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Abstract

The Hicksian multiplier–accelerator model with the original floor–roof limits to investments is studied for the case of

two regions linked by interregional trade. The result is a piecewise linear continuous four dimensional map, which is

reduced to three dimensions through the choice of an appropriate distributed consumption lag. The attractors, basins,

and bifurcations of the map are studied under the assumption of a certain symmetry between the regions. The

Neimark–Hopf bifurcation for piecewise linear maps is described in detail which gives rise to the appearance of an

attracting closed invariant curve homeomorphic to a circle. The structure of resonance regions in the parameter space

are investigated.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

1.1. Samuelson’s multiplier–accelerator model

There is no doubt that the most used macroeconomic model of business cycles for a period of several decades was

due to Paul Samuelson [18], who formalised some ideas by Alvin Hansen in a stringent way. It combined the so called

‘‘principle of acceleration’’ with the ‘‘multiplier’’. The historical roots of the acceleration principle are not quite ob-

vious. It assumed productive capital K to be kept in fixed proportion v to the current production Y , i.e. K ¼ vY , as later
formalised in the Leontief type of production function where all inputs were limiting. Anyhow, investments I , by
definition being the change of capital stock, become proportionate to the change of production volume––or real in-

come, which is the same in macroeconomic terms; this whether the change was measured as a difference in discrete time,

i.e. Itþ1 ¼ vðYt � Yt�1Þ, or as a time derivative in continuous time. The latter style was mainly employed in growth

theory, which we will not consider here, as both Samuelson and, somewhat later, Sir John Hicks in 1950 [9] used a

discrete time setting. Noteworthy is, however, that the originator of growth theory, Sir Roy Harrod, in 1950 [8] actually

was interested in business cycles, and noted that the balanced growth path he had discovered was unstable. He failed to

formulate the second-order process which would have created oscillatory motion even in continuous time. This was left

to Goodwin [5] and Phillips [16], but he could hardly be blamed for later growth theorists forgetting about instability.

The multiplier emerged with Keynesian macroeconomics around 1936, and was a fresh new concept by the time

Samuelson formulated his model. According to it consumption was proportionate to income, Ctþ1 ¼ ð1� sÞYt, with one
constant fraction consumed, and the rest, Stþ1 ¼ sYt, saved (for ever). Given that in equilibrium income is generated as

the sum of consumption and investments, Ytþ1 ¼ Ctþ1 þ Itþ1, a second-order feed back mechanism was created
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Ytþ1 ¼ ð1þ v� sÞYt � vYt�1; ð1Þ

which is a damped or an explosive oscillator. The name ‘‘multiplier’’ was due to the fact that any fixed initial increment

to investments, DI, according to the equation Ytþ1 ¼ ð1� sÞYt þ DI, through subsequent spending would give rise to an

infinite series of increments to income DI þ ð1� sÞDI þ ð1� sÞ2DI þ ð1� sÞ3DI þ � � � ¼ DI=s. As the rate of saving is a
fraction, 0 < s < 1, the multiplier 1=s would be a positive number larger than unity, and so an initial investment in-

crease would ‘‘multiply’’ up in its final effect on income.

The same also applies to constant so called ‘‘autonomous’’ expenditures A, for instance government spending, or

private investments that are not business cycle dependent. Then the income generation equation changes to

Ytþ1 ¼ Aþ Ctþ1 þ Itþ1, and the recurrence becomes

Ytþ1 ¼ Aþ ð1þ v� sÞYt � vYt�1:

This new equation obviously has a particular stationary solution Ytþ1 ¼ Yt ¼ Yt�1 ¼ A=s, so, redefining Ytþ1 :¼ Ytþ1 �
A=s, Yt :¼ Yt � A=s, Yt�1 :¼ Yt�1 � A=s, etc., we regain the original recurrence equation (1). Redefinition of the income

variable to its deviation from a positive equilibrium income thus gives sense even to negative values of the variable, at

least within certain bounds. Negative values necessarily arise under the iteration of (1). It is noteworthy that the su-

perposition principle still holds under most nonlinearities we may want to introduce.

A final remark to Samuelson�s model should be added. In his original contribution, the accelerator was applied to

consumption only, not to income. However, the above slight modification, due to Sir John Hicks [9], has become

standard in the literature, so we preferred to present it from the outset.

The big problem with the above model is that only in an unlikely borderline case, when v ¼ 1, it produces standing

oscillations. Otherwise they are damped or explosive. Damping does not really result in a dynamic model, as it only

describes the return to eternal equilibrium. Ragnar Frisch in 1933 [3] already suggested that the process be kept going

by adding a kind of forcing through random shocks. If so, a model, such as the multiplier–accelerator one, would then

provide for some periodicity while in free, though decaying motion. The explosive case by itself is even more absurd

than the damped case, as it produces infinite positive and negative values of the variable, and further violates any

bounds for the linearisation of smooth but nonlinear functions.

1.2. Hicks’s floor and roof model

As a remedy for this Hicks [9] suggested upper and lower limits to the operation of the linear accelerator, which,

however, was assumed to be in the explosive range. The reason was not ad hoc, but based on considerations of subject

matter facts. An unlimited linear accelerator would in situations of very fast income decrease result in disinvestment

which exceed the natural rate of deterioration of the capital stock in the absence of replacement, and so imply active

destruction of capital. This does not occur in reality, so there is a lower bound, the ‘‘floor’’, Imin 6 Itþ1 to the acceleration
principle Itþ1 ¼ vðYt � Yt�1Þ. Likewise, when income increases very fast, scarcities of other inputs than capital (labour or
raw materials) become limiting, and there is no point either in pushing investments above an upper bound, the ‘‘roof’’,

Itþ1 6 Imax.
The complete Hicksian model hence became nonlinear and, unlike the original Samuelson model, was capable of

producing an attractive limit cycle. Suppose we for simplicity assume symmetry for the location of floor and roof. Then,

rescaling the variables, we can define the Hicks investment function as

HðYt � Yt�1Þ :¼
ðYt � Yt�1Þ jYt � Yt�1j6 1;
signðYt � Yt�1Þ jYt � Yt�1j > 1:

�
ð2Þ

Accordingly, we have Itþ1 ¼ vHðYt � Yt�1Þ, and we can rephrase the iteration (1) as follows:

Ytþ1 ¼ ð1� sÞYt þ vHðYt � Yt�1Þ: ð3Þ

As already mentioned, on its own, (3) produces an attractive limit cycle provided v > 1, otherwise there is only a fixed

point at the origin, i.e. no business cycles occur. There is hence the possibility of a Neimark bifurcation of the fixed

point.

However, Hicks considered more complicated distributed lag systems, where savings from current income are spent

in fractions over several time periods, or equivalently, consumption in any period depends on incomes earned in several

previous time periods. Thus the order of the difference equation (3) would increase, and render the possibility of more

intricate phenomena of dynamics. The same could be the case with investments. Hommes [10] studied several such

interesting cases. In Hicks� days there was, however, no concept of chaos, and no means to analyse these matters, except
noting that the result became complicated and messy.
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1.3. The open economy for two regions

In what follows, we will complement (3), which is relevant for a closed economy, through interregional trade, and

link two oscillators of this type together. In the case of an open economy, the income formation equation is replaced by

Ytþ1 ¼ Ctþ1 þ Itþ1 þ Xtþ1 �Mtþ1. To the sum of consumption and investments we add exports and subtract imports.

According to a general assumption from the days macroeconomics and business cycle theory arouse, exports to another

region were taken proportional to income there, imports proportionate to income in the region itself. This was mainly

elaborated by Mezler, in 1950 [13], and earlier publications. Denoting the constant propensity to import by m, and
differentiating between the two regions by a suffix, we get X 1

tþ1 ¼ M2
tþ1 ¼ mY 2

t�1 and X 2
tþ1 ¼ M1

tþ1 ¼ mY 1
t�1, so rephrasing

(3), we have

Y 1
tþ1 ¼ ð1� s1ÞY 1

t þ v1HðY 1
t � Y 1

t�1Þ þ mY 2
t�1 � mY 1

t�1;

Y 2
tþ1 ¼ ð1� s2ÞY 2

t þ v2HðY 2
t � Y 2

t�1Þ þ mY 1
t�1 � mY 2

t�1:
ð4Þ

Taking the same propensity to import m for both regions, we get zero trade balance whenever the two regional incomes

are equal. Note that we introduced one extra time period lag for the generation of demand for interregionally traded

goods, as compared to that for locally produced goods. Further, in this general statement of (4), we left open the

possibility of having different accelerators vi and saving propensities si, but in order to reduce the number of control

parameters we later take them equal for both regions.

The system (4) is four-dimensional, and only has one fixed point at the origin of phase space. As processes are

difficult to visualize in four dimensions, it is, however, interesting to note that the system can be reduced to three di-

mensions by a very slight modification.

1.4. Reduction to three dimensions

Instead of assuming that incomes once saved are withdrawn from spending for eternity, let us use the license from

Hicks �s original study of distributed lag systems to introduce the simplest lag of all––savings being kept for just one

time period, and spent the period after. This was used by one of the authors, see Puu [17], but then in combination with

a linear-cubic type of investment function. In the present paper, the original assumptions as to the shape of the in-

vestment function (linear with upper and lower bounds) are not modified. By this lagged system there will be contri-

butions to consumption of any period from both two preceding periods, i.e. Ci
tþ1 ¼ ð1� siÞY i

t þ siY i
t�1. The system (4)

accordingly changes to

Y 1
tþ1 ¼ ð1� s1ÞY 1

t þ s1Y 1
t�1 þ v1HðY 1

t � Y 1
t�1Þ þ mY 2

t�1 � mY 1
t�1;

Y 2
tþ1 ¼ ð1� s2ÞY 2

t þ s2Y 2
t�1 þ v2HðY 2

t � Y 2
t�1Þ þ mY 1

t�1 � mY 2
t�1;

or, rearranging slightly, to

ðY 1
tþ1 � Y 1

t Þ ¼ v1HðY 1
t � Y 1

t�1Þ � s1ðY 1
t � Y 1

t�1Þ þ mðY 2
t�1 � Y 1

t�1Þ;
ðY 2

tþ1 � Y 2
t Þ ¼ v2HðY 2

t � Y 2
t�1Þ � s2ðY 2

t � Y 2
t�1Þ þ mðY 1

t�1 � Y 2
t�1Þ:

Note that except for the appearance of the last export surplus terms, the processes are autonomous in the income

differences Y i
tþ1 � Y i

t and Y i
t � Y i

t�1.

It is hence appropriate to introduce new variables for these differences: Ui
tþ1 :¼ Y i

tþ1 � Y i
t , U

i
t :¼ Y i

t � Y i
t�1. Further,

denote income differences between the regions by Zt :¼ Y 2
t�1 � Y 1

t�1. Using these definitions we get

U 1
tþ1 ¼ v1HðU 1

t Þ � s1U 1
t þ mZt;

U 2
tþ1 ¼ v2HðU 2

t Þ � s2U 2
t þ mZt:

ð5Þ

Observe the opposite signs of the last coupling terms, due to the fact that export surplus for one region is import surplus

for the other and vice versa. In order to complete the three dimensional map we just need an updating of the regional

income difference equation. We had Zt :¼ Y 2
t�1 � Y 1

t�1, so Ztþ1 :¼ Y 2
t � Y 1

t , and, forming the difference: Ztþ1 � Zt ¼
ðY 2

t � Y 2
t�1Þ � ðY 1

t Y
1
t�1ÞU 2

t � U 1
t . Hence

Ztþ1 ¼ Zt þ U 2
t � U 1

t : ð6Þ
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The three dimensional map thus becomes

T

U 1
tþ1 ¼ v1HðU 1

t Þ � s1U 1
t þ mZt;

U 2
tþ1 ¼ v2HðU 2

t Þ � s2U 2
t þ mZt;

Ztþ1 ¼ Zt þ U 2
t þ U 1

t :

8><
>: ð7Þ

This system is autonomous in income differences, two time differences, one for each regional income, and one con-

temporary income difference between regions. From these differences, incomes, our primary variables of interest, can be

obtained as cumulative sums of the first two.

It is interesting to note that for this model we may have more than just one fixed point. The origin still is an obvious

candidate, but we can also have two off origin fixed points. Putting Ui
tþ1 ¼ Ui

t and Ztþ1 ¼ Zt in (7), we conclude from the

last equation that U 1
t ¼ U 2

t ¼ U , so adding the two first we get 2U ¼ �ðs1 þ s2ÞU þ ðv1 þ v2ÞHðUÞ. Rearranging

ð2þ s1 þ s2ÞU ¼ ðv1 þ v2ÞHðUÞ:

There are now two possibilities for the Hicks function, either HðUÞ ¼ U or else HðUÞ ¼ �1. In the first alternative

U ¼ 0 obviously results. However, the second gives us two more alternatives: U ¼ �ðv1 þ v2Þ=ð2þ s1 þ s2Þ. To sum-

marise

U ¼
þ v1 þ v2
2þ s1 þ s2

;

� 0

2þ s1 þ s2
:

8>><
>>:

We will later comment on the existence and stability of these three fixed points (see Section 4). The corresponding

equilibrium value of Ztþ1 ¼ Zt ¼ Z in the fixed points can be calculated from (7), by subtracting the first two equations

from which we have ðv1 � v2ÞHðUÞ þ 2Z ¼ 0. Unless v1 ¼ v2, we also have Z ¼ 0 in the fixed point at the origin. In the

off zero cases, we get

Z ¼ v21 � v22
2mð2þ s1 þ s2Þ

for both. Off zero equilibrium thus implies a permanent import surplus for the region with the higher accelerator. If the

accelerators are equal, then the export/import surplus is zero in these fixed points as well. Further, due to the fact that

the Ui
t variables are defined as income differences, their fixed points mean linear growth or decline, in both regions alike,

and at the same constant rate.

1.5. Introduction of further symmetry for the two regions

For the sake of reducing the number of parameters in the model, we already assumed some symmetry. For instance

we assumed the propensities to import to be equal for both regions. Further, in the definition of the Hicksian in-

vestment function in Eq. (2), it was assumed that the shape of the function, apart from possibly different multiplicative

constants vi, would be perfectly (anti)symmetric, i.e. Imin ¼ �Imax.
We could in principle assume much less of symmetric/antisymmetric elements in the model. However, we already

have five free parameters to vary. Economists often have the habit of introducing as many different parameters as

possible, to the end of achieving some spurious generality or realism. They tend to forget that new parameters in models

of given dimension far from always generalise these in terms of producing new phenomena, as this is all regulated by the

codimensions.

So, we will rather decrease the number of parameters Suppose the accelerators and propensities to save are equal for

the two regions, i.e.

v1 ¼ v2 ¼def v; s1 ¼ s2 ¼def s ð8Þ

in (7).

Putting U 1
t þ U 2

t ¼ 0 in (5), and adding the two equations, we get U 1
tþ1 þ U 2

tþ1 ¼ 0, because from (2) we have

Hð�Ui
t Þ ¼ �HðUi

t Þ. To sum up

U 1
t þ U 2

t ¼ 0 ) U 1
tþ1 þ U 2

tþ1 ¼ 0: ð9Þ
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Hence, given that the incomes of the two regions initially move in opposite phase, they will continue to do so forever.

This means that there is an invariant plane for the process, embedded in its three dimensional phase space. Note that the

nonzero fixed points lay off this invariant plane.

2. Properties of the map T

For convenience let us change notation in the model as given in (7) to: U 1 :¼ x, U 2 :¼ y, and Z :¼ z. In this paper, we
limit our analysis to the symmetric case (8). Thus, we consider a family of three-dimensional piecewise linear continuous

maps T : R3 ! R3 given by

T :
x
y
z

0
@

1
A 7!

vHðxÞ � sxþ mz
vHðyÞ � sy � mz

zþ y � x

0
@

1
A; ð10Þ

where the function H has the form

HðxÞ ¼ x; jxj6 1;
signðxÞ; jxj > 1:

�
ð11Þ

The system depends on three real parameters v, s, m. From Section 1, we know that the feasible parameter range is

v > 0; 0 < s < 1; 0 < m < ð1� sÞ: ð12Þ

It is easy to derive the following properties of the map T :

Property 1. The map T is symmetric with respect to the origin.

As T ð�x;�y;�zÞ ¼ �T ðx; y; zÞ, an important corollary of the Property 1 is the following.

Corollary 1. A T -invariant set A is either symmetric with respect to the origin, or there exists one more invariant set
symmetric to A with respect to the origin.

Property 2. The plane x ¼ �y is T -invariant, and the restriction of the map T to this plane is a two-dimensional piecewise
linear continuous map F : R2 ! R2, given by

F :
y
z


 �
7! vHðyÞ � sy � mz

2y þ z


 �
: ð13Þ

Obviously, the map F too is symmetric with respect to the origin.

From T ðx; x; 0Þ ¼ T ðf ðxÞ; f ðxÞ; 0Þ, where

f ðxÞ ¼def vHðxÞ � sx; ð14Þ

we immediately have one more property of the map T :

Property 3. The line fx ¼ y; z0g is T -invariant and the restriction of the map T on this line is a one-dimensional map
f : R > R given by x 7!f ðxÞ where the function f ðxÞ is defined in (14).

Clearly, the map f too is symmetric with respect to the origin. It has rather simple dynamics which is described in

Section 4.

In the next section, we describe the dynamic properties of the map F given in (13). In particular, we show that the

map F can have periodic, quasiperiodic or chaotic attractors depending on the parameter values. We mainly focus on

the Neimark–Hopf bifurcation of the fixed point, which has not yet been completely described for piecewise linear

systems. We show that this bifurcation results in an attracting closed invariant curve, which is a piecewise linear set in

the case of a rational rotation number, and a smooth curve if the rotation number is irrational. We describe the

structure of so-called resonance regions in the parameter space, and some bifurcations associated with crossing these

regions, which differ from the Arnol�d tongues, well-studied for smooth systems (see, e.g., [1,2]).

In Section 4, we give conditions for the invariant plane x ¼ �y to be globally attracting and analyse the dynamic

behavior of the map T .
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3. Attractors and bifurcations of the map F

Consider the map F of the form (13). The map F is given by three linear maps denoted Fi, i ¼ 1; 2; 3, which are

defined, respectively, in the regions Ri

F1 :
y
z


 �
7! �v� sy � mz

2y þ z


 �
; R1 ¼ fðy; zÞ : y < �1; z 2 Rg;

F2 :
y
z


 �
7! ðv� sÞy � mz

2y þ z


 �
; R2 ¼ fðy; zÞ : jyj6 � 1; z 2 Rg;

F3 :
y
z


 �
7! v� sy � mz

2y þ z


 �
; R3 ¼ fðy; zÞ : y > 1; z 2 Rg:

F is not differentiable on two straight lines y ¼ �1 and y ¼ 1 which we shall call critical lines LC�1 and LC0
�1, re-

spectively, following the pioneering work by Gumowski and Mira [7,14]. The critical lines LC0; LC0
0 are defined as

images of LC0
�1

fLC0; LC0
0g ¼ fðy; zÞ : z ¼ �y=m� ðv� sþ 2mÞ=m; z 2 Rg:

The critical line LCkðLC0
kÞ of rank k; k ¼ 1; 2; . . ., is obtained as LCk ¼ F ðLCk�1ÞðLC0

k ¼ F ðLC0
k�1ÞÞ. It is a broken line (i.e.

a curve made up of segments of straight lines).

Property 4. The map F is invertible if m > s=2, noninvertible if m < s=2.

To show this, we first note that the strip R2 always maps into the strip between LC0
0 and LC0 (see Fig. 1). Then, for

m ¼ s=2, the half-plane R1ðR3Þ maps into the straight line LC0
0ðLC0Þ. Thus, the map F is not uniquely invertible on these

two lines. For m > s=2, the half-plane R1ðR3Þ maps into the half plane below LC0
0 (above LC0), so that the map is

uniquely invertible, while, for m < s=2, the half-plane R1ðR3Þmaps above LC0
0 (below LC0). Thus, for m < s=2, any point

of the strip, bounded by LC0
0 and LC0, has three distinct rank-1 preimages, one in each of the regions R1;R2 and R3, while

any point outside this strip has only one rank-1 preimage, i.e. the map F is noninvertible of so-called Z1 � Z3 � Z1 type.
The fixed points of the maps F1and F3 are ð0;�v=mÞ and ð0; v=mÞ, respectively. They always belong to the region R2,

where the map F2 is defined, i.e. they are always outside the definition regions for F1 and F3. Thus, the only fixed point of
the map F is the fixed point ð0; 0Þ of the map F2.

Proposition 1. The only fixed point of the map F , given in (13), is ð0; 0Þ, and it is attracting iff

ðs;mÞ 2 S ¼def fðs;mÞ : s� 1� v < m < ð1þ s� vÞ=2;m > 0g ð15Þ

for any fixed v > 0.

Fig. 1. Critical lines of the map F .
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The eigenvalues k1;2 of the Jacobian matrix DF2 are

k1;2 ¼ 1þ v� s�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� vþ sÞ2 � 8m

q
 �,
2; ð16Þ

which are real for m6 ð1� vþ sÞ2=8 and complex for m > ð1vþ sÞ2=8. To show that the proposition holds, recall that

for a linear map L, its fixed point is attracting iff the eigenvalues of DL are less then 1 in modulus. The necessary and

sufficient conditions for this are the following

1þ detDLþ trDL > 0;
1þ detDL� trDL > 0;
1� detDL > 0:

8<
:

For the map F2 the above inequalities define, after some algebra, the triangle S given in (15).

Note that depending on the parameters the stability triangle S may have no intersection with the feasible parameter

range (12). Taking into account this range, we show schematically in Fig. 2 the stability (instability) conditions for the

fixed point ð0; 0Þ in the ðs;mÞ-parameter plane for different values of v. It can be seen that the stability region of the fixed
point in the feasible region decreases as the value of v increases: for v > 2 the fixed point ð0; 0Þ is always unstable in the
feasible triangle.

The maps F1 and F3 only differ by shift constants ð�v >; 0Þ. Thus they have qualitatively similar dynamics. The

eigenvalues of the Jacobian matrix DF1 ¼ DF3 are

l1;2 ¼ ð1� s�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ 1Þ2 � 8m

q
Þ=2; ð17Þ

which are real if m < ðsþ 1Þ2=8, and complex if m > ðsþ 1Þ2=8. In the ðs;mÞ-parameter plane the triangle S1, given by

S1 ¼def fðs;mÞ : s� 1 < m < ð1þ sÞ=2;m > 0g ð18Þ

is such that if ðs;mÞ 2 S1 then jl1;2j < 1.

Proposition 2. For m > ð1þ sÞ=2 almost all the trajectories of the map F are diverging.

To see this, note that jl1;2 > 1 for m > ð1þ sÞ=2, i.e. the maps F1 and F3 are expanding. Obviously, the condition
m > ð1þ s� vÞ=2 also holds, thus jk1;2j > 1, i.e. the map F2 is expanding as well. Due to invertibility of the map F for

the parameter range considered, we can state that the map T k is expanding for any k > 0. Thus, no stable cycle can exist

for F , but some unstable cycles, for example, the fixed point ð0; 0Þ. Moreover, considering the images of the critical

curves, no absorbing area can be obtained. Therefore, almost all the trajectories are diverging.

It is worth to note that crossing the stability region through different edges of the triangle S, different bifurcations
occur. Crossing the line m ¼ s� 1� v (at which one eigenvalue is equal to )1) we have a flip bifurcation which for

Fig. 2. The stability (instability) regions for the fixed point ð0; 0Þ in the ðs;mÞ-parameter plane for different ranges of v.
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piecewise linear maps is not associated with a period-doubling phenomena (see, e.g., [12]). Crossing the line m ¼ 0 one

eigenvalue crosses the value þ1, and the fixed point becomes a saddle. However these bifurcation curves are outside the
feasible region and we do not comment them here. The only bifurcation we are interested in is the one occurring for

m� ¼defm ¼ ð1þ s� vÞ=2; ð19Þ

when the fixed point becomes a center. After the bifurcation the fixed point becomes a repelling focus. Thus we have a

piecewise linear analogue of the Neimark–Hopf bifurcation for smooth maps [11].

In order to get a general view of the dynamics of F , we show here some two-dimensional bifurcation diagrams in the

ðs;mÞ-parameter plane for fixed values of v. Let Pl=k denote a region in the ðs;mÞ-parameter plane, such that for

ðs;mÞ 2 Pl=k the map F has an attracting cycle of period k with rotation number l=k, where l=k is an irreducible fraction.
The resonance regions Pl=k are shown by different colors for k6 34, v ¼ 0:9 (Fig. 3) and v ¼ 1:7 (Fig. 4). Note that, even

Fig. 3. Two-dimensional bifurcation diagram for the map F in the ðs;mÞ-parameter plane for fixed v ¼ 0:9. The resonance regions Pl=k
are shown by different colors.

Fig. 4. Two-dimensional bifurcation diagram for the map F in the ðs;mÞ-parameter plane at v ¼ 1:7.
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if the feasible parameter range is m < ð1� sÞ, we present a wider parameter window. The white regions in these dia-

grams correspond to attracting cycles of periods k > 34, or quasi-periodic behavior, or chaotic attractors.

3.1. Periodic and quasiperiodic attractors. Description of the resonance regions

Let v ¼ 0:9 (see Fig. 3). If the ðs;mÞ-parameter point crosses the straight line m ¼ m� (19) then the fixed point ð0; 0Þ
(which is an attracting focus for m < m�) loses stability with a complex pair of eigenvalues for DF2. As we shall see, in
similarity to the Neimark–Hopf bifurcation for smooth nonlinear systems [6], the result of this bifurcation is the ap-

pearance of an attracting closed invariant curve A, homeomorphic to a circle. This set does not appear in a neigh-

borhood of the fixed point, as it does for smooth maps, but far from the fixed point: its position depends on the critical

lines of the map.

Similarly to the rotation numbers for the circle maps, we can use a rotation number for the map F : it can be rational
l=k, or irrational, being the average rotation of any initial point on A around the repelling fixed point ð0; 0Þ. The value
l=k depends on the parameters.

In the case of a rational rotation number l=k, with k even, an attracting and a saddle cycle of period k, denoted cl=k
and c0l=k , respectively, exist on A, which in this case is made up by the unstable set of the period-k saddle cycle c0l=k . The
unstable set of c0l=k , consists of linear segments approaching the points of the attracting period-k cycle c1=k . An example

is presented in Fig. 5 where the cycles c1=8 and c01=8 are shown together with the unstable set of c01=8 for s ¼ 0:4, m ¼ 0:3.
The attracting closed invariant curveA, associated with parameter values belonging to some resonance region, is called

a ‘‘saddle-connection’’. As we will show later (see Proposition 7), contrary to what occurs in smooth maps, this set is

piecewise-linear, with a countable number of kink points.

Due to the necessary asymmetry with respect to the origin for any cycle of odd period k, there must exist on A one

more cycle of the same period, so that they together provide for the symmetry (see corollary 1). Thus, for k odd, there
are two coexisting attracting cycles c1l=k and c2l=k onA and two saddle cycles c01l=k and c02l=k of period k. (Below, we omit the
suffix if the statement holds for both cycles). In this case, the closed invariant curve A still is homeomorphic to a circle.

It is made up by the unstable sets of two saddle cycles, and consists of linear segments approaching the points of the

attracting cycles. Thus it is still a saddle-connection, and A is a piecewise-linear set. Fig. 6 shows an example of the

attracting cycles c11=7 and c21=7 with their basins of attraction and the saddle cycles c011=7 and c021=7 with their unstable sets

which form the curve A.

We also note that in Figs. 5 and 6 the attracting cycles are nodes. However, they may also be attracting foci. The

only difference in this case is that the invariant curve A (always made up by the unstable sets of the saddles) consists of

linear segments, which approach the points of the period-k; focus and spiral around them.

In Fig. 3 a particular ‘‘sausage’’ structure of Pl=k can be seen, which may be explained as follows: each subregion of

Pl=k corresponds to a certain combination of the maps F1; F2 and F3, which have to be applied in order to get all the

points of the cycle cl=k , and this combination is different in each subregion of Pl=k . For instance, there are two subregions
of P1=6, denoted P 1

1=6 and P 2
1=6 in Fig. 3. Let ðy0; z0Þ 2 R3, be a point of c1=6. Then ðy0; z0Þ ¼ F 6ðy0; z0Þ, and for the cycle c1=6

which exists at c1=6 which exists at ðs;mÞ 2 P 1
1=6, we have

Fig. 5. An attracting closed invariant curve A made up by the unstable set of the saddle cycle c01=8 approaching the points of the

attracting cycle c1=k (v ¼ 0:9, s ¼ 0:4, m ¼ 0:3).
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F 6 ¼ F3 � F2 � F1 � F1 � F2 � F3

(the rotation is in the counter-clockwise direction). Note that any cyclical composition of the maps given above works,

i.e., we may equivalently write F 6 ¼ F2 � F1 � F1 � F2 � F3 � F3, or F 6 ¼ F1 � F1 � F2 � F3 � F3 � F2 and so forth.

If ðs;mÞ 2 P 2
1=6, then we have a different composition of the maps:

F 06 ¼ F3 � F1 � F1 � F1 � F3 � F3:

Also note that in F 6 and F 06, we have given the compositions associated with the attracting cycle c1=6 of the map F ,
and that a different composition of the maps is associated with the saddle cycles c01=6 which give the saddle connection

A.

A natural question arises looking at Figs. 3 and 4: which curves form the boundaries of the resonance regions? We

know that for smooth systems the boundaries of Arnol�d tongues are formed by curves corresponding to saddle-node

bifurcation. The same occurs in piecewise linear maps, but the bifurcation value is not characterised as in smooth maps.

For piecewise linear (or piesewise smooth) systems, the main role is played by a border-collision bifurcation which occurs

when a cycle belongs to the line of nondifferentiability of the map, i.e., the critical lines (see [14,15]). For the map

considered, if the ðs;mÞ-parameter point crosses the boundary of Pl=k transversally, then, in the case of an even k, one
point of the attracting cycle cl=k belongs to LC�1 and the point of cl=k , symmetric to it with respect to the origin, belongs
to LC0

�1. For an odd k, one point of c1l=k belongs to LC�1, and one point of c2l=k belongs to LC0
�1. At this border-collision

bifurcation a saddle-node, or a saddle-focus bifurcation also occurs, involving the saddle cycle c0l=k , whose unstable set
provides the invariant curveA. Note that, for piecewise linear maps, the saddle-node bifurcation may occur only when

points of both the attracting and saddle cycles are located on the critical lines. In Fig. 7 we show the one-dimensional

bifurcation diagram, associated with the crossing of the resonance region P 2
1=6 for s ¼ 0:2, m 2 ½0:45; 0:55�. In this di-

agram the m values are displayed on the horizontal axis while the vertical axis shows the projection of a typical ðy; zÞ-
trajectory on the y-axis.

We can obtain the parameter values ðsl=k ;ml=kÞ, corresponding to the bifurcation of the fixed point ð0; 0Þ resulting in
the appearance of the cycles cl=k and c0l=k which form the closed invariant curve A. At the bifurcation value the ex-

pression for k1;2 can be written as k1;2 ¼ Rek1;2 � iImk1;2, where Rek1;2 ¼ cos 2pl=k. From (16) and (19) we have

sl=k ¼ 1þ v� 2 cos 2pl=k;

ml=k ¼ 1� cos 2pl=k:

For example, for the resonance region P1=5 we get S1=5 � 1:282, m1=5 � 0:691; for P1=6 these values are s1=6 ¼ v,
m1=6 ¼ 0:5; for P1=8 we have s1=8 ¼ 1:9�

ffiffiffi
2

p
and m1=8 ¼ 1�

ffiffiffi
2

p
=2, and so on (see Fig. 3). The following proposition

describes the dynamic behaviour of the map F at the bifurcation values s ¼ sl=k , m ¼ ml=k .

Proposition 3. Let s ¼ sl=k , m ¼ ml=k . Then in the phase space there exists an invariant attracting polygon P. The edges of
P are k segments of the critical lines LCi and LC0

i , i ¼ �1; . . . ; k=2� 1, for even k; and 2k segments of LCj and LC0
j,

Fig. 6. The attracting cycle c11=7 and c21=7 with their basins of attraction and the saddle cycles c011=7 and c021=7 with their unstable sets which
form the invariant curve A (v ¼ 0:9, s ¼ 0:2, m ¼ 0:38).
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j ¼ �1; . . . ; k � 1, for odd k. Any point ðy0; z0Þ 62 P is k-periodic; any point ðy0; z0Þ 62 P is attracted to a period-k cycle on
the boundary of P.

To show this, let us first consider the case l=k ¼ 1=6, that is we fix s ¼ s1=6, m ¼ m1=6. Then the eigenvalues of F2 are
complex-conjugate with jk1;2j ¼ 1, thus, the fixed point ð0; 0Þ is a center. Let us construct an invariant set which exists in
this case. First of all, it must include all the invariant curves (ellipses) of the map F2 in R2 (see Fig. 8). Each point of these

ellipses is periodic with the rotation number 1/6. This invariant set must also include all the six cycles of F2 belonging to
the invariant curves of F2 which cross the critical lines LC�1 and LC0

�1 but such that the periodic points are all included

in the closure of R2. This gives rise to a polygon P with six edges, tangent to the ellipse of F2, itself tangent to LC�1 and

LC0
�1.

Thus there exists a polygon P in the phase space, such that any point belonging to the interior of P, or to the edges

of P is six-periodic, and its images rotate around the origin (a centre) with rotation number 1/6. Due to the invertibility

of the map F for the parameter range considered, only the boundary of P is an attracting set, because no point of the

phase plane can be mapped in the interior of P. Any initial point outside P is attracted to a period-6 cycle, belonging to

the boundary of P. The edges of the polygon P are segments of critical lines LCi and LC0
i for i ¼ �1; 0; 1, with vertices ai

and a0i, where a�1 ¼ LC�1 \ LC0, a0�1 ¼ LC0
�1 \ LC0

0, ai ¼ F ðai�1Þ, a0i ¼ F ða0�iÞ. Note that the points ai and a0i are also six-
periodic. Only the map F2 is applied in order to get all the points of the cycles of period 6.

Fig. 7. One-dimensional bifurcation diagram associated with the crossing of the resonance region P 2
1=6 for v ¼ 0:9, s ¼ 0:2 and

m 2 ½0:45; 0:55�.

Fig. 8. An attracting invariant polygon P at bifurcation values v ¼ 0:9, s ¼ 0:9 and m ¼ 0:5.
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Similar considerations can be provided for any value 1=k with even k. As for k odd, the only difference is that the

polygon P in this case is made up by 2k segments of critical lines, corresponding to the pair of coexisting cycles of odd

period k, and the total number of periodic points to take in account is 2k; instead of k.

Proposition 4. The number n of subregions of the resonance region Pl=k is equal to n ¼ k=2� 1 for k even, and to n ¼ k � 1

for k odd.

Let k be even. Consider again the case l=k ¼ 1=6. Let ðs11=6;m1
1=6Þ denote the transition point from the subregion P 1

1=6

to the subregion P 2
1=6 (see Fig. 3). What occurs at the crossing through the point ðs11=6;m1

1=6Þ is shown in the one-

dimensional bifurcation diagram in Fig. 9. The horizontal axis represents values of the parameter s 2 ½0:4 : 0:5� and the
vertical shows projections of the points of c1=6 (red lines) and of c01=6 (blue lines) to the y-axis, m ¼ 0:5. This one-
dimensional bifurcation diagram puts in evidence that, as long as the parameter point ðs;mÞ 2 P 1

1=6, the map F has the

attracting six-cycle c1=6 with two points in each region Ri, i ¼ 1; 3, (due to the symmetry of the cycle with respect to the

y-axis, we only see three branches). There also exists a saddle cycle c01=6, such that four points of it are in R2 (we see only

two branches), one point in R1 and one in R3.

At the point ðs11=6;m1
1=6Þ a border-collision bifurcation related to a particular transcritical bifurcation, or exchange of

stability between c1=6 and c01=6, occurs (it is particular because at the bifurcation value the cycles are not merging, as it

occurs in smooth maps, and the periodic points are critical points). After the bifurcation, when ðs;mÞ 2 P 2
1=6, the former

saddle cycle c01=6, becomes attracting, we rename this cycle c1=6, with three points in R1 (on the projection we see only two

branches) and three in R3 (again, we see only two branches). The former attracting cycle c1=6 becomes a saddle, so we

rename it c01=6, with two points in each region Ri (on the projection we see only one point in each region).

Similar border-collision bifurcations occur when ‘‘waist’’ points in other resonance regions are crossed. The

rightmost subregion of Pl=k , with k even, is such that k � 4 points of cl=k are in R2, two in R1 and two in R3. After each

subsequent transition of the ðs;mÞ-parameter point from the subregion P i
l=k to P iþ1

l=k , both attracting and saddle cycles

have two points less in R2. After the transition to the leftmost subregion of Pl=k the map F has zero points of cl=k in R2,

and two points of c0l=k in R2. Thus, the number n can be obtained from the equation k � 4� 2ðn� 1Þ ¼ 0 (or

k � 2� 2ðn� 1Þ ¼ 2, which is the same).

For odd k the only difference is that the total number of periodic points to take into account is 2k instead of k.
From the arguments given above we can see that the following proposition is also true.

Proposition 5. The leftmost subregion of the resonance region Pl=k in the ðs;mÞ-parameter bifurcation diagram of the map
F corresponds to a composition of the maps F1 and F3 only.

We can obtain the parameter values ðs0l=k ;m0
l=kÞ, corresponding to the contact of Pl=k with the straight line

m ¼ ð1þ sÞ=2 of divergence to infinity. Suppose the ðs;mÞ-parameter point crosses this line from the left to the right,

Fig. 9. One-dimensional bifurcation diagram of the map F at m ¼ 0:5, u ¼ 0:9 and s 2 ½0:4; 0:5�.
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and enters the region Pl=k . According to Proposition 5 only the maps F1 and F3 need be applied in order to get all the

points of the cycle cl=k . At m ¼ ð1þ sÞ=2 the eigenvalues l1;2 of the linear maps F1;2 are complex-conjugate with

jl1;2j ¼ 1, thus the fixed points (foci) of F1 and F3 become attracting. Any initial point from R1 or R3 begins a rotation

around these fixed points while any initial point from R2 leaves this region in a finite number of iterations (because F2 is
expanding). On the bifurcation line m ¼ ð1þ sÞ=2 we get exactly a period-k rotation with rotation number l=k if

Rel1;2 ¼ cos 2pl=k:

Thus, using (17), we get

s0l=k ¼ 1� 2 cos 2pl=k;

m0
l=k ¼ ð1þ sl=kÞ=2 ¼ 1� cos 2pl=k ¼ ml=k :

For example, for the resonance region P1=5 we get m0
1=5 � 0:691 and s01=5 � 0:382. For P1=6 these values are m0

1=6 ¼ 0:5 and

s01=6 ¼ 0. For P1=8, we have s01=8 ¼ 1�
ffiffiffi
2

p
and m0

1=8 ¼ 1�
ffiffiffi
2

p
=2, and so forth (see Fig. 3).

Consider now the case when the rotation number of the map F on the closed invariant curve A is irrational. In this

case the set A is a smooth curve with a quasiperiodic trajectory on it. Fig. 10 shows an example of A with quasipe-

riodic, or periodic with very high period, trajectory for s ¼ 0:4, m ¼ 0:26.

Proposition 6. At a bifurcation with irrational rotation number (m ¼ ð1� vþ sÞ=2, s 6¼ s1=k , m 6¼ ml=k), there exists an
invariant attracting set C bounded by an ellipse E such that any point ðy; zÞ 62 C has a quasiperiodic trajectory; any point
ðy; zÞ 62 C ultimately will have a quasiperiodic trajectory on E.

At m ¼ ð1� vþ sÞ=2 the eigenvalues of F2 are complex-conjugate with jk1;2j ¼ 1, thus, the fixed point ð0; 0Þ is a
center. If s 6¼ sl=k , m 6¼ ml=k , i.e., the rotation number is irrational, then the invariant set C is bounded by an invariant

curve E (an ellipse) of F2, tangent to the critical lines LC�1 and LC0
�1 and filled with other invariant curves (ellipses) of F2,

on which the dynamics are quasiperiodic. In this case all critical lines LCi; LC0
i ; iP 0, are tangent to E. Due to the

invertibility of the map, any initial condition ðy; zÞ 62 C has the ellipse E as an x-limit set.
As we have seen, Proposition 3 describes the dynamics of the map F when the ðs;mÞ-parameter values belong to the

Neimark–Hopf bifurcation curve m ¼ m� (19) and the rotation number of F2 is rational. Proposition 6 takes into ac-

count the case of irrational rotation numbers. The next proposition describes the structure of the attracting closed

invariant curve A which appears after the bifurcation when ðs;mÞ 2 Pl=k . Recall that the map F is invertible for the

parameter range considered.

Proposition 7. If ðs;mÞ 2 Pl=k and the corresponding saddle cycle c0l=k has no homoclinic points, then the attracting closed
invariant curve A is made up by the unstable set c0l=k and consists of infinitely many linear segments approaching the
attracting cycle cl=k .

Fig. 10. An example of A with quasiperiodic, or periodic with very high period, trajectory at v ¼ 0:9, s ¼ 0:4 and m ¼ 0:26.
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In order to be clearer, we fix k ¼ 8, that is, let ðs;mÞ 2 P 1
1=8. Then the map F has the attracting cycle c1=8 and the

saddle cycle c01=8 which form the attracting closed invariant curve A (see Fig. 5), whose structure is going to be ex-

plained.

The eight iteration of the map F , i.e. the map F 8, has 8 saddles and 8 nodes, denoted Si and Ni, respectively,

i ¼ 1; . . . ; 8, which are, obviously, points of the 8-cycle c1=8 and c01=8. Note that F
8 is a piecewise linear map defined by

several linear maps in different regions of the phase space. These regions are separated by the set LC�1ðF 8Þ of critical
lines of the map F 8

LC�1ðF 8Þ ¼
[8
k¼1

LC�kðF Þ; LC�kðF Þ ¼ F �1ðLC�kþ1Þ:

We also denote

LC0ðF 8Þ ¼ F 8ðLC�1ðF 8ÞÞ ¼
[7
k¼0

LCkðF Þ:

An enlarged part of the invariant area bounded by A is shown in Fig. 11 where we have coloured in grey an F 8-

invariant area B of phase space. This area is bounded by the left branches of the stable sets of the saddle S1 and S2, and
by a portion of A made up by the right branch of the unstable set of S1 and left branch of the unstable set of S2, both
approaching the node N1. The assumption that the saddle cycle on A has no homoclinic points, guarantees that such a

set B is invariant.

Consider, for example, the saddle S1. Let us take a linear segment of the local unstable set of S1 up to its intersection
with LC0ðF 8Þ. Denote this segment of straight line by c. The whole unstable set to the left of N1 is made up by the

infinitely many images of c under F 8, i.e. [n>0ðF 8ÞnðcÞ. The first iteration of c by F 8 includes one kink point. Thus, all

consequent iterations of c, converging to the node N1, include kink points in a numerable sequence also converging to

N1.

In Fig. 11, we also show another segment g which crosses LC�1ðF 8Þ. Its image F 8ðgÞ is an arc which clearly includes a
kink point. Although the numerical simulations show only a few of such points, they must be infinitely many, ap-

proaching the node N1.

The reasoning used above works well for any parameter values inside other resonant regions Pl=k . The only difference
occurs for odd k, in which case we have to consider the periodic points of two different cycles instead of two periodic

points of the same saddle, in order to construct the invariant region B. Moreover, the attracting cycle may be a stable

focus instead of a stable node.

Up to now we have considered the fixed value of the parameter v, namely, v ¼ 0:9. Our conjecture is that all the
propositions in this subsection hold for any v < 1, range in which we have not found any complex behaviour. In fact,

the simple structure of the ðs;mÞ-bifurcation plane for v < 1 suggests that in this case the map F cannot have chaotic

attractors. Depending on the parameter values it either has an attracting cycle of even period, or two coexisting

attracting cycles of odd period, or an invariant closed attracting curve A with a quasiperiodic trajectory on it. As

Fig. 11. Portion of the attracting closed invariant curve A and area B of the phase space which is invariant for F 8.
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computer simulations show, for v > 1, besides these attractors, the map F may have a chaotic attractor (cyclic or in one

piece), and coexistence of different attractors may occur. Some examples are given in the next subsection.

3.2. The routes to complex behavior

Let us now consider the ðs;mÞ-bifurcation diagram of the map F at v ¼ 1:7 (Fig. 4). At first sight, it looks similar to
Fig. 3, but we can now find parameter values such that the map F has a chaotic attractor.

Consider again the stability loss for the fixed point ð0; 0Þ when the ðs;mÞ-parameter point crosses the bifurcation line
m ¼ m� (19), for instance, at s ¼ 0:85, m ¼ 0:075. We decrease the value of s: For s ¼ 0:84 there exists an attracting

invariant closed curve A shown in Fig. 12. An enlarged part of this attractor is shown in Fig. 13. We can guess that in

similarity to the previous consideration, the stability loss of the fixed point can give rise to an attracting closed invariant

curveA, homeomorphic to a circle, with periodic or quasiperiodic behavior on it. Note that the map F is noninvertible

for m < s=2. Thus it is noninvertible at the fixed point bifurcation m ¼ m�.

The resonance regions can be overlapping, which corresponds to coexistence of attracting cycles of different periods.

See Fig. 14, where an enlarged part of the phase space is shown at s ¼ 0:8, m ¼ 0:1 when there are three coexisting

attracting cycles: c14, c1199 and c2199, some points of which are shown together with their basins of attraction. Moreover,

an attracting cycle may coexist with a chaotic attractor: see Fig. 15, which shows an attracting cycle c14, and a chaotic

attractor together with their basins of attraction. An enlarged part of the chaotic attractor is shown in Fig. 16.

Fig. 12. Attracting closed invariant curve A of the map F at v ¼ 1:7, s ¼ 0:84 and m ¼ 0:075. The portion in the rectangle is enlarged

in Fig. 13.

Fig. 13. An enlarged part of the curve A shown in Fig. 12.
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In order to see the shape of the resonance regions in the ðs; vÞ-parameter plane, we present the corresponding two-
dimensional bifurcation diagram for m ¼ 0:1 (see Fig. 17). The feasible parameter range is indicated by the vertical lines
s ¼ 0 and s ¼ 0:9. The k-resonance regions are denoted by the corresponding numbers k6 34. The white region, as

before, represents either attracting cycles of periods k > 34, or quasi-periodic attractors, or chaos. From Fig. 17 we can

see that in the feasible parameter range there are regions in which the map F is noninvertible ðs > 0:2Þ and routes to

complex dynamics with chaotic attractors can be realized. The sequence of bifurcations leading from an attracting cycle

existing on the closed invariant curve A to a chaotic attractor, as the one shown in Fig. 15, is related to a homoclinic

bifurcation of the saddle cycle belonging to A, and to foldings and self-intersections of its unstable set (see [4,14]). We

leave the detailed description of the destruction of the resonance regions for a future study.

Fig. 14. Three coexisting attracting cycles c14, c
1
199 and c2199 of the map F , some points of which are shown together with their basins of

attraction, at v ¼ 1:7, s ¼ 0:8 and m ¼ 0:1.

Fig. 15. Attracting cycle c14 and a chaotic attractor together with their basins of attraction at v ¼ 1:7, s ¼ 0:804 and m ¼ 0:1. The

portion in the rectangle is enlarged in Fig. 16.
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4. The dynamics of the three-dimensional map T

In this section, we consider the three dimensional map T given in (10). In the previous section we have described the

dynamics on the invariant plane x ¼ �y. We are now interested in the asymptotic behaviour of the trajectories which do

not belong to the T -invariant plane. Before considering the generic point let us first describe another particular set, the
invariant line given by fx ¼ y; z ¼ 0g, on which the dynamics are defined by the one-dimensional map f of the form

(14).

The map f has very simple dynamics: for v < ðsþ 1Þ the origin is the only attracting fixed point. For v > ðsþ 1Þ (see
Fig. 18) the origin is repelling but there are two more fixed points: p0 ¼ v=ð1þ sÞ and p00 ¼ �v=ð1þ sÞ. These fixed
points attract all the points of the real axis except the preimages of the origin. In fact, the infinitely many preimages of

x ¼ 0ð�v=s;�vð1þ sÞ=s2; . . .Þ bound the intervals which belong, alternatively, to the basins of attraction of the fixed

points p0 and p00, as shown in Fig. 18. At the bifurcation value v ¼ ðsþ 1Þ, the map f has the segment [�1,1] of fixed
points (stable, but not attracting), and the trajectory of any other point of the real line finally ends up at one of these

fixed points.

Fig. 16. An enlarged part of the chaotic attractor shown in Fig. 15.

Fig. 17. Two-dimensional bifurcation diagram for the map F in the ðs; vÞ parameter plane at m ¼ 0:1.
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Let us now turn to the global dynamics of the map T as given in (10).

Denote by Ri, i ¼ 1; 5 the following subregions of R3:

R1 ¼ fðx; y; zÞ : x > 1; y < �1; z 2 Rg;
R2 ¼ fðx; y; zÞ : jxj6 1; jyj6 1; z 2 Rg;
R3 ¼ fðx; y; zÞ : x < �1; y > 1; z 2 Rg;
R4 ¼ fðx; y; zÞ : x < �1; y < �1; z 2 Rg;
R5 ¼ fðx; y; zÞ : x > 1; y > 1; z 2 Rg:

The point ð0; 0; 0Þ 2 R2 obviously is a fixed point of the map T .
The eigenvalues of the map T in R2 are k1;2 given in (16) (the corresponding eigenvectors belong to the invariant

plane x ¼ �y) and k3 ¼def k? ¼ v� s (the corresponding eigenvector is transversal to the plane x ¼ �y).

Proposition 8. For v < 1þ s, the origin ð0; 0; 0Þ is the unique fixed point of the map T and it is globally attracting iff
ðs;mÞ 2 S where S is defined in (15). If ðs;mÞ 62 S, m < ð1þ sÞ=2, then the origin is only transversally attracting.

To show that this proposition is true, we first check that among the nine linear maps defining T , only one (the map in
R2) has the fixed point in its region of definition. Moreover, under the assumption of the proposition, all the linear maps

have eigenvalues less than 1 in absolute value, i.e. all are contractions. Next, we note that jk?j < 1 if v < 1þ s. From
Proposition 1, we have that jk1;2j < 1 if ðs;mÞ 2 S, and jk1;2j > 1 if ðs;mÞ 62 S. Thus, the proposition is proved.

Let us now check when the invariant plane x ¼ �y is transversally attracting. The plane x ¼ �y belongs to the

regions R1;R2 and R3. We have shown that the map T in the region R2 is transversally attracting if v < 1þ s. The
eigenvalues of T in R1 and R3 are l1;2 given in (17) and l3¼

def
l? ¼ �s, the same as for the maps in R4 and R5 (because

the corresponding linear maps differ only by a shift constant). As 0 < s < 1, we have jl?j < 1. Thus, the following

proposition holds

Proposition 9. For v < 1þ s, the T -invariant plane x ¼ �y is globally attracting; The dynamics on it are described by the
map F given in (13).

Proposition 10. If v > 1þ s then, besides the attractors belonging to the invariant plane x ¼ �y, the map T has two more
fixed points P0 ¼ ðp0; p0; 0Þ 2 R5 and P 0

0 ¼ ðp00; p00; 0Þ 2 R4, which are attracting iff ðs;mÞ 2 S1, where S1 is defined in (18).

In fact, for v > 1þ s, besides the zero fixed point, the map T has two more fixed points P0 2 R5 and P 0
0 2 R4. The

eigenvalues of the map T in R4 and R5 are l1;2 as given in (17) and l3 ¼ �s.
Let BðP0Þ and BðP 0

0Þ denote the basins of attraction of the fixed points P0 and P 0
0, respectively. These basins are

volumes in R3. Figs. 19 and 20 show two-dimensional sections, z ¼ 0 and x ¼ y, respectively, of BðP0Þ and BðP 0
0Þ at

s ¼ 0:4, m ¼ 0:5, v ¼ 5. The trajectories of initial points belonging to the white region are attracted to the period-6 cycle

c1=6 existing on the invariant plane x ¼ �y. The boundary of BðP0Þ and BðP 0
0Þ is formed by polygons Pi, i ¼ 1; 2; . . .,

Fig. 18. One-dimensional map f to which the map T is reduced on the invariant line fx ¼ y; z ¼ 0g. Here v > ðsþ 1Þ.
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belonging to the preimages of the invariant plane x ¼ �y. Section of Pi gives segments which form the boundary of

BðP0Þ and BðP 0
0Þ seen in Figs. 19 and 20, separated by the preimages of the origin.

5. Discussion

In the above analysis, we used the simplification that the locations of the ‘‘roof’’ and ‘‘ceiling’’ for the Hicks in-

vestment function were symmetric around the origin. For more generality we should skip this extreme assumption of

symmetry. However, it can be shown that such an amendment would make but little difference as to the qualitative

results obtained.

Further, recall that the reduction of the four dimensional map for the two region model to three dimensions was

possible only due to the assumption of a special lag structure for consumption expenditures. Using in stead the original

(simplest) lag structure, results in a non-reducible map in four dimensions, which itself deserves further study.

The same holds true for the original Hicks model for a single region (without interregional trade). Even if it cannot

produce chaos, as mentioned above, it has interesting dynamic features not yet fully analysed.
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Fig. 19. Section w ¼ 0 of the basins of attraction of the fixed points P0 and P 0
0 at s ¼ 0:4, m ¼ 0:5 and v ¼ 5.

Fig. 20. Section x ¼ y of the basins of attraction of the fixed points P0 and P 0
0 at s ¼ 0:4, m ¼ 0:5 and v ¼ 5.
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