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Bifurcation mechanisms in piecewise linear or piecewise smooth maps are quite different with
respect to those occurring in smooth maps, due to the role played by the borders. In this work,
we describe bifurcation mechanisms associated with the appearance/disappearance of cycles,
which may be related to several cases: (A) fold border collision bifurcations, (B) degenerate
flip bifurcations, supercritical and subcritical, (C) degenerate transcritical bifurcations and (D)
supercritical center bifurcations. Each of these is characterized by a particular dynamic behavior,
and may be related to attracting or repelling cycles. We consider different bifurcation routes,
showing the interplay between all these kinds of bifurcations, and their role in the phase plane
in determining attracting sets and basins of attraction.
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1. Introduction

For more than two decades, the study of the
dynamic behaviors and bifurcations occurring in
piecewise smooth two-dimensional maps, has been
considered in an increasing number of works, mainly
due to their relevance in applications. In fact, both
in the engineering context, as well as in biology,
economics and social sciences, the final system to
investigate is often not smooth. In engineering sys-
tems (electronics and mechanics) this mainly occurs
because of switching manifolds, crossing which the
system changes definition. Moreover, although these
systems are often described in continuous time,
the study of the bifurcations related to switching

*Author for correspondence

manifolds may be studied via Poincaré return maps
on such manifolds, so that they are ultimately
reduced to discrete time models, and piecewise
smooth maps. Many examples can be found in
sd Zhusubaliyev & Mosek-
ilde, 1i —@Ld Bernardo et all, 2008;

Ma, et alJ [Zmﬂ Slmpsgﬂ m In other disciplines,

applied models are described directly in discrete
time, and the introduction of switchings are quite
common, representing changes in external policies

or existing constraints. Examples of ap Elications in

economics and social sciences are in |

2014; Radi & Gardini, 2015, 2018; [Burr et all, M
Bischi et all, R017; Gardini et all, 2018].
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The common feature in many works is the charac-
terization of what are nowadays called border colli-
siton bifurcations. This term was introduced for the
first time in [Nusse & Yorkd, [1992, [1995], and it is
now widespread to represent the merging (or colli-
sion) of a periodic point with the set crossing which
the map changes its definition. Such a crossing may
lead to drastic changes in the invariant sets and the
dynamics of the system. In particular, the collision
may cause the disappearance of an attracting cycle
and the appearance of any kind of dynamics: diver-
gence, convergence to a cycle of different period,
convergence to a chaotic attractor. The classifica-
tion of the possible result of such a bifurcation is
still mainly an open problem in the two-dimensional
case. In fact, while for one-dimensional maps this
classification (at least for codimension-one bifurca-
tions) is quite complete, via the use of the skew-tent
map, which represents the one-dimensional border
collision normal form map (see |[Sushko et all, M]
and references therein), for maps of the plane the
theory is quite far from being complete. The two-
dimensional border collision normal form map has
been introduced in [Nusse & Yorkd, (1992, |l9_9ﬂ], it
is a two-dimensional piecewise linear map in which
the parameters are only trace and determinant of
the linear functions in the two different partitions
of the plane, separated by the border line z = 0,
and this map has been investigated in many works.
Dangerous bifurcations, leading to divergence at the
bifurcation value, but to bounded dynamics before
and after, which are particularly dangerous in elec-
tronic systems. have been considered in [Hassouneh
et al., 12004; |Ganguli & Baneried, 2003; Avrutin
et al., M] One more dangerous occurrence in the
applied context is multistability. In fact, when sev-
eral coexisting attractors are present in the system,
the related basins may be not simple, and may be
intermingled in a chaotic way, so that a very small
perturbation in the parameters of the systems may
lead to a change of w-limit set of the trajectories.
In the two-dimensional border collision normal form
map it has been shown that infinitely many attract-
ing cycles can also coexist [Simpson), 20144, 2!!145].
Thus, it is quite important to find the regions in the
parameter space where this occurs, often with the
aim to avoid these cases.

Besides the border collision bifurcations, in
piecewise linear maps (PWL for short henceforth)
also the bifurcations which are standard in smooth
systems, related to the eigenvalues of a cycle,

behave in particular ways. While in the smooth lin-
ear case such bifurcations only occur for a fixed
point leading to divergence, when a switching line
exists, in piecewise linear maps, these bifurcations
may occur to cycles of any period and the result
is, in general, unpredictable. As remarked above, it
can result in divergence, convergence to a cycle of
different period, convergence to a chaotic attractor.
Some studies related to the loss of stability via
real or complex eigenvalues can be found in [Simp-
son & Meiss, 2008; [Sushko & Gardini, 2008, 2010].
In particular, the transition via complex eigenval-
ues, called center bifurcation, has been character-
ized at the bifurcation value in hk rdini,

2004], but without the analysis of the kind of bifur-

cation involved, that is, subcritical or supercritical,
which cannot be studied by using only one map,
since this result depends on the global properties
of the piecewise definition, as investigated in one
family of maps in |[Gardini & Tikjha, lZDlQ]

It is important to emphasize that in PWL
maps, both the border collision bifurcations and the
local bifucations of cycles (related to eigenvalues)
may lead to the appearance/disappearance of
cycles. However, these are not the only bifurca-
tions, in fact, in this kind of systems a cycle may
also appear/disappear via infinity. That is, a cycle
of period n > 1 may have periodic points which
approach infinity and then disappear (becomes
virtual) or it may suddenly appear from infinity,
with periodic points very far from the origin. This
bifurcation is related to a zero value in the denom-
inator of the analytic expressions of the periodic
point of a cycle, and also to the transition of the
characteristic polynomial of the Jacobian matrix of
a suitable expression of T (related to the n-cycle)
through the value +1. It is called degenerate trans-
critical bifurcation and described in [Sushko & Gar-
dini, 2010]. Other properties related to the transi-
tion to infinity have been considered in [Avrutin
et al.,2010; Avrutin et all, 2016].

In particular, we notice that the appearance/
disappearance of a cycle in a two-dimensional con-
tinuous PWL map may occur via a

(A) fold border collision bifurcation (fold-BCB for
short), and (due to the continuity of the map)
it is necessarily related to a pair of cycles, merg-
ing in a unique cycle at the bifurcation value;

(B) degenerate flip bifurcation (both of subcritical
and supercrtical types), involving one unique

2030014-2



cycle after the bifurcation, and infinitely many
at the bifurcation value;

(C) degenerate transcritical bifurcation, involving
one unique cycle;

(D) supercritical center bifurcation, involving a
pair of cycles after the bifurcation, and
infinitely many at the bifurcation value.

Let us also recall here their roles and proper-
ties. We can consider a fixed point of map 7', since
in case of a cycle of period n we consider the map
T™ for which the periodic points are fixed points,
and the fixed point closest to LC'_; where the crit-

ical line LC_; (following [Mira_et all, [1996]) is the

set crossing which the map changes its definition.

(A) A fold-BCB occurs without any relation with
the values of the eigenvalues. At the bifurcation
value two cycles merge with a periodic point on the
critical line LC'_1, and after the bifurcation two dif-
ferent cycles exist whose symbolic sequence differs
for one symbol only. Thus, at the bifurcation value
we can consider two different Jacobian matrices, one
obtained by applying 17 to the critical point on
LC_1 and the other obtained by applying Tr to
that critical point. So the eigenvalues of these two
different Jacobian matrices determine which kind
of cycles exist after the bifurcation, whether saddle
or attracting node or repelling node. Notice that
in smooth maps only a saddle/attracting node or a
saddle/repelling node can occur in a fold bifurca-
tion, while here also two saddles may appear (we
shall see examples).

(B) A degenerate flip bifurcation of a fixed point is
related to one eigenvalue equal to —1 at the bifur-
cation value. As described in [Sushko & Gardini,
M], assuming that the related eigenvector reaches
the critical line LC'_; a segment is determined by
this critical point, say c¢_1, and its image ¢ on the
eigenvector, which is filled with cycles of period-2
(in general, if the map is 7", of cycles of double
period for T'). Thus, the cycle with periodic points
{c_1,c} is also a cycle at its border collision. If this
cycle of double period does not exist when the fixed
point is attracting, then after the bifurcation it will
appear (so it can be considered a supercritical bifur-
cation), and the cycle of double period may appear
attracting or repelling. Differently, when this cycle
of double period (attracting or repelling) exists
when the fixed point is attracting, then after the
bifurcation it will disappear (so it can be considered

Bifurcation Sequences and Multistability

a subcritical bifurcation). We shall see examples of
both types.

(C) A degenerate transcritical bifurcation of a fixed
point is related to one eigenvalue equal to +1 at the
bifurcation value as well as to a vanishing denom-
inator in the analytic expression of the periodic
points. That is, crossing this value the sign of the
periodic point changes, leading to the transition
real/virtual or wvice versa (see in [Sushko & Gar-
dini, M]) Thus, a unique cycle is involved in this
transition and when real it may be attracting or not
(since there is no relation with the other eigenvalue,
which may be inside the unit circle or outside).

(D) The_center bifurcation studied in [Sushko &
Gardini, mﬂﬁ] describes the structure of the dynam-
ics at the bifurcation value. At the bifurcation value
(when the Jacobian determinant is 1) with com-
plex eigenvalues the fixed point is a center, and we
know that an invariant area exists, centered at the
fixed point, with different properties depending on
the rotation number, rational or irrational. When
it is rational then the invariant area is a polygon
bounded by a segment of critical line LC _; and its
images (whose number depends on the rotation),
belonging to the closed partition which includes
the considered fixed point, and the area is filled
with periodic orbits of the same period, except for
the fixed point. When the rotation is irrational the
invariant area is bounded by an ellipse tangent to
LC'_1 which is the envelope curve of the images of
a segment of LC_; including the tangency point.
This invariant area is filled with invariant ellipses
with quasiperiodic orbits dense on the curves.

The exact dynamic behavior occurring at a cen-
ter bifurcation value does not say which kind of
bifurcation occurs, and which kind of dynamics will
appear after (when the cycle becomes a repelling
focus). So the bifurcation may be supercritical, lead-
ing to new attracting sets, or subcritical, or degen-
erate: the conservative case, area preserving.

When the center bifurcation occurs with a
rational rotation number, in the supercritical case,
it may lead (when the fixed point is a repelling
focus) to the existence of a closed invariant attract-
ing curve, which in general, consists of the connec-
tion of a pair of cycles, a saddle and an attract-
ing node (unstable set of the saddle cycle), with
the same rotation number at the bifurcation value.
Roughly speaking, of the infinitely many cycles
existing at the bifurcation, only two of them survive,
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leading to a saddle-node connection, and the sym-
bolic sequences of the two cycles differ for only one
symbol, so that the attracting node has one peri-
odic point on the opposite side of the fixed point,
while the saddle cycle has two periodic points on
that opposite side. Differently, the bifurcation may
lead to an attracting closed invariant curve with
quasiperiodic orbits dense on it.

In the subcritical case a repelling closed invari-
ant curve exists when the fixed point is attracting.
In general, the curve consists in the connection of
a pair of cycles, a saddle and a repelling node (sta-
ble set of the saddle cycle), or in a repelling closed
invariant curve with quasiperiodic orbits dense on
it. This repelling curve binds the basin of attraction
of the fixed point close to the bifurcation value, and
it merges with the boundary of the invariant area
at the subcritical bifurcation value.

Our goal in the present work is to show several
occurrences of these different kinds of bifurcations,
in the family of PWL maps considered in [Gardini &
Tikjha, 2019] (which is a particular case of a family
of maps proposed in [Tikjh ) DDH}), given by

jjz{x':\x]—ay, (1)

Yy =x—cy+d,

where a, ¢, and d > 0 are real parameters. The
value of the parameter d is just a scaling factor,
and we can consider d = 1 in the system given
above. In that work, the bifurcation curves related
to fixed points, 3-cycles and 4-cycles have been
determined, and then only the center bifurcation
of these cycles has been considered, determining
its occurrence as supercritical or subcritical. Here
we continue the investigation of the bifurcation
sequences occurring in map 7, in particular, related
to routes involving the cycles mentioned above: the
real fixed point, attracting 3-cycle and 4-cycle. We
shall describe several bifurcation sequences, and the
appearance/disappearance of cycles occurring in all
the four kinds of transitions described above.
After this Introduction, the structure of the
paper is as follows. In Sec. 2] we recall some proper-
ties of the map, the conditions for the invertibility,
the fixed points, and the existence regions of a pair
of 3-cycles and of 4-cycles. In Sec. Bl we shall con-
sider two routes towards subcritical and supercriti-
cal center bifurcations, showing that bifurcations of
the cases (A), (B) and (D) described above occur. In
particular, examples of fold bifurcations leading to a
pair of saddles. Moreover, the route to a subcritical

bifurcation involves homoclinic loops and chaotic
repellers. In Sec. [, we shall consider three different
routes associated with the 3-cycle. We shall describe
the role played by bifurcations of the cases (A), (B)
and (C) described above. In particular, examples
of degenerate flip bifurcations of subcritical type,
and the transition noninvertible/invertible, which
is a route leading to multistability (coexistence of
many attracting cycles). Section [B] concludes.

2. Preliminary Bifurcation Curves
in the (a,c) Plane

Let us consider the two-dimensional PWL map
given by (2/,y') = T(z,y) defined in ([]) with d =1
(without loss of generality), so that the system is
a function of the two parameters (a,c). This PWL
continuous map has a critical line LC' 1 in x = 0.
For our convenience, let us rewrite the system as
follows:

To(z,y) if <0,
_— L(z,y) @
if x>0,

where
¥ =—x—ay,
Tr(x,y) =
(z,y) Jo— ey,

3)

¥ =x—ay,

Yy =x—cy+1.

TR(‘Tv y) = {

The regions x > 0 and x < 0 are called left/right
partitions and the symbols R and L are used to
denote the itinerary of a point and, in particular,
the symbolic sequence of cycles.

Both functions 17, and Tr map the critical line
x = 0 into the same line given, for a # 0, by

LC:y:§x+L (4)

In this section we recall some properties and bifur-
cation curves reported in |Gardini & Tikjhal, DDLQ],
to be used for our analysis in the next sections.

A first property refers to the parameter values
at which the map is invertible or noninvertible, lead-
ing to the following property:

(a) for ¢ >0, map T is invertible for a > c, other-
wise it is noninvertible of Zy — Zo type;

(b) for ¢ = a, map T is degenerate, the half-plane
x > 0 is mapped into the critical line LC (y =
x + 1), thus it is noninvertible of Zy — Z1 — Zoo
type;
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(c) for e <0, map T is invertible for a > |c|, oth-
erwise it is noninvertible of Zo — Zs type;

(d) for ¢ = —a, map T is degenerate, the half-
plane © < 0 is mapped into the critical line
LC (y = —xz + 1), thus it is noninvertible of
Z() — Zl — Zoo type.

Recall that the main differences between invert-
ible and noninvertible maps refer to the structure of
invariant sets in the phase space. In invertible maps,
homoclinic orbits can be related only to saddle
cycles (intersection between the stable and unsta-
ble sets), and the basins of attracting sets are always
simply connected. Differently, in noninvertible maps
the homoclinic orbits can occur also for repelling
nodes or foci (related to snap-back repellers) and
the basins of attraction can also be multiply con-
nected or disconnected. We shall see both cases
described in the next sections.

The map has a unique fixed point which may
be real:

P = (27,91)

B a 2 (5)
- 24a+2¢'24+a+2¢

since Py = (2%,y%) = (—1,0) having z}, < 0 is
always virtual. Differently, P7 is a real fixed point
of map T for @ > 0 and ¢ > -1 — 5 or a < 0,
and ¢ < —1 — §. The stability analysis depends
on the eigenvalues of the Jacobian matrix, having
tr(Jr) = (1 —¢) and D = det(Jr) = (a — ¢) so
that the characteristic polynomial Pr(A) leads to
Pr(1) = a, Pr(—1) = 2+ a — 2¢ and the region

5
“| Zn=0
c=a _.~ 3
WNTB D=1
1)=0 =
s 6 ‘
- 1* a 4
c=1a D=1
f(1)=0
-5
-5 5

(a)
Fig. 1.
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in the (a,c) parameter plane in which it is a vir-
tual attracting fixed point, given by Pr(1) > 0,
Pr(—1) > 0 and Dg < 1, is given by S} := {a >
0,c < §+1,¢>a—1}. For the real fixed point
P7;, since tr(Jr) = —(1 4+ ¢) and Dy, = det(Jy) =
(a + ¢), the characteristic polynomial Pr () leads
to Pr(—1) = a, Pr(1) = 2+ a + 2c and the region
in the (a,c) parameter plane in which Pr(1) > 0,
Pr(—=1) > 0 and Dz, < 1 hold is given by

ST = {a>0,c>—%—1,c<—a+1}. (6)

Clearly the borders of the regions correspond to
bifurcations of the fixed point. Pr(—1) = 0 to a
degenerate flip, Pr(1) = 0 to a degenerate trans-
critical and Dy, = 1 to a center bifurcation, which
has been shown to be supercritical for ¢ > 0 and
subcritical for ¢ < 0.

The existence region of the real fixed point P}
is shown colored in the (a,c) parameter plane in
Fig. [(a), and in the bright yellow triangle Pj is
attracting. In the same figure we have also reported
the boundaries of the stability region of the virtual
fixed point P}, to prove when it is attracting or
repelling.

The existence of an attracting virtual fixed
point P%, or a repelling focus, implies that the tra-
jectories from the right partition are always mapped
in the left partition in a finite number of iterations.
This creates the possibility to have attracting cycles
with periodic points in both partitions, coexisting
with the attracting fixed point P7. And in fact,
in map 7" we have an existence region of a pair of
3-cycles, which overlaps with that of the fixed point

3
Piraca(—1)=0
c det(Jrzr) = 1 i
fold — BCB; '
2 T(C3))
]
e ”' I
TGz / - J
- 7
27 det(Jrrp) = 1
]. 4 r
iy ~ 7/
Dot V. SN :/3033,2
L PIII J/
‘s Phe
. -~
0 L~
0,G 1 a2 g 3
Praza(=1)=0

In (a) the existence and stability regions of the fixed points in the (a,c) parameter plane are evidenced. In (b) the

existence and stability region of a pair of 3-cycles is evidenced. The paths in black will be considered in Sec. @l
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P37, and in part with the stability region of P7. In
Gardini & Tikjhal, [21&9] the existence region of a
3-cycle of map T is obtained looking for the solu-
tions of the equation T3(z,y) = (z,y) noting that
the symbolic sequence of the two cycles are RLR
and RLL and when they are merging we have RLC
denoting with C' a point on the critical line LC _.
Considering T o Ty, o Tr(z,y) where

TR ol o TR(-’E,y)

(ac—2a—1)  (ac+a—ac*+a?)] |z
B (—a—c+c2+1) (a+2ac—c?) Yy
—2a + ac )
+ )
—a—c+c+1

a periodic point of a real 3-cycle C3 which may be
attracting is given by
s s a(—c* —a*+ac+2a+c—1)
(231,931) = 3. 32 2 J
2¢° +a’ —a“c—cta—3ac+a—+2

2(c? —c—ac+a+1)
2¢3 + a3 —a?c—c2a—3ac+a+2 )

(8)

While considering
TpoTgoTr(x,y)

20 +14+ac —cta—ac+a*+a
3

c—a+c2—1 2ac —a — ¢

ac

+ (9)

A—a—c+1

and solving for Ty, o T o T (z,y) = (z,y) a peri-
odic point (7§ 1,95 ;) of a real 3-cycle C§ (which is
repelling) is obtained, given by

—(a*—ac+c—c*-1)
u u o\
(#31,931) = ( a?+ac—3c—c*—1

9

2(a—1
(a=1) . (10)
a?+ac—3c—c2—1
The two 3-cycles appear/disappear via fold-BCB at
a parameter point (a, ) for which it is 23 ; = 0, and
for a # 0 this leads to the necessary condition

fold-BCB31: ¢ +a? —ac—2a—c+1=0 (11)

and another fold border collision bifurcation occurs
considering the numerator of %, in (1), for

fold-BCB32: a* —ac+c—c*—1=0. (12)

The existence region of the pair of 3-cycles is
also bounded by a curve related to a degenerate
transcritical bifurcation occurring when one eigen-
value becomes 1 and the periodic points of the
cycles tend to infinity. For the 3-cycle C3 this occurs
when the parameter point (a, ¢) belongs to the curve
denoted by 7(C3):

7(C5): 263 +a® —a*c— cfa—3ac+a+2=0
(13)

while for the other 3-cycle saddle C§ the degenerate
transcritical bifurcation occurs for:

7(CY%): a* 4+ ac—3c—c* —1=0. (14)

These curves are shown in Fig.[I}(b). Inside the exis-
tence region, the stability region of C3 is bounded
by bifurcation curves related to the center bifur-
cations and degenerate flip bifurcations, so that
these can be determined from the eigenvalues of
the function T o Ty, o Tr(x,y), for which we have
tr(Jrrr) = 3ac — ¢ —a — 1 and det(JpLp) = (a —
¢)?(a + ¢). The stability conditons are Py, (1) =
2¢3 +a® —a*c—cta—3ac+a+2 >0, Py, (1) =
a(a®* — c* —ac+3c—1) > 0 and det(Jgrr) < 1
leading to the red portion shown in Fig. {(b).

As mentioned in the Introduction, when a
parameter point belongs to the degenerate trans-
critical bifurcation curves we also have the related
Jacobian matrix with one eigenvalue +1. Other
bifurcations of the cycles are related to the eigen-
values of the map 7.

Two small arcs of the fold-BCB curve in (L))
are related to the appearance of an attracting node
and a saddle, the other two arcs are related to the
appearance of two unstable 3-cycles. The bifurca-
tion curves obtained from the stability conditions
Pran(—1) = 0 and det(Jrrr) = 1 bound the
stability region in two different parts. A numer-
ical investigation has shown that the portion of
Paos(—1) =0 in the lower region (associated with
an attracting fixed point) is related to a degener-
ate flip-BCB of subcritical type (attracting 6-cycles
merge with LC_; at the bifurcation of a saddle
3-cycle with an eigenvalue equal to —1, leading to an
attracting 3-cycle), while the portion in the upper
part is related to a supercritical one (an attracting
3-cycle undergoes a bifurcation with an eigenvalue
equal to —1, becoming a saddle and leading to an
attracting 6-cycle). Similarly for the center bifurca-
tion curve (det(Jgrr) = 1), there are two portions
belonging to the existence region. The lower one
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is in a region in which the map is invertible and
related to a center bifurcation of subcritical type,
while the upper one is in a region of noninvertibil-
ity and the center bifurcation is supercritical.

Differently, for the 3-cycle C¥, from the Jaco-
bian matrix Jrgr in Eq. @) we have Py, ., (1) =
a’ +ac—3c—c*—1 and Py, (1) > 0 is the
region below the curve 7(CY), so that for any (a,c)
belonging to the existence region of the cycle C¥,
one real eigenvalue is always greater than 1 (being
PJLRL(l) < 0)'

As it can be seen from Fig. [(b), there is

an overlapping between the stability region of the
|

2ac—act+a® —1—a

Qac+c—c3—2a+c—1

—2a%c+ ac+ac® —ac® +a

a? —3ac® +a+ct

Bifurcation Sequences and Multistability

fixed point P} with the existence region of the
3-cycles, in particular, with a region in which
both 3-cycles are unstable and a region in which
the 3-cycle Cj is attracting. In Sec. @, we shall
come back to comment on the dynamics when
the parameters are crossing the stability region of
the 3-cycle, along the black paths evidenced in
Fig. Dl(b), increasing c along a = 1 crossing a super-
critical center bifurcation, and increasing ¢ along
a = 2 crossing a degenerate flip bifurcation, and
describing the changes occurring in the transition
noninvertible/invertible increasing a along ¢ = 1.
Let us first recall some bifurcations related to
4-cycles. Consider the function T% o T, o Tg(z,y):

—ac?® + 2ac — 3a + a?

x
+ 2 3
Y cc—c+1—2a+2ac—-c

and looking for its fixed point (a periodic point with symbolic sequence RLRR), we get

a(—a® + 2¢3 + 2a®c — 2ac? + 2a® — 2¢® — dac + 2a + 2¢ — 2)

s

T4 = at — 2¢t — 2a3¢ + 2ac3 + dac? — 2a? — 2ac + 2 ’ (15)
s 2(1 —c)((a —e)? +1)

Ya1 =

at —2¢t — 2a3¢c + 2acd + dac? — 24?2 — 2ac + 2’

which results in the periodic point of a 4-cycle Cj which can be attracting, appearing via fold-BCB crossing
through an arc of the curve of equation

1
fold-BCBy 1 : §a3 —S—d*ctat —a? +F+2c—c—a+1=0 (16)
obtained from xj; = 0, for a # 0, and bounding the blue colored existence region in Fig. Bl(a), related to
a pair of 4-cycles, a saddle and an attracting node. The repelling 4-cycle saddle, say C}, appearing at the
fold-BCB has symbolic sequence LLRR, and a point of this cycle is obtained considering the fixed point

supercritical 3

det(Jrrre) =1 ) =]
subcritical R

fold — BCB.
O'%) 1 fold — BCBy 5
0.2

subcritical

D=1

det(JHLR'A) =1
supercritical

(a) (b)

Fig. 2. In (a) existence and stability regions of the 4-cycles in the (a,c) parameter plane. In the blue colored area the 4-cycle
(4 is attracting. The two paths in red are considered in Sec. Bl In (b) the existence regions of the 3-cycles and 4-cycles are
both shown, overlapped with the stability region of the fixed point P} for ¢ > 0.
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of the function T% o T4 (z,y), leading to

—(a® = 2¢® — 2a%c + 2ac® —

2a% + 2¢% + dac — 2a — 2c + 2)

u
Ty1 =

w _2(a=¢?+2c—a—1)
Y417 T8 20 + 42 — 2a

The stability of the 4-cycle Cj can be determined
considering the Jacobian matrix Jp; 2 and its trace
and determinant, that is:

tr(Jppp2) = 2ac — dac® +2a* —1+¢*  and

det(Jppp2) = (a —c)*(a+c).
(17)

The stability region in the parameter plane is the
one in which we have satisfied the three conditions
Py e (1) = a* —2¢* — 2a3c + 2ac® + dac® — 2a® —
2ac +2 > 0, Py, ,(—1) = 2ac — 4ac® + 20° —
2a3¢ + 2ac® + a* > 0 and det(Jp, p2) = (@ — ¢)3 x
(a 4+ ¢) < 1, and it is colored in Fig. Pla) in dark
blue, while the azure color denotes 4-cycles both
repelling. The separation curve is related to a center
bifurcation occurring at det(Jp;z2) = 1, which has
been shown to be subcritical for ¢ > 0 and super-
critical for ¢ < 0.

The lower boundary of this azure region
(bounding the existence region) is another fold-
BCB in which the periodic point with symbolic
sequence R3L (of a repelling node) and the periodic
point with symbolic sequence LR2L (of a saddle)
are merging. Considering the function 77, o T%(z,y)
and looking for its fixed point, we get

a(—a® —2¢® + 2a%c + 2¢? — 2c + 2)
at — 2ct — 2a3¢ + 2ac3 + 4ac? — 24?2 — 2ac+ 2’

n _
Ty1 =

2(1—c)(c* —2a+1)
at —2¢* — 2a3c + 2ac3 + 4ac? — 2a? — 2ac + 2

and the fold-BCB (in which a 4-cycle saddle and
a repelling node are merging on z = 0) occurs at
parameter points belonging to the curve obtained
from 2} | =0, for a # 0:

n .
Yg1 =

fold-BCBy2: a4+ 263 —2a%c — 22 +2¢—2=0.
(18)

The existence region of both 4-cycles Cj and CY is
bounded by degenerate transcritical bifurcations of
the two cycles, occurring for the attracting cycle
when

a3 — 2ac? +4c2 — 2a

)

|
7(C5): Pry, (1) = a* —2¢* = 2d°c + 2ac® + dac?

—2a%® —2ac+2=0 (19)

and for the unstable one when
7(CY): Pr,ope (1) = a® — 2ac® +4¢®> —2a =0
(20)

whose interesting arcs are shown in Fig. 2a).

As for the pair of 3-cycles, we observe that also
the existence region of the pair of 4-cycles overlaps
with the stability triangle of P (in which also the
virtual fixed point P7}, is attracting). Moreover, in
Fig. RI(b) we overlap for ¢ > 0 (when the pair of
3-cycles exist) the considered existence region of the
pair of 4-cycles, so that it can be seen, in particu-
lar, the overlapping of the stability regions of three
coexisting different attractors.

In the next section we shall describe some bifur-
cations related to the cycles determined in this sec-
tion, increasing the parameter a along the lines
c=—0.2 and ¢ =0.2.

3. Bifurcation Sequences Related
to the Center Bifurcation of C;

In this section, we describe some bifurcations, or
transitions, showing how the dynamics are modi-
fied reaching the bifurcation values of the 4-cycle Cj
and of the fixed point P7. Since such dynamics and
bifurcations are relevant in the considered piecewise
linear system, we shall describe in two different sub-
sections the dynamics occurring for ¢ = —0.2 fixed
and ¢ = 0.2 fixed, increasing the parameter a, along
the paths indicated in Fig. [2(a) with two horizontal
arrows. These are representative of the bifurcations
occurring in the two cases ¢ < 0 and ¢ > 0. In
fact, the same kind of bifurcations of the 4-cycle
Cj occur whenever the center bifurcation curve is
crossed for ¢ > 0 or ¢ < 0. Notice that the values of
center bifurcation curve of Cj belong to the param-
eter region in which the map is uniquely invertible.
In the routes described below, we shall see exam-
ples of the cases (A), (B) and (D) mentioned in

2030014-8



the Introduction, as well as the homoclinic tangles
associated with a subcritical center bifurcation.

3.1. Towards a supercritical center
bifurcation of C; and
subcritical of P

Let us here consider ¢ = —0.2 fixed, so that close
to the center bifurcation the virtual fixed point P
is a repelling focus. We know that increasing a, the
4-cycle undergoes a supercritical center bifurcation
while P} undergoes a subcritical center bifurcation,
so we are interested in this transition in order to
show how these two center bifurcations are reached.

Increasing the parameter a, the attracting fixed
point P7 will coexist with other attracting cycles.
At a ~ 0.743562 a fold-BCB (case (A)) leads to
the appearance of the pair of 4-cycles described
in Sec. 2l one of which is an attracting node, and
one a saddle, whose stable set separates the basins
B(C3) and B(P7 ). An example is shown in Fig. Bl(a).
Moreover, we have observed that this 4-cycle is
not the unique coexisting attracting cycle. In fact,
increasing the parameter a, before the occurrence
of the center bifurcation of Cj, at a ~ 0.91718134,
one more attracting cycle appears (always via fold-
BCB, case (A)), an attracting 9-cycle C§ in pair
with a saddle 9-cycle. Three coexisting attractors
are shown in Fig.[Bl(b), the 4-cyclic attracting closed
invariant curves (attracting set existing after the
supercritical center bifurcation of C§, case (D)), the
9-cycle C§ and the fixed point P}. The basin of
attraction of the 4-cyclic closed invariant curves is

10
y a N
o :I[,o.
0 (+)
-5
-8 X 0 10

(a)
Fig. 3.

Bifurcation Sequences and Multistability

bounded by the stable set of the saddle cycle C}
and the curves are far from the boundary (and
thus also at the value of center bifurcation of Cj
the invariant regions tangent to x = 0 are far
from the basin boundary). Increasing the parameter
a the closed curves are increasing in size, approach-
ing the basin boundary. Notice that a contact of
the 4-cyclic closed invariant curves with the stable
set of the saddle C§ bounding the basin will lead
to the disappearance of the attractor via homo-
clinic bifurcation of the saddle C¥, this is illus-
trsted in Fig. M(a), where the chaotic transient is
shown, before convergence to the fixed point P7,
coexisting with the attracting 9-cycle C§. Also this
attracting 9-cycle C§ undergoes a center bifurca-
tion (case (D)) for a ~ 0.9527, and we can pre-
dict that it is of supercritical type. In fact, the
symbolic sequence of the attracting 9-cycle has six
points in the right partition and three in the left
one, so that before the center bifurcation, it is 0 <
Dpors = (a —¢)%(a + ¢)® < 1, while the symbolic
sequence of the saddle 9-cycle has five points in the
right partition and four in the left one, so that it is
0< DR5L4 = (a — 0)5(a +C)4 < DRGLB < 1, which
means that map 7 cannot have repelling nodes, so
that before the bifurcation a repelling closed curve
(connection saddle-repelling node) cannot exist.
An example of 9-cyclic attracting closed invari-
ant curves coexisting with the fixed point P7, is
shown in Fig. @[(b), and increasing the value of a
here the disappearance of the attracting set occurs
via contact bifurcation when the 9-cycle saddle
becomes homoclinic, leaving the fixed point P7

10/\ \‘ /L/§
,

] 8.7
LN
-5k \\\
-8 X 0 10

(b)

In (a) a = 0.91, ¢ = —0.2, phase space showing the basin B(P7) in yellow and the basin B(Cj) in azure, separated

by the stable set of the saddle C%. In (b), a = 0.925, ¢ = —0.2, phase space after the supercritical center bifurcation of C7,
showing the basin B(P7) in yellow, the basin of the closed attracting curves in azure, separated by the stable set of the saddle
CY, and the basin of an attracting 9-cycle in blue, bounded by the stable set of a saddle 9-cycle.
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10

)

Fig. 4.

In (a), a = 0.93, ¢ = —0.2, phase space showing the basin B(P7) in yellow and the basin of an attracting 9-cycle

in blue, the saddle C} is homoclinic after the contact of the closed attracting curves with their immediate basin boundary.
In (b), a = 0.9527, ¢ = —0.2, phase space showing the basin B(P7) in yellow and the basin of attraction of closed curves in
blue after the center bifurcation of an attracting 9-cycle, separated by the stable set of a saddle 9-cycle, and a chaotic repeller

associated with the homoclinic 4-cycle saddle exists.

as unique attractor. However, it is evident that a
chaotic repeller exists in the phase plane, due to
the existence of homoclinic orbits.

Increasing the parameter a, towards the sub-
critical center bifurcation of the fixed point, diver-
gent trajectories are also observed. In Fig. [Bl(a) the
basin of attraction of P7 is bounded by the sta-
ble set of the saddle cycle C§ which is homoclinic
on one side. There exists one branch of unstable
set of C§ which is convergent to P} without inter-
secting its stable set. However, also this branch
will become homoclinic, and the basin boundary of
B(P7}) becomes a closed repelling invariant curve
approaching the bifurcation value. The subcritical
center bifurcation, at a = 1.2, is shown in Fig. Bl(b).

(a)

Fig. 5.

It is worth noting that also after this bifurcation
value, not all the trajectories are divergent, for
example, besides the unstable fixed point P}, the
pair of unstable 4-cycles exists up to their disap-
pearance by fold-BCB at a ~ 1.2354.

3.2. Towards a subcritical center
bifurcation of C5 and
supercritical of P}

Let us here consider ¢ = 0.2 fixed, so that the vir-
tual fixed point P, is attracting up to a = 0.8, and
we have already shown in Sec. 2] that in this range
at least two more attracting cycles appear, a 3-cycle
C3 and a 4-cycle C§, coexisting with the attracting

In (a), a = 1, ¢ = —0.2, phase space showing the basin B(P7) in yellow and the region of divergent trajectories in

gray, separated by the stable set of the saddle 4-cycle C¥, which is homoclinic on one side. In (b) a = 1.2, ¢ = —0.2, subcritical

center bifurcation of P7.
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fixed point P7. Increasing the parameter, the fixed
point P7 is attracting and at a ~ 0.4917237 a fold-
BCB leads to the appearance of a pair of 3-cycles,
and both are unstable. This is a peculiarity of the
case (A): that is, this is an example of fold-BCB
which leads to the appearance of a pair of saddle
cycles. The saddle with symbolic sequence RLL has
two real and positive eigenvalues, while the saddle
with symbolic sequence RLR has two real and nega-
tive eigenvalues. This second saddle cycle is related
to the existence of a two-piece chaotic attractor.
That is, this bifurcation leads also to the appear-
ance of a new attracting set: six chaotic segments,
say Ag, since they are related to a repelling 3-cycle
saddle while the stable set of the second saddle
3-cycle separates the basins B(Ag) and B(P7 ).
This occurs up to the appearance of the pair of
4-cycles, at a >~ 0.71559164, leading to an attracting
4-cycle node (C}) and a saddle 4-cycle (C}) whose
stable set bounds the basin B(Cj). Increasing a,
the chaotic set Ag becomes an attracting 6-cycle,
and one more attractor appears by fold-BCB, an
attracting 18-cycle (case (A) leading to an attract-
ing cycle and a saddle). This leads to four coexisting
attracting sets, as shown in Fig. [6] where the value
of the parameter is very close to the bifurcation
value a ~ 0.77082, at which the 6-cycle undergoes
a degenerate subcritical flip bifurcation. In fact, in
the enlargement shown in Fig. Bl(b) we see that
the 6-cycle is close to the critical line x = 0 and
at this subcritical flip (of the 3-cycle), the 6-cycle

Fig. 6.

Bifurcation Sequences and Multistability

disappears while the 3-cycle C5 becomes an attract-
ing node (case (B) subcritical of the 3-cycle). Also
the 18-cycle is very close to the border z = 0, and
in fact it will also undergo a degenerate subcriti-
cal flip bifurcation leading to an attracting 9-cycle
node (case (B) subcritical of the 9-cycle), as shown
in Fig. [0

Then the 9-cycle disappears via fold-BCB
together with a saddle 9-cycle (case (A)) and the
attracting fixed point is close to its center bifurca-
tion (case (D)), occurring at a = 0.8, leading to an
attracting invariant closed curve I'y, as shown in
Fig. Bla). A contact between the invariant attract-
ing set related to the supercritical center bifurcation
of P} with the frontier of its basin boundary, given
by the stable set of the saddle 3-cycle C¥, will leave
only two attractors, C; and C3, whose basins are
separated by the stable set of the saddle C}.

Notice that after such contact bifurcation the
stable set of the saddle C% separates the basins of
the three fixed points for the cubic iterate of the
map, T3, as shown in Fig. B(b) and has a fractal
structure, since the saddle 3-cycle is homoclinic.

Increasing the parameter a, at a ~ 1.082888
the pair of 3-cycles disappears via fold-BCB, leav-
ing the attracting 4-cycle as attracting set in a
neighborhood of P} . However, it is not the unique
attracting set in the phase plane. In fact, for a >
v 1.04 ~ 1.0198 it is Dy, Dr > 1 and thus the stable
set of the 4-cycle saddle may not be issuing from
infinity since several pairs of cycles may appear via

In (a), a = 0.77, ¢ = 0.2, phase space showing four coexisting attractors: the basin B(P7) in yellow, the basin of an

attracting 6-cycle in red, separated by the stable set of the saddle C§, the basin of an attracting 18-cycle in green, bounded by
the stable set of a saddle 9-cycle and the basin B(C') in azure bounded by the stable set of the saddle C. In (b) enlargement
around P} showing that the attracting 6-cycle is close to a border collision bifurcation, one periodic point is close to LC'_1,
and also the 18-cycle is close to a border collision. Both border collisions are related to a subcritical degenerate flip bifurcation,

of a 3-cycle and of a 9-cycle, respectively.
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(a)

Fig. 7.

In (a), a = 0.78, ¢ = 0.2, phase space after the subcritical flip bifurcations, showing four coexisting attractors: the

basin B(P7) in yellow, the basin of the attracting 3-cycle C'3 in red, separated by the stable set of the saddle C'§, the basin
of an attracting 9-cycle in green, bounded by the stable set of a saddle 9-cycle and the basin B(C') in azure, bounded by the
stable set of the saddle C'{. In (b) enlargement around P7 showing the periodic points of the 3-cycle and of the 9-cycle.

fold-BCB, in particular, at a = 1.08 the 4-cycle
coexists with a 21-cycle. Moreover, divergent tra-
jectories may occur (i.e. the Poincaré Equator of
the real phase plane may become attracting). An
example is shown in Fig. @a) where the basins
of the attracting 4-cycle and 21-cycle are colored
(in azure and green, respectively), and gray points
denote the existence of divergent trajectories, and
the white areas prove the existence of several other
attracting cycles. But of interest is the stable set
of the saddle 4-cycle C}, which is now bounded, it
is not reaching infinity: its limit set is a repelling
closed invariant curve, as shown in the enlargement

in Fig. @(b) where the basin of the attracting 4-cycle
is considered for map T by using four different col-
ors: the boundary of these regions is the stable set
of the saddle 4-cycle C}.

The occurrence of invariant repelling closed
curves, existing in the cases of a subcritical cen-
ter bifurcation, is related to homoclinic tangles of
the saddle cycles (a mechanism which is nowa-
days well known). Let us observe the one occurring
here, related to the attracting 4-cycle Cj and the 4-
cycle saddle C§ bounding its basin of attraction. In
Fig. [0, we show an enlargement evidencing in par-
ticular one point of the saddle 4-cycle. In Fig. [I0)(a)

Fig. 8.

In (a), a = 0.8005, ¢ = 0.2, phase space after the supercritical center bifurcation of P} showing three coexisting

attractors: the basin of an attracting closed curve I'y in yellow, the basin of the attracting 3-cycle C'3 in red, separated by
the stable set of the saddle C§ and the basin B(Cj) in azure, bounded by the stable set of the saddle C¥. In (b) a = 0.81,
¢ = 0.2, phase space after the disappearance of the attracting closed curve I'}, leaving only two attractors. The basin of the
attracting 3-cycle C5 is shown for map T3 separated by the stable set of the saddle C'§ which has a complex structure. The
basin B(C}), bounded by the stable set of the saddle C¥ is in azure.
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(b)

In (a), a = 1.09, ¢ = 0.2, phase space showing different attracting sets. The basin B(CY) in azure, the basin of

an attracting cycle of period-21 in green, divergent trajectories in gray, regions related to other attracting cycles of different
periods in white. In (b) enlargement around P%, showing the basins of the four fixed points of € for map T, with four
different colors, separated by the stable set of the saddle C'} which is now a bounded invariant set.

the stable set is still non-homoclinic, but it is evi-
dent that the stable set is approaching one branch
of the unstable set, that is, approaching homoclinic
orbits. Recall that in invertible maps, transverse
homoclinic orbits of saddle cycles are always related
to invariant chaotic sets. In Fig. [[0(b) the stable
set separates bounded orbits from divergent ones,
and one branch of the unstable set of the saddle
4-cycle of T is homoclinic (some points are conver-
gent to the attracting 4-cycle and some points are
diverging). In Fig. [I0(c) one branch of the unstable
set of the saddle 4-cycle is completely included in
the region of divergent trajectories, while the oppo-
site branch converges to the attracting 4-cycle, the

stable set separates the four regions and the homo-
clinic bifurcation of the second unstable branch is
approaching.

In Fig.[[T)(a) the stable and unstable sets of the
saddle are intersecting, that is, we are inside the
homoclinic loop, which already ended in Fig. III(b):
the stable and unstable sets of the saddle Cj are
now no longer related to the attracting 4-cycle Cj
as it is better visible in Fig. [[T](c).

The center bifurcation of the attracting 4-cycle
Cj occurring at a ~ 1.1131837, of subcritical type,
is approached, as shown in Fig. [[2(a), where the
gray points denote divergent trajectories, and four
closed invariant repelling curves bound the basin

Fig. 10.

Bifurcation sequence at ¢ = 0.2, showing an enlargement of the phase space around P}, with the basins of the four

fixed points of C'j for map T* in four different colors, separated by the stable set of the saddle C}, while gray points denote
divergent trajectories. In (a) a = 1.095, the saddle C} is not homoclinic. In (b) a = 1.1, the saddle C} is homoclinic on one
side, some points of the unstable set have divegent trajectories. In (¢) a = 1.104, the saddle C7 is close to the homoclinic

bifurcation of the second unstable branch.
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Fig. 11.

0
()

Bifurcation sequence at ¢ = 0.2, showing an enlargement of the phase space around P7 , with the basins of the four

fixed points of C§ for map T in four different colors. In (a) a = 1.1075, the saddle C¥ is homoclinic on both sides, and the
stable set belongs to the basin boundary of C§. In (b) at a = 1.1086 and in (c) at a = 1.1091, the saddle C§ is homoclinic

and the stable set is not related to the basin boundary of C7.

15

-15
-15 X 0 15

(a)

Fig. 12.

-3 x 0 3
(b)

In (a) a = 1.11, the basin of C'] is shown in azure, bounded by closed invariant curves, and gray points have divergent

trajectories. In (b) enlargement, the shape of the boundary suggests a repelling closed curve made up by the connection of a

saddle and a repelling focus cycle.

B(C3). The shape in the enlargement of Fig. [2(b)
evidences a saddle-focus connection related to some
cycle of high period, leading to the repelling closed
invariant curve on the boundary.

After the center bifurcation almost all the tra-
jectories are divergent, even if repelling cycles exist,
besides P} . Moreover, the pair of 4-cycles disappear
at the fold-BCB at a ~ 1.334434.

4. Bifurcations Related to the
3-Cycle
In the bifurcation sequences described in this

section, we can see how several bifurcations of
cases (A), (B) and (C) may occur. Moreover, the

transition noninverible/invertible shows the route
to many coexisting attracting cycles.

4.1. Crossing over the upper center
bifurcation curve

For fixed value of a and increasing ¢ (for a > 0.5
and ¢ > 1+ §) crossing the upper branch of the cen-
ter bifurcation curve, a supercritical center bifurca-
tion of the 3-cycle occurs, as shown in Sec. 2 Let
us here describe the further bifurcation sequences
occurring in the example for ¢ = 1 and increasing ¢
up to the disappearance of bounded attractors for
map T'. The supercritical center bifurcation leads
to an attracting closed invariant curve which, due
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-1 x 0 2

Annular chaotic areas inside the invariant area. In (a) at a = 1, ¢ = 1.62 annular chaotic area inside, and in (b) at

a =1, ¢ =1.63. The colors show evidence of the basins for map 7.

to the noninvertibility of the map, develops into an
annular chaotic area, as shown in Fig. The inter-
nal and external boundaries of the invariant area
consist of a finite number of images of the critical
segment on LC _; crossed by the area itself [Mira
et al., 1996].

As long as there is a hole around the repelling
3-cycle focus, the 3-cycle is not homoclinic. The first
homoclinic bifurcation (snap-back repeller blfur—
cation of the 3-cycle focus, after Nm ,
MD occurs when the critical lines cross through
the points of the 3-cycle, after which the holes disap-
pear |Gardini, [1994; |Gardini et all, M] It is worth
noticing that the three invariant areas belong to a
wider absorbing area made up of three segments of
critical curves, images of the segment (0,0) — (0,1)
on LC_y. Let us denote A_; = (0,0), as the start-
ing point, then Ay = T(A_;) = (0,1) belongs to
LC_1 N LC, where LC is given by y = fx + 1,
a further image by the function 77 (z,y) (i.e. for
LC n{x < 0}) leads to Ay = T(A4p) = (—a,
—(c — 1)) which belongs to LC N LCy, where a
portion of LCY belongs to the straight line

A —a +1—a
T
a(l+c) 1+c¢

LCy: y= (21)

which intersects LC'_; in B_; = (0, %jrf:‘), and the
image of the segment A1 B_1 is mapped by the func-
tion 77, (x, y) into a segment of LC's belonging to the

straight line

1—a\ a(l+c)—c(c —a)
LCy: y=—
2 <x+a1+c) a(l4+c+c?—a)
1—-a
1- 22
+ “T¥e (22)

connecting Ay = (ac,c? —c+ 1 —a) to By =
—1
T(Bfl) — (a(la+c)’ 114::;:0)‘

In the case a = 1 we have that LC; (on
y = (¢ — 1)z) crosses through B_; = (0,0), A2 =
(c,c? —¢) and By = (0,1) = Ap belongs to the por-
tion of LC'5 on the line y = :cCQ_TC_l + 1, whose
slope is positive for ¢ > # ~ 1.618, and zero

(leading to the line y = 1) for ¢ = H\[ which is
the center bifurcation of the 3-cycle. It follows that
at the center bifurcation of the 3-cycle the invariant
triangle including the invariant polygons is given
by the triangle connecting the points Ay = (0,1),
A; = (=1,—c+1) and Ay = (¢, — c). After the
center bifurcation, for ¢ > #, the triangle con-
necting the points Ag = (0,1), Ay = (=1,—c+ 1)
and Ay = (¢, c® — ¢) (which always includes (0,0))
is invariant and includes all the attracting sets of
map T

After the snap-back repeller bifurcation of the
3-cycle focus, the three cyclic chaotic areas increase
in size, as shown in Fig. [[4(a), and a contact bifur-
cation with the basin boundary for map T occurs
for increasing ¢, also called expansion bifurcation
[see Fig. [4lb)], leading to the reunion of the three
areas into a unique invariant area A with chaotic
dynamics which is the one connecting the points
Ag=(0,1), Ay = (=1,—c+1) and Ay = (¢,c? —¢).
This area is the only attracting set, and the basin
of attraction, separating bounded trajectories from
divergent ones, that includes a repelling 2-cycle as
well as its stable set (which consists of points as
long as it is a repelling node, while includes seg-
ments when the 2-cycle is a saddle).

The appearance of a repelling 2-cycle occurs via
degenerate transcritical bifurcation (case (C)), as
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Fig. 14.

In (a) at a = 1, ¢ = 1.648, after the SBR bifurcation of the 3-cycle focus. In (b) at a = 1, ¢ = 1.6485, after the

contact bifurcation leading to a one-piece chaotic set. In (¢) at a = 1, ¢ = 1.78, close to the final bifurcation, leading to the
disappearance of the attracting chaotic set. The points of the 2-cycle and 4-cycle on the frontier are evidenced.

already remarked in ﬂg_amlm_&_’hk;hd, [2Q1Q] In

fact, looking for the solutions of the equation 17, o
Tr(z,y) = (x,y), considering

x

Yy

—(1+4a)
- ] e

(I—-¢)
we obtain a solution Cy = (24 p, yj ) given by

a(l+c)

Ty, o TR(Q?, y) = (02 - (Z)

_l’_

(ch,Rv yqiR)

2
a
N <202 —(a? +2a+2)" 2¢2 — (a2 + 2a + 2)
(24)
which belongs to the right partition for 3 p > 0

which holds for ¢ > /1 4+ a + % In such a case, its

image is

2(c—1) >

($121'7L, yg,L)

B a? — 2a(c—1) 2(c—a—1)
- \22 — (a2 +2a+2)" 2¢2 — (a? + 2a + 2)
(25)
and x4 ; < 0 is always satisfied. From the Jaco-

bian matrix, having trace Trpz, = ¢ — 2a — 1 and
determinant Dy, = —(c® — a?), the characteris-
tic polynomial Pgr()\) leads to Prp(1) = a? +
2a + 2 — 2¢%, Prr(—1) = a(a — 2). Thus the single
2-cycle appears via degenerate transcritical bifur-
cation when Pprr(1) = 0 [the denominator in (24)

becomes zero| at

2

A=1ta+ =, (26)

r(cy): .

Forc>/1+4+a+ % the 2-cycle C¥ exists, and it is

Prr(l) < 0 so that, of the two eigenvalues Ay =
(¢ = 2a — 1) £ /(2 —2a—1)2 + 4(c% — a?)),
it is always Ay > 1 (since increasing ¢, Prr(1)
decreases). Moreover, from Pgrr(—1) = a(a — 2) we
have that for a < 2 the 2-cycle is a repelling node
(A= < —1), while for a > 2 it is a saddle as long
as —1 < A_ < 1. The bifurcation value a = 2 will
be commented on in the next subsection (it is a
degenerate flip bifurcation of subcritical type).

So, for a = 1, the 2-cycle is a repelling node,
with periodic points

1 2(c—1)
(2R V2.R) = (202 —5 225 )

3—2¢ 2(c—2)
2¢2 -5 2¢2 -5

(27)

(CCQZL,La yg,L) = (

belonging to the basin boundary. The final bifur-
cation, leading to almost all divergent trajectories,
occurs when the invariant area A has a contact with
the basin boundary. We can see that the final bifur-
cation takes place when the repelling 2-cycle merges
with A, which occurs when the periodic points
merge with the critical curves, that is (9:72‘ Y3, L) €
LCy (or equivalently (zj p,y5 ) € LC2). Consid-
ering the value of the parameter ¢ such that

2(c—2) 3—2c
ok S
22 5 ¢ a5

(28)
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we have ¢ = 5= ~
Fig. 04l(c).

However, the 2-cycle is not the only one belong-
ing to the basin boundary. In fact, increasing ¢, for
¢ > a > 1, also a repelling 4-cycle appears by degen-
erate transcritical bifurcation (one more case (C)),
crossing a branch of the curve whose equation is
given in ([I9), and a periodic point with symbolic
sequence RLRR is given in ([H), but now it is
not attracting, and it appears without a companion
cycle LLRR. At the parameter values used in Fig. [I4]
this 4-cycle is a saddle, with eigenvalues A1 > 1 and
Ao € (—1, 0)

This 2-cycle and this 4-cycle related to
cases (C), will play a role also in the bifurcation
sequences described in the next subsection.

1.780776, as shown in

4.2. Crossing over the upper
degenerate flip bifurcation
curve

The lower branch has been already commented on
in Sec. 32 for ¢ = 0.2 increasing the parameter a,
and we have seen that it consists in a degenerate
subcritical flip (an attracting 6-cycle merges with a
repelling 3-cycle leading to an attracting 3-cycle).
Let us now fix a larger value of a such that
increasing ¢, we cross the upper branch of the degen-
erate flip bifurcation curve. Let us first consider
a = 2 fixed. Increasing the parameter c after the
bifurcation value of the 3-cycle, an attracting set
consisting of six chaotic pieces is observed, which
increases quickly in size, becoming soon a one-piece

Bifurcation Sequences and Multistability

chaotic set, bounded by the images of the critical
segment of LC _y which is included in the area. The
frontier of the basin of attraction includes the 2-
cycle and the 4-cycle saddles commented on above,
which are in a particular configuration. In fact, for
a = 2 we have Prr(—1) = a(a —2) = 0, which
means that one eigenvalue is equal to —1, and so
at the degenerate flip bifurcation, for any value
of ¢. This means that the periodic point closest to
x = 0 determines (on the eigenvector related to the
eigenvalue —1) a segment filled with periodic points

of period-4. In our case, this is the periodic point

—2¢ 2(c=2)\ . . .
(25 1,Y51) = (23(:2305’ 2(062,5)) given in (25) and its

stable set belongs to the frontier of the basin, see
the blue segments in Fig. [[0la) leading to a 4-cycle
on the boundary of the segments, which include a
point on LC_; (z = 0). This 4-cycle on the border
corresponds to the 4-cycle mentioned above, which
undergoes a border collision (it exists for a < 2, it
does not exist for a > 2, showing one more exam-
ple in which a unique cycle may appear/disappear,
related to a degenerate flip bifurcation, case (B), of
subcritical type, as we have seen also for the 3-cycle
and 9-cycle in Sec. B.2)).

The periodic point of this 4-cycle having sym-
bolic sequence RRLR is the colliding one, fixed
point of the function Tk o T, o T%(z,y) given by

a%(a—2)(a—2c+2)
at —2ct — 2a3¢+ 2ac3® + 4ac? — 202 — 2ac+ 2’
—2(@®-a—-ac* =+ +c—-1)
at —2ct — 2a3¢ + 2ac® +4ac? — 2a2 — 2ac+ 2
(29)

Ty =

Ya =

7

W 4

-5 x 15 -3 0 X

(a)
Fig. 15.

(¢)

In (a) at a = 2, ¢ = 2.3, the 3-cycle is attracting. On the basin boundary, the blue segments are filled with 4-cycles

of map 7. In (b) at a = 2, ¢ = 2.342, at the final bifurcation, leading to the disappearance of the attracting chaotic set, and
BCB of the 4-cycle on the boundary of the two segments. In (c¢) at a = 2.2, ¢ = 2.461, close to the final bifurcation, homoclinic
bifurcation of the saddle 2-cycle, leading to the disappearance of the attracting chaotic set.
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leading, for a = 2, to

.’L‘4=0,
(P =3 +c+1)

Ya = 263 +4c2 — A —10c+5 (30)
B -2 —1
~ (c—1)(cz = 5)

and for any value of ¢ it gives the border of the
segments filled with 4-cycles of map 7.

When the system consists of a unique chaotic
piece, the final bifurcation as usual occurs, increas-
ing ¢, when the chaotic area has a contact with its
basin boundary. In our case, this occurs when the
chaotic area has a contact with the 4-cycle, that
is, when the periodic point (z4,y4) € LCy, which
takes place when the following condition holds:
(x4,y4) = B_1, and it is satisfied when

A—2c—-1 -1
(c—1)(c2=5) 1+c

that is, for ¢ solution of
A —c?—4c+2=0 (32)

leading to ¢ o~ 2.342923 [the value used in Fig. [I5(b)
is very close to the bifurcation value].

As mentioned above, for ¢ > 2 the 4-cycle
no longer exists (disappeared via a border collision
associated with a degenerate flip bifurcation), and
on the frontier of the basin of attraction there is
the 2-cycle saddle. In such cases, the final bifurca-
tion (leading to almost all divergent trajectories)
occurs at the homoclinic bifurcation of the 2-cycle
saddle, an example is shown in Fig. [5lc).

(31)

0.7

0.2
-0.4 x 0 0.4

(a)

Fig. 16.
repelling focus.

4.3. Transition
noninvertible /invertible

Let us now illustrate via the example at ¢ = 1
fixed and increasing a, the transition which occurs
in the phase space. Increasing a, the map is immedi-
ately noninvertible and chaotic (the real fixed point
is never attracting), while for a = 1 the 3-cycle
described in Sec. Plis almost globally attracting and
for a > 1 the map becomes invertible. Since increas-
ing a from 0 the real fixed point is a repelling focus
while the virtual fixed point is an attracting focus,
the images of the critical curves rotate and lead
to absorbing areas, which include all the attracting
sets. An example is shown in Fig. [[6)(a), the images
of the segment of LC_; crossed by the invariant
area give the boundaries. It is evident from the fig-
ure the existence of a 7-cycle repelling focus (inside
the seven white holes), and as a increases its snap-
back repeller bifurcation occurs, leading to an annu-
lar chaotic area, as in Fig. I6(b).

As a is further increased, the value ¢ = a* at
which the pair of 3-cycles appear by fold-BCB is
approached (a* = % ~ (.382). We can char-
acterize the bifurcation value of the fold-BCB also
by using the critical lines. In fact, considering the
images of the segment on LC_; we obtain an
absorbing area which includes the invariant chaotic
area, in which a corner point is marked, and it
belongs to the left side for a < a*, to LC_; for
a = a* and to the right side for a > a* (see Fig. [IT).
At the bifurcation value, the point on LC _1 belongs
to the 3-cycle, and it is at its fold-BCB [Fig. [[(b)].
For a > a* the wider area is invariant and includes
all the attracting sets (the chaotic area and the

0.7

0.2
-0.4

0.4

Annular chaotic areas. In (a) at ¢ =1, a = 0.2. In (b) at ¢ = 1, a = 0.25, after the SBR bifurcation of the 7-cycle
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0.8

Fig. 17.
close to a*. In (c) at ¢ =1, a = 0.395 > a*.

attracting 3-cycle). In Fig. [[7(c) the basin of attrac-
tion of the chaotic area is in yellow, while three
different colors emphasize the basins of the three
attracting fixed points of map T3 (clearly, only a
few components are shown in that figure, since fur-
ther preimages exist). Inside the wider area, increas-
ing the parameter a the chaotic area approaches
the stable set of the 3-cycle saddle, and the con-
tact bifurcation will lead to its disappearance, that
is, the invariant area no longer exists and we have
the transition from a chaotic attractor to a chaotic
repeller. This can be seen in Fig. [[8(a), before the
contact, the basin of the attracting 3-cycle is a dis-
connected set, bounded by the stable set of the
3-cycle saddle, which is not homoclinic (a few com-
ponents of the basin are shown in Fig. [[§(a) for

0.9

Fig. 18.

0.4

Invariant areas bounded by segments of critical lines. In (a) at ¢ = 1, a = 0.37 < ™. In (b) at ¢ = 1, a = 0.3819,

map 1), at the contact the homoclinic bifurcation
of the saddle 3-cycle occurs, while soon after the
contact bifurcation, the basins of the three fixed
points of map T2 have an explosion, with fractal
basins’ structure, and are still separated by the sta-
ble set of the 3-cycle saddle, now homoclinic, as
shown in Fig. [8(b). It is worth noting that as
long as the map is noninvertible (i.e. for a < 1) an
absorbing area can be constructed, and we do not
observe other attractors different from the 3-cycle.
For a > 1 the map becomes invertible, and the
basins of attraction of the fixed points of map 73
become connected. Then, increasing the parame-
ter a, other cycles may appear by BCB, coexisting
with the attracting 3-cycle. The first one that we
observe is shown in Fig. [9(a), where an attracting

0.9

-0.4

In (a) at ¢ = 1, a = 0.4064 close to the contact between the chaotic area and the stable set of the saddle 3-cycle,

on the basin boundary of the attracting 3-cycle, homoclinic bifurcation of the saddle 3-cycle. In (b) at ¢ = 1, a = 0.45 after
the contact, the chaotic attractor no longer exists, while a chaotic repeller belongs to the boundaries of the basins of map T3,

having a fractal structure, and the 3-cycle saddle is homoclinic.
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Fig. 19.

In (a) at ¢ = 1, a = 1.462 the attracting 3-cycle coexists with an attracting cycle of period-16. In (b) at ¢ = 1,

a = 1.516 the attracting 3-cycle coexists with other five attracting cycles.

cycle of period-16 (appeared by fold-BCB) coex-
ists with the 3-cycle. The basin of attraction of the
16-cycle is bounded by the stable set of a saddle
cycle of period-16. Increasing a, more and more
cycles appear via cases (A), coexisting with the
3-cycle. An example is shown in Fig. [9(b), where
besides the 3-cycle, there exist also attracting cycles
of periods-10, -27, -37, -64 and -92. Other cycles
appear/disappear by BCB as a approaches the
codimension-two point a = % ~ 1.618, intersec-
tion between the bifurcation curves det(Jzrr) = 1
and SN-BCBj3, that is, intersection between the
lower branch of the center bifurcation of the 3-cycle
and the fold-BCB, leading to the disappearance of
the 3-cycles.

5. Conclusions

In the present paper we have considered the
different bifurcation mechanisms related to the
appearance/disappearance of cycles in the two-
dimensional piecewise continuous map T given
in (), describing their role in several bifurcation
routes. The bifurcation mechanisms may be related
to several cases, (A) fold border collision bifurca-
tions, (B) degenerate flip bifurcations, (C) degen-
erate transcritical bifurcations and (D) supercrit-
ical center bifurcations, whose characteristics have
been recalled in the Introduction. After the descrip-
tion of the existence and bifurcation regions of fixed
points, 3-cycles and 4-cycles of map T given in
Sec. [, different bifurcation routes have been con-
sidered in Secs. Bl and @ In Sec. B, we have shown
how bifurcations of cases (A) and (B) are involved
with supercritical center bifurcations (case (D)) or

center bifurcations of subcritical type. In particular,
cases of degenerate flip bifurcations (cases (B)) of
subcritical type have been evidenced, as well as the
occurrence of a fold-BCB (case (A)) associated with
two saddle cycles (which cannot occur in smooth
maps). In Sec. @ we have described several bifur-
cations related to an attracting 3-cycle, involving
in particular degenerate transcritical bifurcations
(cases (B)) associated with single repelling cycles,
which belong to the frontier separating divergent
trajectories. In that section we have also described
the dynamics occurring in the transition from non-
invertibility to invertibility of map 7'. The critical
curves play a prominent role in the noninvertible
cases, and are related to snap-back repeller bifurca-
tions of several cycles, while in the invertible range
sequences of many bifurcations of cases (A) lead to
multistability.
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