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Abstract

Bifurcation mechanisms in piecewise linear or piecewise maps are quite di¤er-
ent with respect to those occurring in smooth maps, due to the role played by
the borders. In this work we describe bifurcation mechanisms associated with the
appearance/disappearance of cycles, which may be related to several cases: (A)
fold border collision bifurcations, (B) degenerate �ip bifurcations, supercritical and
subcritical, (C) degenerate transcritical bifurcations and (D) supercritical center bi-
furcations. Each of these is characterized by a particular dynamic behavior, and
may be related to attracting or repelling cycles. We consider di¤erent bifurcation
routes, showing the interplay between all these kind of bifurcations, and their role
in the phase plane in determining attracting sets and basins of attraction.

Keywords: Piecewise linear maps, fold border collision bifurcation, �ip border
collision bifurcation, center bifurcation, subcritical or supercritical bifurcations

1 Introduction

Since more than two decades, the study of the dynamic behaviors and bifurcations
occurring in piecewise smooth two-dimensional maps, has been considered in an in-
creasing number of works, mainly due to their relevance in applications. In fact, both
in the engineering context, as well as in biology, economics and social sciences, the
�nal system to investigate is often not smooth. In engineering systems (electronics
and mechanics) this mainly occurs because of switching manifolds, crossing which
the system changes de�nition. Moreover, although these systems are often described
in continuous time, the study of the bifurcations related to switching manifolds may
be studied via Poincaré return maps on such manifolds, so that they are ultimately
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reduced to discrete time models, piecewise smooth maps. Many examples can be
found in [Banerjee & Verghese, 2001, Zhusubaliyev & Mosekilde, 2003, Brogliato,
1999, di Bernardo et al., 2008, Ma et al. 2006, Ing. et al. 2010, Simpson 2010]. In
other disciplines, applied models are described directly in discrete time, and the in-
troduction of switchings are quite common, representing changes in external policies
or existing constraints. Examples of applications in economics and social sciences
are in [Radi et al. 2014, Radi & Gardini 2015, 2018, Burr et al. 2015, Bischi et al
2017, Gardini et al, 2018].
The common feature in many works is the characterization of what are nowadays

called border collision bifurcations. This term has been introduced for the �rst time
in [Nusse & York, 1992, 1995], and it is now widespread to represent the merging
(or collision) of a periodic point with the set crossing which the map changes its
de�nition. Such a crossing may led to drastic changes in the invariant sets and the
dynamics of the system. In particular, the collision may lead to the disappearance
of an attracting cycle and the appearance of any kind of dynamics: divergence,
convergence to a cycle of di¤erent period, convergence to a chaotic attractor. The
classi�cation of the possible result of such a bifurcation is still mainly an open
problem in the two-dimensional case. In fact, while for one-dimensional maps this
classi�cation (at least for codimension-one bifurcations) is quite complete, via the
use of the skew-tent map, which represents the one-dimensional border collision
normal form map (see [Sushko et al. 2015] and references therein), for maps of
the plane the theory is quite far from being complete. The two-dimensional border
collision normal form map has been introduced in [Nusse & York, 1992, 1995], it
is a two-dimensional piecewise linear map in which the parameters are only trace
and determinant of the linear functions in the two di¤erent partitions of the plane,
separated by the border line x = 0, and this map has been investigated in many
works. Dangerous bifurcations, leading to divergence at the bifurcation value, but to
bounded dynamics before and after, which are particularly dangerous in electronic
systems, have been considered in [Hassouneh et al., 2004, Ganguli & Banerjee, 2005,
Avrutin et al. 2016]. One more dangerous occurrence in the applied context is
multistability. In fact, when several coexisting attractors are present in the system,
the related basins may be not simple, and may be intermingled in a chaotic way, so
that also a very small perturbation in the parameters of the systems may lead to
a change of !�limit set of the trajectories. In the two-dimensional border collision
normal form map it has been shown that also in�nitely many attracting cycles can
coexist [Simpson 2014a,b]. Thus, it is quite important to �nd the regions in the
parameters space where this occurs, often with the goal to avoid these cases.
Besides the border collision bifurcations, in piecewise linear maps (PWL for short

henceforth) also the bifurcations which are standard in smooth systems, related to
the eigenvalues of a cycle, behave in particular ways. While in the smooth linear
case such bifurcations only occur for a �xed point leading to divergence, when a
switching line exists, in piecewise linear maps, these bifurcations may occur to cycles
of any period and the result is in general unpredictable. As remarked above, it can
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result in divergence, convergence to a cycle of di¤erent period, convergence to a
chaotic attractor. Some studies related to the loss of stability via real or complex
eigenvalues can be found in [Simpson & Meiss, 2008, Sushko & Gardini 2008, Sushko
& Gardini, 2010]. In particular, the transition via complex eigenvalues, called center
bifurcation, has been charaterized at the bifurcation value in [Sushko & Gardini
2008], but without the analysis of the kind of bifurcation involved, that is, subcritical
or supercritical, which cannot be studied by use of only one map, since this result
depends on the global properties of the piecewise de�nition, as investigated in one
family of maps in [Gardini & Tikjha, 2019].
It is important to emphasize that in PWL maps, both the border collision bifur-

cations and the local bifucations of cycles (related to eigenvalues) may lead to the
appearance/disappearance of cycles. However, these are not the only bifurcations,
in fact, in this kind of systems a cycle may also appearance/disappearance via in-
�nity. That is, a cycle of period n � 1 may have the periodic points which approach
the in�nity and then disappear (becomes virtual) or it may suddenly appear from
in�nity, with periodic points very far from the origin. This bifurcation is related to
a zero value in the denominator of the analytic expressions of the periodic point of
a cycle, and also to the transition of the characteristic polynomial of the Jacobian
matrix of a suitable expression of T n (related to the n�cycle) through the value +1.
It is called degenerate transcritical bifurcation and described in [Sushko & Gardini,
2010]. Other properties related to the transition to in�nity have been considered in
[Avrutin et al. 2010, Avrutin et al. 2016].
In particular, we notice that the appearance/disappearance of a cycle in a two-

dimensional continuous PWL map may occur via a

� (A) fold border collision bifurcation (fold-BCB for short), and (due to the
continuity of the map) it is necessarily related to a pair of cycles, merging in
a unique cycle at the bifurcation value;

� (B) degenerate �ip bifurcation (both of subcritical and supercrtical type),
involving one unique cycle after the bifurcation, and in�nitely many at the
bifurcation value;

� (C) degenerate transcritical bifurcation, involving one unique cycle;

� (D) supercritical center bifurcation, involving a pair of cycles after the bifur-
cation, and in�nitely many at the bifurcation value.

Let us also recall here their role and properties. We can consider a �xed point
of map T , since in case of a cycle of period n we consider the map T n for which
the periodic points are �xed points, and the �xed point closest to LC�1 where the
critical line LC�1 (following [Mira et al., 1996]) is the set crossing which the map
changes its de�nition.
(A) A fold-BCB occurs without any relation with the values of the eigenvalues.

At the bifurcation value two cycles merges with a periodic point on the critical line
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LC�1, and after the bifurcation two di¤erent cycles exist whose symbolic sequence
di¤er for one symbol only. Thus, at the bifurcation value we can consider two
di¤erent Jacobian matrices, one obtained by applying TL to the critical point on
LC�1 and the other obtained by applying TR to that critical point. So the eigenvalues
of these two di¤erent Jacobian matrices determine which kind of cycles exist after
the bifurcation, whether saddle or attracting node or repelling node. Notice that in
smooth maps only a saddle/attracting node or a saddle/repelling node can occur in
a fold bifurcation, while here also two saddles may appear (we shall see examples).
(B) A degenerate �ip bifurcation of a �xed point is related to one eigenvalue

equal to �1 at the bifurcation value. As described in [Sushko & Gardini 2010]
assuming that the related eigenvector reaches the critical line LC�1 a segment is
determined by this critical point, say c�1, and its image c on the eigenvector, which
is �lled with cycles of period 2 (in general, if the map is T n; of cycles of double
period for T ). Thus, the cycle with periodic points fc�1; cg is also a cycle at its
border collision. If this cycle of double period does not exist when the �xed point
is attracting, then after the bifurcation it will appear (so it can be considered a
supercritical bifurcation), and the cycle of double period may appear attracting or
repelling. Di¤erently, when this cycle of double period (attracting or repelling) exists
when the �xed point is attracting, then after the bifurcation it will disappear (so it
can be considered a subcritical bifurcation). We shall see examples of both types.
(C) A degenerate transcritical bifurcation of a �xed point is related to one eigen-

value equal to +1 at the bifurcation value as well as to a vanishing denominator in
the analytic expression of the periodic points. That is, crossing this value the sign
of the periodic point changes, leading to the transition real/virtual or vice versa
(see in [Sushko & Gardini 2010]). Thus, a unique cycle is involved in this transition
and when real it may be attracting or not (since there is no relation with the other
eigenvalue, which may be inside the unit circle or outside)
(D) The center bifurcation studied in [Sushko & Gardini 2008] describes the

structure of the dynamics at the bifurcation value. At the bifurcation value (when
the Jacobian determinant is 1) with complex eigenvalues the �xed point is a center,
and we know that an invariant area exists, centered in the �xed point, with di¤erent
properties depending on the rotation number, rational or irrational. When it is
rational then the invariant area is a polygon bounded by a segment of critical line
LC�1 and its images (whose number depends on the rotation), belonging to the
closed partition which includes the considered �xed point, and the area is �lled with
periodic orbits of the same period, except for the �xed point. When the rotation is
irrational the invariant area is bounded by an ellipse tangent to LC�1 which is the
envelope curves of the images of a segment of LC�1 including the tangency point.
This invariant area is �lled with invariant ellipses with quasiperiodic orbits dense
on the curves.
The exact dynamic behavior occurring at a center bifurcation value does not

say which kind of bifurcation occurs, and which kind of dynamics will appear after
(when the cycle becomes a repelling focus). So the bifurcation may be supercritical,
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leading to new attracting sets, or subcritical, or degenerate: the conservative case,
area preserving.
When the center bifurcation occurs with a rational rotation number, in the su-

percritical case it may lead (when the �xed point is a repelling focus) to the existence
of a closed invariant attracting curve, which in general consists in the connection of
a pair of cycles, a saddle and an attracting node (unstable set of the saddle cycle),
with the same rotation number at the bifurcation value. Roughy speaking, of the
in�nitely many cycles existing at the bifurcation, only two of them survive, leading
to a saddle-node connection, and the symbolic sequence of the two cycles di¤er for
only one symbol, so that the attracting node has one periodic point on the opposite
side of the �xed point, while the saddle cycle has two period points on that opposite
side. Di¤erently, the bifurcation may lead to an attracting closed invariant curve
with quasiperiodic orbits dense on it.
In the subcritical case a repelling closed invariant curve exists when the �xed

point is attracting. In general the curve consists in the connection of a pair of cycles,
a saddle and a repelling node (stable set of the saddle cycle), or in a repelling closed
invariant curve with quasiperiodic orbits dense on it. This repelling curve bounds
the basin of attraction of the �xed point close to the bifurcation value, and it merges
with the boundary of the invariant area at the subcritical bifurcation value.
Our goal in the present work is to show several occurrences of these di¤erent

kinds of bifurcations, in the family of PWL maps considered in [Gardini & Tikjha,
2019] (which is a particular case of a family of maps proposed in [Tikjha et al. 2017
]), given by

T :

�
x0 = jxj � ay
y0 = x� cy + d (1)

where a; c, and d > 0 are real parameters. The value of the parameter d is just
a scaling factor, and we can consider d = 1 in the system given above. In that
work, the bifurcation curves related to �xed points, 3-cycles and 4-cycles have been
determined, and then only the center bifurcation of these cycles has been consid-
ered, determining its occurrence as supercritical or subcritical. Here we continue
the investigation of the bifurcation sequences occurring in map T , in particular re-
lated to routes involving the cycles mentioned above: the real �xed point, attracting
3-cycle and 4-cycle. We shall describe several bifurcation sequences, and the appear-
ance/disappearance of cycles occurring in all the four kinds of transitions described
above.
After this Introduction, the structure of the paper is as follows. In Sec.2 we

recall some properties of the map, the conditions for the invertibility, the �xed
points, and the existence regions of a pair of 3-cycles and of 4-cycles. In Sect. 3 we
shall consider two routes towards subcritical and supercritical center bifurcations,
showing that bifurcations of the cases (A), (B) and (D) described above occur. In
particular, examples of fold bifurcations leading to a pair of saddles. Moreover, the
route to a subcritical bifurcation involves homoclinic loops and chaotic repellors.
In Sec.4 we shall consider three di¤erent routes associated with the 3-cycle. We
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shall describe the role played by bifurcations of the cases (A), (B) and (C) described
above. In particular, examples of degenerate �ip bifurcations of subcritical type, and
the transition noninvertible/invertible, which also is a route leading to multistability
(coexistence of many attracting cycles). Section 5 concludes.

2 Preliminary bifurcation curves in the (a; c) plane

Let us consider the two-dimensional PWL map given by (x0; y0) = T (x; y) de�ned
in (1) with d = 1 (without loss of generality), so that the system is a function of the
two parameters (a; c). This PWL continuous map has a critical line LC�1 in x = 0:
For our convenience, let us rewrite the system as follows:

T : =

�
TL(x; y) if x � 0
TR(x; y) if x � 0

where (2)

TL(x; y) : =

�
x0 = �x� ay
y0 = x� cy + 1 ; TR(x; y) :=

�
x0 = x� ay
y0 = x� cy + 1 (3)

The regions x > 0 and x < 0 are called left/right partitions and the symbols R
and L are used to denote the itinerary of a point and, in particular, the symbolic
sequence of cycles.
Both functions TL and TR map the critical line x = 0 into the same line given,

for a 6= 0, by
LC : y =

c

a
x+ 1 (4)

In this section we recall some properties and bifurcation curves reported in [Gardini
& Tikjha, 2019], to be used for our analysis in the next sections.
A �rst property refers to the parameter values at which tha map is invertible or

noninvertible, leading to the following

Property.
For c > 0 map T is invertible for a > c, otherwise it is noninvertible of Z0�Z2

type;
for c = a map T is degenerate, the half-plane x > 0 is mapped into the critical

line LC (y = x+ 1), thus it is noninvertible of Z0 � Z1 � Z1 type;
for c < 0 map T is invertible for a > jcj, otherwise it is noninvertible of Z0�Z2

type;
for c = �a map T is degenerate, the half-plane x < 0 is mapped into the critical

line LC (y = �x+ 1), thus it is noninvertible of Z0 � Z1 � Z1 type.

Recall that the main di¤erences between invertible and noninvertible maps refers
to the structure of invaiant sets in the phase space. In invertible maps homoclinic
orbits can be related only to saddle cycles (intersection between the stable and unsta-
ble sets), and the basins of attracting sets are always simply connected. Di¤erently,
in noninvertible maps the homoclinic orbits can occur also for repelling nodes or foci
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(related to snap-back repellers) and the basins of attraction can also be multiply
connected or disconnected. We sahll see both cases described in the next sections.

The map has a unique �xed point which may be real:

P �L = (x
�
L; y

�
L) = (�

a

2 + a+ 2c
;

2

2 + a+ 2c
) (5)

since P �R = (x�R; y
�
R) = (�1; 0) having x�R < 0 is always virtual. Di¤erently, P �L is

a real �xed point of map T for a > 0 and c > �1 � a
2
or a < 0; and c < �1 � a

2
.

The stability analysis depends on the eigenvalues of the Jacobian matrix, having
tr(JR) = (1� c) and DR = det(JR) = (a� c) so that the characteristic polynomial
PR(�) leads to PR(1) = a; PR(�1) = 2+a�2c and the region in the (a; c) parameter
plane in which it is a virtual attracting �xed point, given by PR(1) > 0; PR(�1) > 0
and DR < 1, is given by S�R :=

�
a > 0; c < a

2
+ 1 ; c > a� 1

	
: For the real �xed

point P �L; since tr(JL) = �(1 + c) and DL = det(JL) = (a + c);the characteristic
polynomial PL(�) leads to PL(�1) = a; PL(1) = 2 + a + 2c and the region in the
(a; c) parameter plane in which PL(1) > 0; PL(�1) > 0 and DL < 1 hold is given
by

S�L :=
n
a > 0; c > �a

2
� 1 ; c < �a+ 1

o
(6)

Clearly the borders of the regions correspond to bifurcations of the �xed point.
PL(�1) = 0 to a degenerate �ip, PL(1) = 0 to a degenerate transcritical and
DL = 1 to a center bifurcation, which has been shown to be supercritical for c > 0
and subcritical for c < 0.

Fig.1 In (a) the existence and stability regions of the �xed points in the (a; c) parameter
plane are evidenced . In (b) the existence and stability region of a pair of 3-cycle is

evidenced. The paths in black will be considered in Sec.4

The existence region of the real �xed point P �L is shown colored in the (a; c) parameter
plane in Fig.1(a), and in the bright yellow triangle P �L is attracting. In the same
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�gure we have also reported the boundaries of the stability region of the virtual
�xed point P �R to evidence when it is attracting or repelling.
The existence of an attracting virtual �xed point P �R, or a repelling focus, implies

that the trajectories from the right partition are always mapped in the left partition
in a �nite number of iterations. This creates the possibility to have attracting cycles
with periodic points in both partitions, coexisting with the attracting �xed point
P �L. And in fact, in map T we have an existence region of a pair of 3-cycles, which
overlaps with that of the �xed point P �L; and in part with the stability region of P

�
L:

In [Gardini &Tikjha, 2019] the existence region of a 3-cycle of map T is obtained
looking for the solutions of the equation T 3(x; y) = (x; y) noting that the symbolic
sequence of the two cycles are RLR and RLL and when they are merging we have
RLC denoting with C a point on the critical line LC�1. Considering TR�TL�TR(x; y)
where

TR�TL�TR(x; y) =
�

(ac� 2a� 1) (ac+ a� ac2 + a2)
(�a� c+ c2 + 1) (a+ 2ac� c3)

� �
x
y

�
+

�
�2a+ ac

�a� c+ c2 + 1

�
(7)

a periodic point of a real 3-cycle Cs3 which may be attracting is given by

(xs3;1; y
s
3;1) =

�
a(�c2 � a2 + ac+ 2a+ c� 1)

2c3 + a3 � a2c� c2a� 3ac+ a+ 2 ;
2(c2 � c� ac+ a+ 1)

2c3 + a3 � a2c� c2a� 3ac+ a+ 2

�
(8)

While considering

TL�TR�TL(x; y) =
�
2a+ 1 + ac �c2a� ac+ a2 + a
c� a+ c2 � 1 2ac� a� c3

� �
x
y

�
+

�
ac

c2 � a� c+ 1

�
(9)

and solving for TL �TR �TL(x; y) = (x; y) a periodic point (xu3;1; yu3;1) of a real 3-cycle
Cu3 (which is repelling) is obtained, given by

(xu3;1; y
u
3;1) =

�
�(a2 � ac+ c� c2 � 1)
a2 + ac� 3c� c2 � 1 ;

2(a� 1)
a2 + ac� 3c� c2 � 1

�
(10)

The two 3-cycles appear/disappear via fold-BCB at a parameter point (a; c) for
which it is xs3;1 = 0, and for a 6= 0 this leads to the necessary condition

fold�BCB3;1 : c2 + a2 � ac� 2a� c+ 1 = 0 (11)

and another fold border collision bifurcation occurs considering the numerator of
xu3;1 in (10), for

fold�BCB3;2 : a2 � ac+ c� c2 � 1 = 0: (12)

The existence region of the pair of 3-cycles is also bounded by a curve related to a
degenerate transcritical bifurcation occurring when one eigenvalue becomes 1 and
the periodic points of the cycles tend to in�nity. For the 3-cycle Cs3 this occurs when
the parameter point (a; c) belongs to the curve denoted by �(Cs3):

�(Cs3) : 2c3 + a3 � a2c� c2a� 3ac+ a+ 2 = 0 (13)
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while for the other 3-cycle saddle Cu3 the degenerate transcritical bifurcation occurs
for:

�(Cu3 ) : a2 + ac� 3c� c2 � 1 = 0 (14)

These curves are shown in Fig.1(b). Inside the existence region, the stability region
of Cs3 is bounded by bifurcation curves related to the center bifurcations and de-
generate �ip bifurcations, so that these can be determined from the eigenvalues of
the function TR � TL � TR(x; y), for which we have tr(JRLR) = 3ac� c3 � a� 1 and
det(JRLR) = (a� c)2(a+ c). The stability conditons are PJRLR(1) = 2c3+a3�a2c�
c2a� 3ac+ a+ 2 > 0; PJRLR(�1) = a(a2 � c2 � ac+ 3c� 1) > 0 and det(JRLR) < 1
leading to the red portion shown in Fig.1(b).
As mentioned in the Introduction, when a parameter point belongs to the degen-

erate transcritical bifurcation curves we also have the related Jacobian matrix with
one eigenvalue +1. Other bifurcations of the cycles are related to the eigenvalues of
the map T 3.
Two small arcs of the fold-BCB curve in (11) are related to the appearance of

an attracting node and a saddle, the other two arcs are related to the appearance of
two unstable 3-cycles. The bifurcation curves obtained from the stability conditions
PJRLR(�1) = 0 and det(JRLR) = 1 bound the stability region in two di¤erent parts.
A numerical investigation has shown that the portion of PJRLR(�1) = 0 in the lower
region (associated with an attracting �xed point) is related to a degenerate �ip-BCB
of subcritical type (an attracting 6-cycles merges with LC�1 at the bifurcation of
a saddle 3-cycle with an eigenvalue equal to �1, leading to an attracting 3-cycle),
while the portion in the upper part is related to a supercritical one (an attracting
3-cycle undergoes a bifurcation with an eigenvalue equal to �1, becoming a saddle
and leading to an attracting 6-cycle). Similarly for the center bifurcation curve
(det(JRLR) = 1), there are two portions belonging to the existence region. The
lower one is in a region in which the map is invertible and related to a center
bifurcation of subcritical type, while the upper one in a region of noninvertibility
and the center bifurcation is supercritical.
Di¤erently, for the 3-cycle Cu3 ; from the Jacobian matrix JLRL in eq.(9) we have

PJLRL(1) = a2 + ac � 3c � c2 � 1 and PJLRL(1) > 0 is the region below the curve
�(Cu3 ); so that for any (a; c) belonging to the existence region of the cycle Cu3 one
real eigenvalue is always greater than 1 (being PJLRL(1) < 0).
As it can be seen from Fig.1(b), there is an overlapping between the stability

region of the �xed point P �L with the existence region of the three cycles, in par-
ticular with a region in which both 3-cycles are unstable and a region in which the
3-cycle Cs3 is attracting. In Sec.4 we shall come back to comment the dynamics
when the parameters are crossing the stability region of the 3-cycle, along the black
paths evidenced in Fig.1(b), increasing c along a = 1 crossing a supercritical center
bifurcation, and increasing c along a = 2 crossing a degenerate �p bifurcation, and
describing the changes occurring in the transition noninvertible/inverible increasing
a along c = 1.
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Fig.2 In (a) existence and stability regions of the 4-cycles in the (a; c) parameter plane.
In the blue colored area the 4-cycle Cs4 is attracting. The two paths in red are considered

in Sec.3. In (b) the existence regions of the 3-cycles and 4-cycles are both shown,
overlapped with the stability region of the �xed point P �L for c > 0.

Let us �rst recall some bifurcations related to 4-cycles. Consider the function
T 2R � TL � TR(x; y) :�

2ac� ac2 + a2 � 1� a �2a2c+ ac+ ac3 � ac2 + a
2ac+ c2 � c3 � 2a+ c� 1 a2 � 3ac2 + a+ c4

� �
x
y

�
+

�
�ac2 + 2ac� 3a+ a2

c2 � c+ 1� 2a+ 2ac� c3
�

and looking for its �xed point (a periodic point with symbolic sequence RLRR), we
get

xs4;1 =
a(�a3 + 2c3 + 2a2c� 2ac2 + 2a2 � 2c2 � 4ac+ 2a+ 2c� 2)

a4 � 2c4 � 2a3c+ 2ac3 + 4ac2 � 2a2 � 2ac+ 2 (15)

ys4;1 =
2(1� c)((a� c)2 + 1)

a4 � 2c4 � 2a3c+ 2ac3 + 4ac2 � 2a2 � 2ac+ 2
which results in the periodic point of a 4-cycle Cs4 which can be attracting, appearing
via fold-BCB crossing through an arc of the curve of equation

fold�BCB4;1 :
1

2
a3 � c3 � a2c+ ac2 � a2 + c2 + 2ac� c� a+ 1 = 0: (16)

obtained from xs4;1 = 0, for a 6= 0, and bounding the blue colored existence region
in Fig.2(a), related to a pair of 4-cycles, a saddle and an attracting node. The
repelling 4-cycle saddle, say Cu4 , appearing at the fold-BCB has symbolic sequence
LLRR, and a point of this cycle is obtained considering the �xed point of the
function T 2R � T 2L(x; y); leading to

xu4;1 =
�(a3 � 2c3 � 2a2c+ 2ac2 � 2a2 + 2c2 + 4ac� 2a� 2c+ 2)

a3 � 2ac2 + 4c2 � 2a

yu4;1 =
2((a� c)2 + 2c� a� 1)
a3 � 2ac2 + 4c2 � 2a

10



The stability of the 4-cycle Cs4 can be determined considering the Jacobian matrix
JRLR2 and its trace and determinant, that is:

tr(JRLR2) = 2ac� 4ac2 + 2a2 � 1 + c4 and det(JRLR2) = (a� c)3(a+ c) (17)

The stability region in the parameter plane is the one in which we have satis�ed
the three conditons PJRLR2 (1) = a

4 � 2c4 � 2a3c+ 2ac3 + 4ac2 � 2a2 � 2ac+ 2 > 0;
PJRLR2 (�1) = 2ac�4ac

2+2a2�2a3c+2ac3+a4 > 0 and det(JRLR2) = (a�c)3(a+c) <
1; and it is colored in Fig.2(a) in dark blue, while the azure color denotes 4-cycles
both repelling. The separation curve is related to a center bifurcation occurring at
det(JRLR2) = 1; which has been shown to be subcritical for c > 0 and supercritical
for c < 0.
The lower boundary of this azure region (bounding the existence region) is an-

other fold-BCB in which the periodic point with symbolic sequence R3L (of a re-
pelling node) and the periodic point with symbolic sequence LR2L (of a saddle) are
merging. Considering the function TL � T 3R(x; y) and looking for its �xed point, we
get

xn4;1 =
a(�a3 � 2c3 + 2a2c+ 2c2 � 2c+ 2)

a4 � 2c4 � 2a3c+ 2ac3 + 4ac2 � 2a2 � 2ac+ 2

yn4;1 =
2(1� c)(c2 � 2a+ 1)

a4 � 2c4 � 2a3c+ 2ac3 + 4ac2 � 2a2 � 2ac+ 2
and the fold-BCB (in which a 4-cycle saddle and a repelling node are merging on
x = 0) occurs at parameter points belonging to the curve obtained from xn4;1 = 0,
for a 6= 0 :

fold�BCB4;2 : a3 + 2c3 � 2a2c� 2c2 + 2c� 2 = 0 (18)

The existence region of both 4-cycles Cs4 and Cu4 is bounded by degenerate transcrit-
ical bifurcations of the two cycles, occurring for the attracting cycle when

�(Cs4) : PJRLR2 (1) = a
4 � 2c4 � 2a3c+ 2ac3 + 4ac2 � 2a2 � 2ac+ 2 = 0 (19)

and for the unstable one when

�(Cu4 ) : PJL2R2 (1) = a
3 � 2ac2 + 4c2 � 2a = 0 (20)

whose interesting arcs are shown in Fig.2(a).
As for the pair of 3-cycles, we observe that also the existence region of the pair

of 4-cycles overlaps with the stability triangle of P �L (in which also the virtual �xed
point P �R is attracting). Moreover, in Fig.2(b) we overlap for c > 0 (when the pair
of 3-cycles exist) the considered existence region of the pair of 4-cycles, so that it
can be seen, in particular, the overlapping of the stability regions of three coexisting
di¤erent attractors.
In the next section we shall describe some bifurcations related to the cycles

determined in this section increasing the parameter a along the lines c = �0:2 and
c = 0:2.
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3 Bifurcation sequences related to the center bi-
furcation of Cs4

In this section we describe some bifurcations, or transitions, showing how the dy-
namics are modi�ed reaching the bifurcation values of the 4-cycle Cs4 and of the
�xed point P �L. Since such dynamics and bifurcations are relevant in the considered
piecewise linear system, we shall describe in two di¤erent subsections the dynamics
occurring for c = �0:2 �xed and c = 0:2 �xed, increasing the parameter a, along the
paths evidenced in Fig.2(a) with two horizontal arrows. These are representative of
the bifurcations occurring in the two cases c < 0 and c > 0: In fact, the same kind of
bifurcations of the 4-cycle Cs4 occur whenever the center bifurcation curve is crossed
for c > 0 or c < 0: Notice that the values of center bifurcation curve of Cs4 belong
to the parameter region in which the map is uniquely invertible. In the routes de-
scribed below, we shall see examples of the cases (A), (B) and (D) mentioned in the
Introduction, as well as the homoclinic tangles associated with a subcritical center
bifurcation.

3.1 Towards a supercritical center bifurcation of Cs4 and sub-
critical of P �L

Let us here consider c = �0:2 �xed, so that close to the center bifurcation the
virtual �xed point P �R is a repelling focus. We know that increasing a the 4-cycle
undergoes a supercritical center bifurcation while P �L undergoes a subcritical center
bifurcation, so we are interest in this transition in order to show how these two
center bifurcations are reached.
Increasing the parameter a; the attracting �xed point P �L will coexist with other

attracting cycles. At a ' 0:743562 a fold-BCB (case (A)) leads to the appearance
of the pair of 4-cycles described in Sect.2, one of which is an attracting node, and
one a saddle, whose stable set separates the basins B(Cs4) and B(P �L). An example is
shown in Fig.3(a). Moreover, we have observed that this 4-cycle is not the unique
coexisting attracting cycle. In fact, increasing the parameter a, before the occurrence
of the center bifurcation of Cs4; at a ' 0:91718134, one more attracting cycle appears
(always via fold-BCB, case (A)), an attracting 9-cycle Cs9 in pair with a saddle 9-
cycle. Three coexisting attractors are shown in Fig.3(b), 4 cyclic attracting closed
invariant curves (attracting set existing after the supercritical center bifurcation
of Cs4, case (D)), the 9-cycle Cs9 and the �xed point P �L: The basin of attraction
of the 4 cyclic closed invariant curves is bounded by the stable set of the saddle
cycle Cu4 and the curves are far from the boundary (and thus also at the value of
center bifurcation of Cs4 the invariant regions tangent to x = 0 are far from the
basin boundary). Increasing the parameter a the closed curves are increasing in
size, approaching the basin boundary. Notice that a contact of the 4 cyclic closed
invariant curves with the stable set of the saddle Cu4 bounding the basin will lead
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to the disappearance of the attractor via homoclinic bifurcation of the saddle Cu4 ;
this is shown in Fig.4(a), where the chaotic transient is shown, before convergence
to the �xed point P �L; coexisting with the attracting 9-cycle Cs9:

Fig.3 In (a), a = 0:91, c = �0:2, phase space showing in yellow the basin B(P �L) and in
azure the basin B(Cs4), separated by the stable set of the saddle C

u
4 . In (b), a = 0:925,

c = �0:2, phase space after the supercritical center bifurcation of Cs4 , showing in yellow
the basin B(P �L), in azure the basin of the closed attracting curves, separated by the
stable set of the saddle Cu4 , and in blue the basin of an attracting 9-cycle, bounded by

the stable set of a saddle 9-cycle.

Fig.4 In (a), a = 0:93, c = �0:2, phase space showing in yellow the basin B(P �L) and in
blue the basin of an attracting 9-cycle, the saddle Cu4 is homoclinic after the contact of
the closed attracting curves with their immediate basin boundary. In (b), a = 0:9527,
c = �0:2, phase space showing in yellow the basin B(P �L) and in blue the basin of

attraction of closed curves after the center bifurcation of an attracting 9-cycle, separated
by the stable set of a saddle 9-cycle, and a chaotic repeller associated with the

homoclinic 4-cycle saddle exists.
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Also this attracting 9-cycle Cs9 undergoes a center bifurcation (case (D)) for
a ' 0:9527, and we can predict that it is of supercritical type. In fact, the symbolic
sequence of the attracting 9-cycle has six points in the right partition and three in the
left one, so that before the center bifurcation it is 0 < DR6L3 = (a� c)6(a+ c)3 < 1;
while the symbolic sequence of the saddle 9-cycle has �ve points in the right partition
and four in the left one, so that it is 0 < DR5L4 = (a�c)5(a+c)4 < DR6L3 < 1, which
means that map T 9 cannot have repelling nodes, so that before the bifurcation a
repelling closed curve (connection saddle-repelling node) cannot exist.
An example of 9 cyclic attracting closed invariant curves coexisting with the

�xed point P �L; is shown in Fig.4(b), and increasing the value of a also here the
disappearance of the attracting set occurs via contact bifurcation when the 9-cycle
saddle becomes homoclinic, leaving the �xed point P �L as unique attractor. However,
it is evident that a chaotic repeller exists in the phase plane, due to the existence of
homoclinic orbits.
Increasing the parameter a, towards the subcritical center bifurcation of the �xed

point, also divergent trajectories are observed. In Fig.5(a) the basin of attraction of
P �L is bounded by the stable set of the saddle cycle Cu4 which is homoclinic on one
side. There exists one branch of unstable set of Cu4 which is convergent to P �L without
intersecting its stable set. However, also this branch will become homoclinic, and the
basin boundary of B(P �L) becomes a closed repelling invariant curve approaching the
bifurcation value. The subcritical center bifurcation, at a = 1:2, is shown in Fig.5(b).
It is worth noting that also after this bifurcation value, not all the trajectories are
divergent, for example, besides the unstable �xed point P �L, the pair of unstable
4-cycles exists up to their disappearance by fold-BCB at a ' 1:2354.

Fig.5 In (a), a = 1, c = �0:2, phase space showing in yellow the basin B(P �L) and in
gray the region of divergent trajectories, separated by the stable set of the saddle 4-cycle

Cu4 , which is homoclinic on one side. In (b) a = 1:2, c = �0:2, subcritical center
bifurcation of P �L:
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3.2 Towards a subcritical center bifurcation of Cs4 and su-
percritical of P �L

Let us here consider c = 0:2 �xed, so that the virtual �xed point P �R is attracting
up to a = 0:8, and we have already shown in Sec.2 that in this range at least two
more attracting cycles appear, a 3-cycle Cs3 and a 4-cycle Cs4, coexisting with the
attracting �xed point P �L: Increasing the parameter, the �xed point P

�
L is attracting

and at a ' 0:4917237 a fold-BCB leads to the appearance of a pair of 3-cycles,
and both are unstable. This is a peculiarity of this case (A): that is, this is an
example of fold-BCB which leads to the appearance of a pair of saddle cycles. The
saddle with symbolic sequence RLL has two real and positive eigenvalues, while
the saddle with symbolic sequence RLR has two real and negative eigenvalues. This
second saddle cycle is related to the existence of a two-pieces chaotic attractor. That
is, this bifurcation leads also to the appearance of a new attracting set: six chaotic
segments, say A6; since they are related to a repelling 3-cycle saddle while the stable
set of the second saddle 3-cycle separates the basins B(A6) and B(P �L).
This occurs up to the appearance of the pair of 4-cycles, at a ' 0:71559164;

leading to an attracting 4-cycle node (Cs4) and a saddle 4-cycle (Cu4 ) whose stable
set bounds the basin B(Cs4). Increasing a, the chaotic set A6 becomes an attracting
6-cycle, and one more attractor appears by fold-BCB, an attracting 18-cycle (case
(A) leading to an attracting cycle and a saddle). Thus leading to 4 coexisting
attracting sets, as shown in Fig.6, where the value of the parameter is very close
to the bifurcation value a ' 0:77082; at which the 6-cycle undergoes a degenerate
subcritical �ip bifurcation. In fact, in the enlargement shown in Fig.6(b) we evidence
that the 6-cycle is close to the critical line x = 0 and at this subcritical �ip (of the
3-cycle) the 6-cycle disappears while the 3-cycle Cs3 becomes an attracting node (case
(B) subcritical of the 3-cycle). Also the 18-cycle is very close to the border x = 0,
and in fact it also will undergo a degenerate subcritical �ip bifurcation leading to
an attracting 9-cycle node (case (B) subcritical of the 9-cycle), as shown in Fig.7.
Then the 9-cycle disappears via fold-BCB together with a saddle 9-cycle (case

(A)) and the attracting �xed point is close to its center bifurcation (case (D)),
occurring at a = 0:8, leading to an attracting invariant closed curve �+, as shown in
Fig.8(a). A contact between the invariant attracting set related to the supercritical
center bifurcation of P �L with the frontier of its basin boundary, given by the stable
set of the saddle 3-cycle Cu3 , will leave only two attractors, Cs4 and Cs3, whose basins
are separated by the stable set of the saddle Cu4 :
Notice that after such contact bifurcation the stable set of the saddle Cu3 separates

the basins of the three �xed points for the cubic iterate of the map, T 3, as shown in
Fig.8(b) and has a fractal structure, since the saddle 3-cycle is homoclinic.
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Fig.6 In (a), a = 0:77, c = 0:2, phase space showing four coexisting attractors. In
yellow the basin B(P �L), in red the basin of an attracting 6-cycle, separated by the stable
set of the saddle Cu3 , in green the basin of an attracting 18-cycle, bounded by the stable
set of a saddle 9-cycle and in azure the basin B(Cs4), bounded by the stable set of the
saddle Cu4 . In (b) enlargement around P

�
L showing that the attracting 6-cycle is close to

a border collision bifurcation, one periodic point is close to LC�1, and also the 18-cycle
is close to a border collision. Both border collisions are related to a subcritical

degenerate �ip bifurcation, of a 3-cycle and of a 9-cycle, respectively.

Fig.7 In (a), a = 0:78, c = 0:2, phase space after the subcritical �ip bifurcations,
showing four coexisting attractors. In yellow the basin B(P �L), in red the basin of the
attracting 3-cycle Cs3 , separated by the stable set of the saddle C

u
3 , in green the basin of

an attracting 9-cycle, bounded by the stable set of a saddle 9-cycle and in azure the
basin B(Cs4), bounded by the stable set of the saddle C

u
4 . In (b) enlargement around P

�
L

showing the periodic points of the 3-cycle and of the 9-cycle.
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Fig.8 In (a), a = 0:8005, c = 0:2, phase space after the supercritical center bifurcation
of P �L showing three coexisting attractors. In yellow the basin of an attracting closed

curve �+, in red the basin of the attracting 3-cycle Cs3 , separated by the stable set of the
saddle Cu3 and in azure the basin B(C

s
4), bounded by the stable set of the saddle C

u
4 . In

(b) a = 0:81, c = 0:2, phase space after the disappearance of the attracting closed curve
�+, leaving only two attractors. The basin of the attracting 3-cycle Cs3 is shown for map
T 3 separated by the stable set of the saddle Cu3 which has a complex structure. In azure

the basin B(Cs4), bounded by the stable set of the saddle C
u
4 .

Increasing the parameter a, at a ' 1:082888 the pair of 3-cycles disappears via
fold-BCB, leaving the attracting 4-cycle as attracting set in a neighborhood of P �L:
However, it is not the unique attracting set in the phase plane. In fact, for a >p
1:04 ' 1:0198 it is DLDR > 1 and thus the stable set of the 4-cycle saddle may

not be issuing from in�nity since several pairs of cycles may appear via fold-BCB,
in particular, at a = 1:08 the 4-cycle coexists with a 21-cycle. Moreover, divergent
trajectories may occur (i.e. the Poincaré Equator of the real phase plane may become
attracting). An example is show in Fig.9(a) where the basins of the attracting 4-cycle
and 21-cycle are colored (in azure and green, respectively), and gray points denote
the existence of divergent trajectories, and the white areas evidence the existence of
several other attracting cycles. But of interest is the stable set of the saddle 4-cycle
Cu4 , which now is bounded, it is not reaching in�nity: its limit set is a repelling
closed invariant curve, as shown in the enlargement in Fig.9(b) where the basin of
the attracting 4 cycle is considered for map T 4 by using four di¤erent colors: the
boundary of these regions is the stable set of the saddle 4-cycle Cu4 .
The occurrence of invariant repelling closed curves, existing in the cases of a

subcritical center bifurcation, is related to homoclinic tangles of the saddle cycles (a
mechanisms which is nowadays well known). Let us evidence the one here occurring,
related to the attracting 4-cycle Cs4 and the 4-cycle saddle Cu4 bounding its basin of
attraction.
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Fig.9 In (a), a = 1:09, c = 0:2, phase space showing di¤erent attracting sets. three
coexisting attractors. In azure the basin B(Cs4), in green the basin of an attracting cycle
of period 21, in gray divergent trajectories, in white regions related to other attracting
cycles of di¤erent periods. In (b) enlargement around P �L, showing the basins of the four
�xed points of Cs4 for map T

4, with four di¤erent colors, separated by the stable set of
the saddle Cu4 which is now a bounded invariant set.

In Fig.10 we show an enlargement evidencing in particular one point of the saddle
4-cycle.

Fig.10 Bifurcation sequence at c = 0:2; showing an enlargement of the phase space
around P �L; with the basins of the four �xed points of C

s
4 for map T

4 in four di¤erent
colors, separated by the stable set of the saddle Cu4 , while gray points denote divergent
trajectories. In (a) a = 1:095, the saddle Cu4 is not homoclinic. In (b) a = 1:1, the
saddle Cu4 is homoclinic on one side, some points of the unstable set have divegent

trajectories. In (c) a = 1:104, the saddle Cu4 is close to the homoclinic bifurcation of the
second unstable branch.

In Fig.10(a) the stable set is still non homoclinic, but it is evident that the stable
set is approaching one branch of the unstable set, that is, approaching homoclinic
orbits. Recall that in invertible maps transverse homoclinic orbits of saddle cycles
are always related to invariant chaotic sets. In Fig.10(b) the stable set separates
bounded orbits from divergent ones, and one branch of the unstable set of the saddle
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4-cycle of T is homoclinic (some points are convergent to the attracting 4-cycle and
some points are diverging). In Fig.10(c) one branch of the unstable set of the
saddle 4-cycle is completely included in the region of divergent trajectories, while
the opposite branch converges to the attracting 4-cycle, the stable set separates
the four regions and the homoclinic bifurcation of the second unstable branch is
approaching.

Fig.11 Bifurcation sequence at c = 0:2; showing an enlargement of the phase space
around P �L; with the basins of the four �xed points of C

s
4 for map T

4 in four di¤erent
colors. In (a) a = 1:1075, the saddle Cu4 is homoclinic on both sides, and the stable set
belongs to the basin boundary of Cs4 : In (b) at a = 1:1086 and in (c) at a = 1:1091; the
saddle Cu4 is homoclinic and the stable set is not related to the basin boundary of C

s
4 :

Fig.12 In (a) a = 1:11, the basin of Cs4 is shown in azure, bounded by closed invariant
curves, gray points have divergent trajectories. In (b) enlargement, the shape of the

boundary suggests a repelling closed curve made up by the connection of a saddle and a
repelling focus cycle.

In Fig.11(a) the stable and unstable set of the saddle are intersecting, that is,
we are inside the homoclinic loop, which it is already ended in Fig.11(b): the stable
and unstable set of the saddle Cu4 are now no longer related to the attracting 4-cycle
Cs4 as it is better visible in Fig.11(c).
The center bifurcation of the attracting 4-cycle Cs4 occurring at a ' 1:1131837;

of subcritical type, is approached, as shown in Fig.12(a), where the gray points
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denote divergent trajectories, and four closed invariant repelling curves bound the
basin B(Cs4). The shape in the enlargement of Fig.12(b) evidences a saddle-focus
connection related to some cycle of high period, leading to the repelling closed
invariant curve on the boundary.
After the center bifurcation almost all the trajectories are divergent, even if

repelling cycles exist, besides P �L: Moreover, the pair of 4-cycles which disappear at
the fold-BCB at a ' 1:334434.

4 Bifurcations related to the 3-cycle

In the bifurcation sequences described in this section, we can see how several bi-
furcations of case (A), (B) and (C) may occur. Moreover, the transition noninveri-
ble/invertible which shows the route to many coexisting attracting cycles.

4.1 Crossing over the upper center bifurcation curve

For �xed value of a and increasing c (for a > 0:5 and c > 1 + a
2
) crossing the upper

branch of the center bifurcation curve, a supercritical center bifurcation of the 3-cycle
occurs, as shown in Sec.2. Let us here describe the further bifurcation sequences
occurring in the example for a = 1 and increasing c up to the disappearance of
bounded attractors for map T . The supercritical center bifurcation leads to an
attracting closed invariant curve which, due to the noninvertibility of the map,
develops into an annular chaotic area, as shown in Fig.13. The internal and external
boundaries of the invariant area consist of a �nite number of images of the critical
segment on LC�1 crossed by the area itself ([Mira et al., 1996]).
As long as there is a hole around the repelling 3-cycle focus, the 3-cycle is not

homoclinic. The �rst homoclinic bifurcation (snap-back repeller bifurcation of the 3-
cycle focus, after [Marotto, 1978, 2005]) occurs when the critical lines cross through
the points of the 3-cycle, after which the holes disappear [Gardini, 1994, Gardini
et al. 2011]. It is worth noticing that the three invariant areas belong to a wider
absorbing area made up of three segments of critical curves, images of the segment
(0; 0) � (0; 1) on LC�1: Let us denote A�1 = (0; 0) the starting point, then A0 =
T (A�1) = (0; 1) belongs to LC�1 \ LC; where LC is given by y = c

a
x+ 1; a further

image by the function TL(x; y) (i.e. for LC \ fx � 0g) leads to A1 = T (A0) =
(�a;�(c � 1)) which belongs to LC \ LC1; where a portion of LC1 belongs to the
straight line

LC1 : y =
c2 � a
a(1 + c)

x+
1� a
1 + c

(21)

which intersects LC�1 in B�1 = (0; 1�a
1+c
); and the image of the segment A1B�1 is

mapped by the function TL(x; y) into a segment of LC2 belonging to the straight
line

LC2 : y = �(x+ a1� a
1 + c

)
a(1 + c)� c(c2 � a)
a(1 + c+ c2 � a) + 1� c1� a

1 + c
(22)
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connecting A2 = (ac; c2 � c+ 1� a) to B0 = T (B�1) = (a(a�1)1+c
; 1+ac
1+c

):

Fig.13 Annular chaotic areas inside the invariant area. In (a) at a = 1; c = 1:62:
annular chaotic area inside the In (b) at a = 1; c = 1:63: The colors evidence the basins

for map T 3:

In the case a = 1 we have that LC1 (on y = (c � 1)x) crosses through B�1 =
(0; 0), A2 = (c; c2 � c) and B0 = (0; 1) = A0 belongs to the portion of LC2 on the
line y = x c

2�c�1
c

+1; whose slope is positive for c > 1+
p
5

2
' 1:618; and zero (leading

to the line y = 1) for c = 1+
p
5

2
which is the center bifurcation of the 3-cycle. It

follows that at the center bifurcation of the 3-cycle the invariant triangle including
the invariant polygons is given by the triangle connecting the points A0 = (0; 1),
A1 = (�1;�c + 1) and A2 = (c; c2 � c). After the center bifurcation, for c > 1+

p
5

2
;

the triangle connecting the points A0 = (0; 1), A1 = (�1;�c+1) and A2 = (c; c2�c)
(which always includes (0; 0)) is invariant and includes all the attracting sets of map
T .
After the snap-back repeller bifurcation of the 3-cycle focus the three cyclic

chaotic areas increase in size, as shown in Fig.14(a), and a contact bifurcation with
the basin boundary for map T 3 occurs increasing c, also called expansion bifurcation
(see Fig.14(b)), leading to the reunion of the three areas into a unique invariant
area A with chaotic dynamics which is the one connecting the points A0 = (0; 1),
A1 = (�1;�c+1) and A2 = (c; c2� c): This area is the only attracting set, and the
basin of attraction, separating bounded trajectories from divergent ones, includes a
repelling 2-cycle as well as its stable set (which consists of points as long as it is a
repelling node, while it includes segments when the 2-cycle is a saddle).
The appearance of a repelling 2-cycle occurs via degenerate transcritical bifur-

cation (case (C)), as already remarked in [Gardini & Tikjha, 2019]. In fact, looking
for the solutions of the equation TL � TR(x; y) = (x; y); considering

TL � TR(x; y) =
�
�(1 + a) a(1 + c)
(1� c) (c2 � a)

� �
x
y

�
+

�
�a
1� c

�
(23)
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we obtain a solution Cu2 = (xu2;R; yu2;R) given by

(xu2;R; y
u
2;R) =

�
a2

2c2 � (a2 + 2a+ 2) ;
2(c� 1)

2c2 � (a2 + 2a+ 2)

�
(24)

which belongs to the right partition for xu2;R > 0 which holds for c >
q
1 + a+ a2

2
.

In such a case, its image is

(xu2;L; y
u
2;L) =

�
a2 � 2a(c� 1)

2c2 � (a2 + 2a+ 2) ;
2(c� a� 1)

2c2 � (a2 + 2a+ 2)

�
(25)

and xu2;L < 0 is always satis�ed. From the Jacobian matrix, having trace TrRL =
c2�2a�1 and determinant DRL = �(c2�a2); the characteristic polynomial PRL(�)
leads to PRL(1) = a2 + 2a + 2 � 2c2; PRL(�1) = a(a � 2): Thus the single 2-cycle
appears via degenerate transcritical bifurcation when PRL(1) = 0 (the denominator
in (24) becomes zero) at

�(Cu2 ) : c2 = 1 + a+
a2

2
(26)

For c >
q
1 + a+ a2

2
the 2-cycle Cu2 exists, and it is PRL(1) < 0 so that, of the two

eigenvalues �� = 1
2
((c2�2a�1)�

p
(c2 � 2a� 1)2 + 4(c2 � a2)); it is always �+ > 1

(since increasing c, PRL(1) decreases): Moreover, from PRL(�1) = a(a� 2) we have
that for a < 2 the 2-cycle is a repelling node (�� < �1), while for a > 2 it is a
saddle as long as �1 < �� < 1: The bifurcation value a = 2 will be commented in
the next subsection (it is a degenerate �ip bifurcation of subcritical type).
So, for a = 1 the 2-cycle is a repelling node, with periodic points

(xu2;R; y
u
2;R) =

�
1

2c2 � 5 ;
2(c� 1)
2c2 � 5

�
; (xu2;L; y

u
2;L) =

�
3� 2c
2c2 � 5 ;

2(c� 2)
2c2 � 5

�
(27)

belonging to the basin boundary. The �nal bifurcation, leading to almost all di-
vergent trajectories, occurs when the invariant area A has a contact with the basin
boundary. We can see that the �nal bifurcation takes place when the repelling 2-cycle
merges with A, which occurs when the the periodic points merge with the critical
curves, that is (xu2;L; y

u
2;L) 2 LC1 (or equivalently (xu2;R; yu2;R) 2 LC2): Considering

the value of the parameter c such that

2(c� 2)
2c2 � 5 = (c� 1)

3� 2c
2c2 � 5 (28)

we have c = 3+
p
17

4
' 1:780776; as shown in Fig.14(c).

However, the 2-cycle is not the only one belonging to the basin boundary. In
fact, increasing c; for c > a > 1, also a repelling 4-cycle appears by degenerate
transcritical bifurcation (one more case (C)), crossing a branch of the curve whose
equation is given in (19), and a periodic point with symbolic sequence RLRR is
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given in (15), but now it is not attracting, and it appears without a companion
cycle LLRR. At the parameter values used in Fig.14 this 4-cycle is a saddle, with
eigenvalues �1 > 1 and �2 2 (�1; 0).
This 2-cycle and this 4-cycle related to cases (C), will play a role also in the

bifurcation sequences described in the next subsection.

Fig.14 In (a) at a = 1; c = 1:648; after the SBR bifurcation of the 3-cycle focus. In (b)
at a = 1; c = 1:6485; after the contact bifurcation leading to a one-piece chaotic set. In
(c) at a = 1; c = 1:78; close to the �nal bifurcation, leading to the disappearance of the
attracting chaotic set. The points of the 2-cycle and 4-cycle on the frontier are evidenced.

4.2 Crossing over the upper degenerate �ip bifurcation curve

The lower branch has been already commented in Sec.3.2, for c = 0:2 increasing the
parameter a, and we have seen that it consists in a degenerate subcritical �ip (an
attracting 6-cycle merges with a repelling 3-cycle leading to an attracting 3-cycle).
Let us now �x a larger value of a such that increasing c we cross the upper branch

of the degenerate �ip bifurcation curve. Let us �rst consider a = 2 �xed. Increasing
the parameter c after the bifurcation value of the 3-cycle an attracting set consisting
in six chaotic pieces is observed, which increases quickly in size, and becoming soon
a one-piece chaotic set, bounded by the images of the critical segment of LC�1 which
is included in the area. The frontier of the basin of attraction includes the 2-cycle
and the 4-cycle saddle commented above, which are in a particular con�guration. In
fact, for a = 2 we have PRL(�1) = a(a � 2) = 0, which means that one eigenvalue
is equal to �1, and so at the degenerate �ip bifurcation, for any value of c.
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Fig.15 In (a) at a = 2; c = 2:3; the 3-cycle is attracting. On the basin boundary the
blue segments are �lled with 4-cycles of map T . In (b) at a = 2; c = 2:342; at the �nal
bifurcation, leading to the disappearance of the attracting chaotic set, and BCB of the
4-cycle on the boundary of the two segments. In (c) at a = 2; c = 2:461; close to the

�nal bifurcation, homoclinic bifurcation of the saddle 2-cycle, leading to the
disappearance of the attracting chaotic set.

This means that the periodic point closest to x = 0 determines (on the eigenvector
related to the eigenvalue �1) a segment �lled with periodic points of period 4. In
our case this is the periodic point (xu2;L; y

u
2;L) =

�
3�2c
2c2�5 ;

2(c�2)
2c2�5

�
given in (25) and its

stable set belongs to the frontier of the basin, see the blue segments in Fig.15(a)
leading to a 4-cycle on the boundary of the segments, which include a point on LC�1
(x = 0). This 4-cycle on the border corresponds to the 4-cycle mentioned above,
which undergoes a border collision (it exists for a < 2, it does not exist for a > 2,
showing one more example in which a unique cycle may appear/disappear, related
to a degenerate �ip bifurcation, case (B), of subcritical type, as we have seen also
for the 3-cycle and 9-cycle in Sec.3.2).
The periodic point of this 4-cycle having symbolic sequenceRRLR is the colliding

one, �xed point of the function TR � TL � T 2R(x; y) given by

x4 =
a2(a� 2)(a� 2c+ 2)

a4 � 2c4 � 2a3c+ 2ac3 + 4ac2 � 2a2 � 2ac+ 2 (29)

y4 =
�2(a2 � a� ac2 � c2 + c3 + c� 1)

a4 � 2c4 � 2a3c+ 2ac3 + 4ac2 � 2a2 � 2ac+ 2

leading, for a = 2, to

x4 = 0; y4 =
�(c3 � 3c2 + c+ 1)

2c3 + 4c2 � c4 � 10c+ 5 =
c2 � 2c� 1

(c� 1)(c2 � 5) (30)

and for any value of c it gives the border of the segments �lled with 4-cycles of map
T .
When the system consists in a unique chaotic piece, the �nal bifurcation as usual

occurs, increasing c, when the chaotic area has a contact with its basin boundary.
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In our case, this occurs when the chaotic area has a contact with the 4-cycle, that
is, when the periodic point (x4; y4) 2 LC1; which takes place when the following
condition holds: (x4; y4) = B�1, which is sati�ed when

c2 � 2c� 1
(c� 1)(c2 � 5) =

�1
1 + c

(31)

that is, for c solution of
c3 � c2 � 4c+ 2 = 0 (32)

leading to c ' 2:342923 (the value used in Fig.15(b) is very close to the bifurcation
value).
As mentioned above, for a > 2 the 4-cycle no longer exists (disappeared via a

border collision associated with a degenerate �ip bifurcation), and on the frontier of
the basin of attraction there is the 2-cycle saddle. In such cases, the �nal bifurcation
(leading to almost all divergent trajectories) occurs at the homoclinic bifurcation of
the 2-cycle saddle, an example is shown in Fig.15(c).

4.3 Transition noninvertible/invertible

Let us now illustrate via the example at c = 1 �xed and increasing a, the transition
which occurs in the phase space. Increasing a; the map is immediately noninvertible
and chaotic (the real �xed point is never attracting), while for a = 1 the 3-cycle
described in Sec.2 is almost globally attracting and for a > 1 the map becomes
invertible. Since increasing a from 0 the real �xed point is a repelling focus while
the virtual �xed point is an attracting focus, the images of the critical curves rotate
and lead to absorbing areas, which include all the attracting sets. An example is
shown in Fig.16(a), the images of the segment of LC�1 crossed by the invariant area
give the boundaries. It is evident from the �gure the existence of a 7-cycle repelling
focus (inside the 7 white holes), and as a increases its snap-back repeller bifurcation
occurs, leading to an annular chaotic area, as in Fig.16(b).

Fig.16 Annular chaotic areas. In (a) at c = 1; a = 0:2: In (b) at c = 1; a = 0:25; after
the SBR bifurcation of the 7-cycle repelling focus.
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As a is further increased, the value a = a� at which the pair of 3-cycles appear by
fold BCB is approached (a� = 3�

p
5

2
' 0:382). We can characterize the bifurcation

value of the fold BCB also by using the critical lines. In fact, considering the images
of the segment on LC�1 we obtain an absorbing are which includes the invariant
chaotic area, in which a corner point is marked, and it belongs to the left side for
a < a�; to LC�1 for a = a� and to the right side for a > a� (see Fig.17). At the
bifurcation value, the point on LC�1 belongs to the 3-cycle, and it is at its fold BCB
(Fig.17(b)). For a > a� the wider area is invariant and includes all the attracting
sets (the chaotic area and the attracting 3-cycle). In Fig.17(c) in yellow the basin
of attraction of the chaotic area, while three di¤erent colors emphasize the basins
of the three attracting �xed points of map T 3 (clearly, only a few components are
shown in that �gure, since further preimages exist).

Fig.17 Invariant areas bounded by segments of critical lines. In (a) at c = 1;
a = 0:37 < a�: In (b) at c = 1; a = 0:3819, close to a�: In (c) at c = 1; a = 0:395 > a�:

Inside the wider area, increasing the parameter a the chaotic area approaches the
stable set of the 3-cycle saddle, and the contact bifurcation will lead to its disap-
pearance, that is, the invariant are no longer exists and we have the transition from
a chaotic attractor to a chaotic repeller. This can be seen in Fig.18(a), before the
contact, the basin of the attracting 3-cycle is a disconnected set, bounded by the
stable set of the 3-cycle saddle, which is not homoclinic (a few components of the
basin are shown in Fig.18(a) for map T 3), at the contact the homoclinic bifurcation
of the saddle 3-cycle occurs, while soon after the contact bifurcation, the basins of
the three �xed points of map T 3 have an explosion, with a fractal basins�structure,
and are still separated by the stable set of the 3-cycle saddle, now homoclinic, as
shown in Fig.18(b).

26



Fig.18 In (a) at c = 1; a = 0:4064 close to the contact between the chaotic area and the
stable set of the saddle 3-cycle, on the basin boundary of the attracting 3-cycle,

homoclinic bifurcation of the saddle 3-cycle. In (b) at c = 1; a = 0:45 after the contact,
the chaotic attractor no longer exists, while a chaotic repellor belongs to the boundaries
of the basins of map T 3; having a fractal structure, and the 3-cycle saddle is homoclinic.

It is worth noting that as long as the map is noninvertible (i.e. for a < 1) an
absorbing area can be constructed, and we do not observe other attractors di¤erent
from the 3-cycle. For a > 1 the map becomes invertible, and the basins of attraction
of the �xed points of map T 3 become connected. Then, increasing the parameter
a, other cycles may appear by BCB, coexisting with the attracting 3-cycle. The
�rst one that we observe is shown in Fig.19(a), where an attracting cycle of period
16 (appeared by fold BCB) coexists with the 3-cycle. The basin of attraction of
the 16-cycle is bounded by the stable set of a saddle cycle of period 16. Increasing
a; more and more cycles appear via cases (A), coexisting with the 3-cycle. An
example is shown in Fig.19(b), where besides the 3-cycle, there exist also attracting
cycles of periods 10, 27, 37, 64 and 92. Other cycles appear/disappear by BCB as a
approaches the codimension-two point a = 1+

p
5

2
' 1:618, intersection between the

bifurcation curves det(JRLR) = 1 and SN � BCB3;2; that is, intersection between
the lower branch of the center bifurcation of the 3-cycle and the fold BCB, leading
to the disappearance of the 3-cycles.
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Fig.19 In (a) at c = 1; a = 1:462 the attracting 3-cycle coexists with an attracting cycle
of period 19. In (b) at c = 1; a = 1:516 the attracting 3-cycle coexists with other �ve

attracting cycles.

5 Conclusions

In the present paper we have considered the di¤erent bifurcation mechanisms related
to the appearance/disappearance of cycles in the two-dimensional piecewise contin-
uous map T given in (2), describing their role in several bifurcation routes. The
bifurcation mechanisms may be related to several cases, (A) fold border collision bi-
furcations, (B) degenerate �ip bifurcations, (C) degenerate transcritical bifurcations
and (D) supercritical center bifurcations, whose characteristic have been recalled in
the Introduction. After the description of the existence and bifurcation regions of
�xed points, 3-cycles and 4-cyles of map T given in Sec.2, di¤erent bifurcation routes
have been considered in Sec.3 and Sec.4. In Sec.3 we have shown how bifurcations
of cases (A) and (B) are involved with supercritical center bifurcations (case (D)) or
center bifurcations of subcritical type. In particular, cases of degenerate �ip bifur-
cations (cases (B)) of subcritical type have been evidenced, as well as the occurrence
of a fold BCB (case (A)) associated with two saddle cycles (which cannot occur in
smooth maps). In Sec.4 we have described several bifurcations related to an at-
tracting 3-cycle, involving in particular degenerate transcritical bifurcations (cases
(B)) associated with single repelling cycles, which belong to the frontier separating
divergent trajectories. In that section we have also described the dynamics occur-
ring in the transition from noninvertibility to invertibility of map T . The critical
curves play a prominent role in the noninvertible cases, and are related to snap-back
repeller bifurcations of several cycles. While in the invertible range sequences of
many bifurcations of cases (A) lead to multistability.
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