International Journal of Bifurcation and Chaos, Vol. 19, No. 2 (2009) 545-555

© World Scientific Publishing Company

KNOT POINTS IN TWO-DIMENSIONAL MAPS
AND RELATED PROPERTIES

F. TRAMONTANA

Department of Economics, University of Ancona, Italy

L. GARDINT*
Department of Economics and Quantitive Methods,
University of Urbino, Italy
laura.gardini@Quniurd.it

D. FOURNIER-PRUNARET and P. CHARGE
LATTIS, INSA, University of Toulouse, France

Received April 16, 2008; Revised May 13, 2008

We consider the class of two-dimensional maps of the plane for which there exists a whole one-
dimensional singular set (for example, a straight line) that is mapped into one point, called a
“knot point” of the map. The special character of this kind of point has been already observed
in maps of this class with at least one of the inverses having a vanishing denominator. In that
framework, a knot is the so-called focal point of the inverse map (it is the same point). In this
paper, we show that knots may also exist in other families of maps, not related to an inverse
having values going to infinity. Some particular properties related to focal points persist, such
as the existence of a “point to slope” correspondence between the points of the singular line and
the slopes in the knot, lobes issuing from the knot point and loops in infinitely many points of
an attracting set or in invariant stable and unstable sets.
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1. Introduction

The study of the dynamic properties of two-
dimensional maps having a vanishing denominator
in at least one of their components began several
years ago (see [Bischi et al., 1999, 2003, 2005]).
These papers have evidenced some new kinds of
global bifurcations (due to the contacts of two sin-
gular sets of different nature), whose description
requires the definition of new concepts which are
specific to maps defined by functions having a van-
ishing denominator, like the set of nondefinition,
the focal points and the prefocal curves. Roughly
speaking, a prefocal curve is a set of points which are
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mapped (or “focalized”) into a single point, called
focal point, by the inverse function (if the map is
invertible) or by at least one of the inverses (if
the map is noninvertible). Such global bifurcations
cause the creation of structures of the basins which
are peculiar to maps with a vanishing denominator,
called lobes and crescents, and have been explained
in terms of contacts between basin boundaries and
prefocal curves (see also [Mira, 1999; Bischi & Gar-
dini, 1999; Gardini & Bischi, 1999; Bischi et al.,
2001a; Gardini et al., 2007]). Fisher and Gillis
[2006] considered the particular case in which a focal
point belongs to the prefocal set. These structures
have been observed in discrete dynamical systems
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of the plane arising in different contexts, see e.g.
[Yee & Sweby, 1994; Billings & Curry, 1996; Bis-
chi & Naimzada, 1997; Brock & Hommes, 1997;
Billings et al., 1997; Gardini et al., 1999; Bischi
et al., 2001b; Gu & Huang, 2006; Gu & Hao, 2007;
Gu, 2007].

In particular, the previous studies have empha-
sized that in the dynamic behavior of a smooth
map T (also of class C°°) it may occur that one
or more of the inverse functions have the analytical
expression with a denominator which may vanish
in some set of the phase space. These maps in the
two-dimensional phase space are characterized by
the occurrence of a particular critical set. In fact,
as shown in [Bischi et al., 1999] (several examples
can be seen in Sec. 3), when this occurs we can
observe a whole set of points in the phase plane,
say 0 (often a straight line), which are mapped in
a unique point K, i.e. T(dg) = K. Thus at least
at this point the map is “nonuniquely invertible”,
not having a unique rank one preimage (as these
are indeed infinitely many: T-1(K) = §k). The
locus of points dx which are mapped into such a
knot point K is obviously determined by looking
for the locus of possible critical points of rank-0:
The solutions of the equation det Jr(z,y) = 0 where
Jr(x,y) denotes the Jacobian matrix of the map T
evaluated at a point (z,y) of the phase plane. Up to
now, such examples were always related to particu-
lar inverse functions (i.e. to maps having a vanishing
denominator in at least one of the inverse functions)
through which was proved the existence of a point-
slope relationship between the points of the set dg
and the slopes of arcs through the point K.

The object of the present paper is to show that
this particular behavior may also occur in maps for
which the inverses do not have a vanishing denomi-
nator. The properties persist with the only assump-
tion that the map T possesses a set, called singular
set g, which is mapped into a point called knot
K. From this assumption on the map 7T it is then
possible to get the relation between the points of
the singular set dx and the slopes of arcs through
the knot point K. The specific dynamic behaviors,
such as the properties due to loops issuing from the
knot point K and loops belonging to invariant sets,
persist in this class of maps.

The plan of the paper is as follows. In Sec. 2
we deduce the relation existing between points of
the singular set and slopes in the knot point. We
shall also recall the dynamic properties associated
with such a point. In Sec. 3 we give an example of

map family having several singular sets mapped in
the same knot point K, without having any inverse
function with a vanishing denominator. Thus, in
this case the knot point is not a focal point. This
means that this kind of knot point is also regular
for the inverse map. In particular, if a knot point
belongs to the boundary of some basin of attrac-
tion, then its whole singular set also belongs to the
boundary. In that example, we shall see how the
knot point is relevant for the foliation of the map.
In Sec. 4 we shall consider an example with a knot
point which is also a focal point, showing that it is
possible that the focal point belongs to the bound-
ary of the basin of attraction, even if its whole sta-
ble set is not on the boundary. This behavior cannot
occur when the knot point is not a focal point.

2. Relations Between a Singular Line
and the Related Knot Point

Let us consider a generic two-dimensional map 7T,
described by smooth functions:

' = f(x,
T { , f(z,y) 1)
Y = g(z,y)
and let us assume that there exists a set g
described by the equation

ok + ¢(x,y) =0 (2)
such that for any point (zg,y9) € Jdx we have
T(x0,y0) = K, i.e. T maps this set into a point K:

T(0k) =K (3)
Then it is necessarily true that the Jacobian matrix

of T is singular at all points (z9,y9) € dx. From the
Jacobian matrix

f:v(xvy)
gl‘(x?y)
Y (z0,y0) € dx we have:

fy(xvy)

gy(z,y) @

Jr(z,y) =

det Jr(z0,0) = f2(0,Y0)gy (0, yo)
_ga:(wanO)fy(anyO) =0 (5)
that is:

fz(0,90)9y (70, y0) = 92 (w0, %0) fy(zo,90)  (6)

One of the two eigenvalues of Jp(zg, y0) is necessar-
ily equal to zero and we assume that the second is
different from zero, i.e.

Ao =0, Ai(zo,y0) = fa(z0:Y0) + gy(20,Y0) # 0
(7)
Thus, whenever we consider a point (xg,yo) € dx
the linear approximation of the map T at this
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point is the linear map characterized by the singu-
lar matrix Jp(zo,yo), which maps the whole plane
into a straight line: the eigenvector r1(xg,yp) asso-
ciated with the eigenvalue \i(zg,yo) different from
zero. It follows that a generic arc w which crosses
the point (zg, yo) € dx is mapped by the map T into
an arc which crosses the knot point K and is tan-
gent to the same eigenvector r(xg,yp), whose slope
is fixed and only depends on the point (xq,yo), say
m(xg,yo), whichever is the slope of w at the point
(x0,y0) € dx. We can explicitly write the slope
m(xg,yo): From (4) we have that a vector (£,7n) is
mapped by Jr(zg,yo) into the vector

Jz(20,%0)§ + fy(wo,y0)n
9z(z0,Y0)& + gy (0, Y0)n

(8)

belonging to the eigenvector r1(xg,yp). So its slope
is given by

92(20,90)§ + 9y(w0, yo)n (9)
Jz(20,%0)§ + fy (w0, y0)n

which is independent of the vector (£,7n) due to con-
dition (6). If fz(z0,y0) = 0 then g,(zo,y0) # 0 and
from f(z0,v0) = 92(w0,y0) fy (w0, y0)/9y (0, Y0) We
get m(xo,y0) = gy(z0,Y0)/ fy(x0, y0); if fu(wo,y0) #
0 then g,(wo,y0) = gz(0,%0)fy(x0,%0)/fe(T0,0)
and m(zo,yo) = g=(0,Y0)/ fz(x0,Y0). So we have:

m(zo,y0) =

If fi(x0,y0) = 0 then

_ 9y(%0,%0)
m(zo, Yo) = 7, (@0, 90) (10)
If fo(z0,10) # 0 then

_ 92(0,%0)
m(zo,Yo) = Fo(@0,70) (11)

These properties come from the application of stan-
dard algebraic tools, and were already noticed in
the paper by Bischi et al. [1999]. In that paper the
relation between the slope m of an arc through the
point K and the point (xg,yp) € 0x was described
when the inverse map has a vanishing denomina-
tor. The object of this work is to remark that this
is not a necessary condition. Thus we may have
that the relation points—slopes in (10) or (11) occurs
also in other classes of maps. The relation may be
invertible, leading to the one-to-one correspondence
between slopes through K and the points (z¢,yo) €
dK, but it is even possible to have relations points—
slopes which are many-to-one. An example is given
in the next section.

Let us first recall here the meaning of the rela-
tions given above. They will be used to explain
the dynamic properties of the related map 7'. From
(10), (11) we have that

(i) Any arc w through a point (zo,y%0) € Ok
with slope different from that of the eigenvec-
tor ro(xo,yo) associated with the eigenvalue
Ao = 0 of Jr(zg,yp) is mapped by T into
an arc w' = T(w) through the knot point K
which is tangent in K to the straight line with
slope m(xo,y0), see the qualitative picture in
Fig. 1(a);

(ii) Any arc w crossing d0x at two different points
(x1,9y1) and (zg,y2) is mapped into a loop
crossing the knot point K in two arcs gener-
ally with different slopes m; = m(z1,y1) and
mo = m(x2,y2) [see Figs. 1(b) and 1(c)];

(iii) In general, the knot point K is not a fixed
point. However, it shares an important prop-
erty with the periodic points: It may be crossed
by infinitely many invariant curves.

In particular, the property described in (ii) is
responsible for invariant sets having infinitely many
loops. In fact, let us assume that an invariant set
associated with some cycle (i.e. a stable or unstable
set) crosses the singular set dx at two points, then
the image of an arc of invariant curve is mapped
into a loop issuing from K [see Fig. 1(c)]. This
gives rise to invariant sets with an infinite num-
ber of loops (which are not necessarily related with
chaotic dynamics). Similarly, let us assume that an
invariant area A in the two-dimensional phase plane
(as for example, an absorbing area) crosses the sin-
gular set g, then the image of a portion of plane is
a lobe issuing from K and a similar shape persists
in its images of any rank.

In the next section we shall propose a fam-
ily of maps without any vanishing denominator in
the inverse functions, and all the properties (i)—(iii)
described above will be shown to hold.

Moreover, another difference in terms of
dynamic properties between knot points which are
also focal points and knot points which are not focal
points, will be shown in Sec. 4. There we shall recall
a property which may occur when there is a focal
point: When a focal point @ belongs to the bound-
ary (or frontier) 0B of a basin of attraction B (of
some attracting set), then it is not necessarily true
that all its stable sets also belong to the boundary.
This may occur when the focal point is also a sin-
gular fized point of the map, such that it is not a
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T (x, v)
y

(©)

Fig. 1. (a) Three different arcs w; through a point (xq,yo) € §x are mapped by T into arcs w} = T(w;) through the knot point
K which are all tangent in K to the straight line with slope m(zg, yg). (b) Two arcs, w; and wa, through two different points
(z1,y1) and (x2,y2) respectively, are mapped into two different arcs crossing the knot point K with slopes m; = m(z1,y1)
and mg = m(z2,y2). (c) One arc w crosses the singular set dx in two different points (z1,y1) and (x3,y2), and is mapped
into a loop crossing the knot point K.

fixed point of the inverse (or of any of the inverses,  point (i.e. not related to the vanishing denominator
as it occurs when all the inverses are not defined in  of one inverse function), we have that K is a regular
the focal point). Thus it is possible to have: point for the map, and 7~ (K) is well defined. Thus

the dynamic behavior of K when it belongs to some

-1
QedB-T (Q)€dB frontier OB is the standard one, that is:

and an example will be given. While in the case of a .
map with a knot point K, which is not also a focal K eodB=T (K)eoB
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3. A Family of Maps with Knots
Which are Not Focal Points

In order to show the properties of a singular set dg
and its related knot point K, let us consider the
following family of maps:
x’ = sin(ax) + cos(by) + u
7, {# =) +eos() )
y' = cos(ax) + sin(by) + v
where the parameters a,b,u,v are real numbers
with the restrictions @ # 0 and b # 0. As the
functions f(x,y) and g(x,y) defining the map 7" are
periodic with the same period, then T is also peri-
odic. Moreover, in one iteration the phase plane is
mapped into the square Il = [u—2, u+2] x [v—2,v+
2], centered at the point (u, v), which is mapped into
itself: T'(IT) C II.
The Jacobian matrix of 71" is given by
—bsin(by)
b cos(by)

a cos(ax)

Jr(z,y) = (13)

—asin(ar)
and we have
det Jr(x,y) = abcos(ax + by)

so that it vanishes on straight lines R}, of the phase
space given by:

a 1(2k + 1)r
R N = _— = -
k integer

which constitute the critical set of rank-0 of the
map. Some straight lines Ry are the critical lines
associated with the usual “folding” of the Riemann
plane, and denoted by LC_; following the notation
used in [Mira et al., 1996], whose images are the
critical lines LC of rank-1, which separate regions of
points in the phase plane having a different number
of rank-1 distinct preimages. These are the lines Ry,
associated with £ = 0 and even values of k, say
k = 2n. It is easy to see that their images belong
to the circle Cy of radius 2 and center at the point
(u,v):
1

LC_1(k):y:E[( k—i—l)g—ax,

k =0 and k even (15)
LC =T(LC-1) C Co = {(z,y)|(z —u)®
+(y—v)’ =4} (16)
while the straight lines Rjp with k£ odd are all
mapped into one point: K = (u,v):
T(Ry) =K, K= (u,v) foranyk=2n+1,
nez

Thus K is a knot for 7T, and all the straight lines
Ry with k odd are singular sets. As in the previous
section, let us denote by d; a straight line Ry, for k
odd.

It may be observed that all the straight lines Ry,
have the same slope, given by —(a/b). The line Ry is
mapped into a mazimum circle, as it is a circle cen-
tered in the knot K and radius r(qp) = 2, which is
the maximum compatible with the trapping square
II. The lines _; and d; are mapped into the knot
K, which may be considered as the minimum circle,
with center in K and radius r(g+;) = 0. Moreover,
it is easy to see that any straight line of equation

a
S@:y=q- g (17)
(whichever is the real value ¢) is mapped into a
circle Uy centered in the knot point K and of radius
r(q) € [0,2]:

Co={(z, 9z —w)’ + (y —v)* =r(@)?} (18)

where

r(q) = v/2 + 2sin(bq) (19)

In particular, when we increase the value of ¢ from
go to ¢1 then the circles C, fill in the whole disk
bounded by Cs. Similarly, if we decrease the values
of ¢ from gg to g—1 then again the circles C, fill in
the whole disk bounded by Cs. In other words: each
circle Cy of radius r(¢) € [0,2] has the two distinct
rank-1 preimages given by lines parallel to the criti-
cal curves, one above and one below LC_1(0) (asso-
ciated with k£ = 0) (see S(¢) and S(—q) in Fig. 2),
and similarly, infinitely many straight line preim-
ages exist in the strips in which the phase plane is
separated by all the straight lines LC_1(k) for any
even integer k. We have so proved that in one appli-
cation of T' the phase plane is mapped into the disk,
say D, of radius 2, bounded by the mazimum circle
C's, which on its turn is mapped into itself, i.e. it is
a trapping set: T'(D) C D. Thus the disk D may be
assumed to be the trapping region of interest in the
study of the forward dynamic properties of T' (as in
one iteration any point is mapped in D, from which
it will never escape under repeated iterations).

It is interesting to observe that even the partic-
ular knot point K may be considered a critical point
of the map in the sense that it belongs to a bound-
ary that separates regions of points having a differ-
ent number of rank-1 preimages Moreover, the knot
itself has an infinite number of rank-1 preimages,
which do not occur at nearby points (whichever is
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Fig. 2.

the number of related rank-1 preimages). Indeed it
can be easily seen that the preimages of a point
(2',y") belonging to D can be obtained as follows:

—u)?+ (y —v)?
2 B 1)
(20)

where y is a solution of the following equation:

_ L. ((x’
T =y -+ —arcsin
a

cos(2ay) + 2sin(aT + ay) — cos(2aT)
—(@ —uP+ @ -v?=0  (21)

And it is easy to see that T1(K) = T '(u,v)
includes all the straight lines Ry, with k£ odd integer.

For the family of maps considered in this sec-
tion, the point—slope relationship is expressed, by
using (11), in the form:

m(zg) = tan(—ax) (22)

Thus, considering a generic arc through a point
(xo,qr — (a/b)xy) € d we have that it is mapped
into an arc through the knot K with tangent (in
K) given by m(xy) = —tan(axg). This relation
is generally not one-to-one in the absorbing region
of interest. In fact, considering one arc through K
with slope m’ in K, we may find one or more dis-
tinct points in D belonging to the singular lines, say
(4, g — (a/b)x;) belonging to some d; with k odd,
such that m’ = tan(—ax;) for all i. This depends on
the value of the parameter a (and we shall see that
when a is high then the relation is not one-to-one).

Moreover, the knot point K is also involved in
the foliation of the Riemann plane due to the action
of the map T, because there are portions of the
phase space which are mapped into lobes issuing
from K. As an example, let us consider the image
of the disk D (a trapping set) looking at the foli-
ation of the set T'(D). Several cases are shown in
Fig. 3, where in each zone of T'(D) we evidence the
number of distinct rank-1 preimages existing in the
trapping region D, which depend on the values of

the parameters a and b. In Fig. 3(a), at low values of
the parameters, we can see that the relation point—
slope is one-to-one. The portion of LC_;(0) inside
the disk D is mapped in a portion of the circle Cs.
There is also a portion of singular line §_; which
is mapped in K. There are regions of points having
2,1,0 distinct preimages in the disk D. The por-
tion of disk D above the singular line §_; which
includes LC_1(0) is “folded” in one iteration by T
giving the region above the knot K. This includes
the region folded along LC' with two preimages,
and the region below it with only one preimage.
While the portion of disk D below the singular line
0_1 is mapped into the circular region below K with
only one preimage, and it is drawn with a differ-
ent color because it is “turned” around the knot
point K. In Fig. 3(b) we show the situation in which
the two distinct points of intersection between the
singular line d;_1 and the circle Cy have the same
slope: m = tan(—axg) = tan(—ax;) in the relation
points—slopes. In Fig. 3(c) the number of regions
with two preimages increases. Here the relation
points—slopes is many to one. To be more precise,
any arc y crossing the knot K between the cone with
slopes m1 = m(x1,y1) and mg = m(xe,y2), cross-
ing regions with two preimages, has two distinct
rank-1 preimages in D [Fig. 3(c)]. While any arc n
crossing K in the complementary cone has only one
preimage in D. In Fig. 3(d) we show the overlapping
of zones, leading to a new zone with three distinct
rank-1 preimages in D. This region is created due to
a tangency between the upper and the lower zones,
at a point which is a fixed point of the map. It may
be seen that the straight lines LC_1(1) and d; out-
side the disk D are close to a contact, after which
they will enter D. The tangencies occur simultane-
ously. This will clearly increase the number of loops
through the knot point K. As Fig. 3(e) shows, a
new loop with two preimages appeares between the
two previously existing. Moreover, the new portion
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() (f)

Fig. 3. Foliation of the disk D at w = 0,v = 0, and different values of a and b. (a) a = b = 0.08; (b) a = b = 1.24;
(c)a=b=148; (d) a=b=1.6; () a=b=1.76; (f) a = b= 1.96.
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of critical line inside D gives one more piece of the
boundary of the circle Cs, and no region with zero
preimages exists. In Fig. 3(f) only a small portion
with one preimage is left. By increasing the param-
eters, the number of distinct preimages increases
more and more, associated with bifurcations of the
same kind as those described in Fig. 3, and due to
the increasing number of straight lines LC_; (k) and
0 entering the disk D.

In order to illustrate the dynamic behaviors
related with the properties (i)—(iii) of the previous

section, let us consider the following example at
fixed values of the parameters u = 0,v = 0,0 =
1.4 and varying the parameter a in a small inter-
val. Figure 4(a) shows that an invariant area is
approaching the singular line. Chaotic areas cross-
ing the singular lines d_; and ¢; in one, two and
three points are shown in Figs. 4(b)-4(d) respec-
tively, at three different values of a. The related
loops issuing from the knot point K progressively
increase the complex structure of the invariant
absorbing area. In all the four cases, the boundary

A A
LC, LC, A
8, oy
= o %,
9 & %
\I L
s By
A I
K : K e
LC, 5
LC,
(a) (b)

(c)
Fig. 4.

(d)

Chaotic areas, at u = 0,v = 0, b = 1.4, and different values of a. (a) a = 1.485, the area is without loops; (b) a = 1.52,

the area crosses d_1 in one part; (c) a=1.548, the area crosses d_1 in two parts; (d) a = 2, the area crosses d_1 in three parts.
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of the chaotic area is obtained by a finite num-
ber of images of the arc (g) belonging to LC_;(0)
(so called “generating arc” following the notation
given in [Mira et al., 1996]). It may be noticed the
“explosion” of the invariant area occurring between
Figs. 4(b) and 4(c): this is due to a tangential con-
tact of the boundary of the invariant area with the
stable set of a two-cycle saddle, existing outside the
invariant area in Fig. 4(b), where the “tongues” of
the invariant area are approaching the stable set
of the two-cycle, while an ebranch of the unstable
set of the two-cycle enters the invariant area. This
“contact bifurcation” of the invariant area (also
called “external crises”, see [Grebogi et al., 1982]
and [Sommerer & Grebogi, 1992]), is due to the
first homoclinic bifurcation of the two-cycle saddle,
and causes the explosion of the invariant set (which,

553

after the bifurcation, includes the two-cycle saddle
and its whole stable and unstable sets).

Another example is shown in Fig. 5. An attract-
ing set formed by four chaotic pieces is shown in
Fig. 5(a), and it can be seen that one piece con-
sists of one arc crossing the singular lines §_; at
two points, so that its image is a chaotic set with a
loop on the knot K, as the enlargements show. This
example also shows that loops often appear on the
unstable sets of a cycle. In fact, in Fig. 5(b) we show
an unstable fixed point P* and a small portion of
an unstable set issuing from it, tangent to one of
the eigenvectors, and loops are soon formed, and
will persist in the forward images. We remark that
the formation of this kind of loops may also occur in
maps which are invertible (i.e. with only one inverse
function) except for the knot point. While when

Fig. 5.

(b)

(a) A chaotic set made up of four chaotic pieces is shown at u = 0,v = 0, a = 0.75, b = —1.88 crossing the singular

line, with enlargement of the chaotic loop at the knot point K. In (b) it is reported a portion of the unstable set issuing from

the unstable fixed point P* with enlargement.
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a map is nonuniquely invertible, the formation of
loops on unstable sets may also be due to the stan-
dard foliation of the plane. In fact, in noninvertible
maps it may occur that an arc crossing the criti-
cal set LC_; includes two distinct preimages of a
same point, thus forming a loop on the unstable
set which also includes its infinitely many images
(examples were given in the book [Gumowski &
Mira, 1980; Mira et al., 1996], and a detailed analy-
sis may be found in [Frouzakis et al., 1997], see also
[Maistrenko et al., 2003]).

4. Singularity on the Basin’s Boundary

In dynamical system theory, it is a common knowl-
edge that if a singularity, as a cycle of any period,
belongs to the frontier (or boundary) of some
attracting set, then the whole stable set of the cycle
also belongs to the boundary itself. Indeed, when
this condition related to a cycle is not fulfilled,
it means that some peculiarity exists, as it may
occur at a bifurcation value. However, in the case
of the singular sets described in this paper, such as
straight lines mapped into one point, we shall show
that this property may be persistently not true. We
consider an example proposed in [Gu & Huang,
2006] (but a similar example can also be found in
[Cathala & Barugola, 1999] and in [Cathala, 1999]).

(a)

Fig. 6.

Let M be the following family of maps

M:{f:Ax(l—x—y)

23
y' = By (23)

for which it is immediate to see that the y-axis x = 0
is mapped into the point @ = (0, 0). In this case, the
knot @ is also the focal point of the inverses of M
(M has two distinct inverse functions, both with a
vanishing denominator), for which the straight line
x = 0 is the prefocal set (see [Bischi et al., 1999]).

In this example, we can find intervals of param-
eter values in which the focal point @) belongs to
the boundary 0B of a basin of attraction (of some
attracting set in the positive quadrant of the phase
plane). An example is given in Fig. 6(a). We see that
the point @ belongs to the immediate basin of the
attractor. The boundary 0B has a fractal structure,
and infinitely many arcs of the boundary approach
Q. Thus @ is a limit point of arcs of the frontier, and
belongs to the frontier. However it is not true that
all the points which are mapped in @) also belong to
the frontier 0B. In fact it is immediate to see that
there are several points of the line = 0 which are
not on the frontier of the basin. Thus:

QedB» M1 (Q) coB

To be precise, we notice that Q is a singular fized
point of M because it is not a fixed point of the

(b)

(a) A cyclic chaotic attractor of the map M in (23) at A =4.22, B = 3 and the related basin of attraction. The focal

point O is on the basin boundary, but the whole singular line x = 0 is not on the boundary. (b) Two chaotic attractors of the
map 7T in (12) at w = 0,v = 0, a = b = 1.424 and the related basins of attraction. The knot point K is on the basin boundary,

as well as the singular lines and related preimages.
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two inverses of M (for which it is a focal point).
This may explain the particular dynamic behavior
at that point.

Instead, the behavior at a knot point K which
is not a focal point is regular. An example with the
family of maps considered in the previous section
is shown in Fig. 6(b). The knot point K belongs to
the main diagonal which is an invariant set separat-
ing two basins of attractions. K and all the related
singular lines d_; and d; also belong to the basin
boundary (whose portion inside D is shown in the
figure), as well as the related preimages of any rank.
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