddle cycle 4, moreover, it
can be seen that this attractor is at the moment of
its contact bifurcation (or, in other words, bound-
ary crises), which occurs due to the first homoclinic
bifurcation of 74, and if we increase dp a little bit the
chaotic attractor will disappear leaving a chaotic
repellor.

The center bifurcation of 3 occurring for the
considered parameter values leads to a cyclical
chaotic attractor of period 18 (see Fig. 23 which
presents an enlarged piece of such an attractor at
7, = —1.6,6, = —0.9,6g = 1/672 + 0.001, 7 =
TR,1/6 — 0001)
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