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Abstract

We consider a model of inflation and unemployment proposed
in [16], in which the dynamics are described by a discontinuous
piecewise linear map, made up of two branches. We shall show
that the bounded dynamics may be classified in two cases: we
may have either regular dynamics with stable cycles of any pe-
riod or quasiperiodic trajectories, or only chaotic dynamics (pure
chaos in which a unique absolutely continuous invariant ergodic
measure exists, and structurally stable), in a rich variety of cycli-
cal chaotic intervals. The main results are the analytical formu-
lation of the border collision bifurcation curves, through which
we give a complete picture of the possible outcomes of the model.
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1 Introduction

The recent events that characterize the world economy are challenging
for economics that has evolved under the double pressure of internal
forces and external facts. From an empirical point of view, the stylized
facts characterizing the economy are changing dramatically. The ques-
tion "is the business cycle obsolete?" seems to have been replaced by an
investigation of the forces that are transforming the actual recession into
a likely slump. In this perspective, two are the methodological tenets to
be taken into consideration. First of all, the emphasis must be put on
endogenous dynamics, as Hicks [21] and Minsky [35] stressed long time
ago (see also [18]). Secondly, the focus should be put on a medium-run
horizon, where both short-run and long-run vibrations do not occupy
the center stage.
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In the present paper we take into considerations these challenges
by focusing on the dynamics of inflation and unemployment, which are
at the core of macroeconomic analysis. These themes have been tradi-
tionally studied by the literature on the Phillips curve based upon the
so-called NAIRU (the non accelerating-inflation rate of unemployment
([27]). The NAIRU has been criticized from different point of views (see
[2] and [5]). However the criticism to its attraction properties has been
less compelling ([17]). This is the central theme of the present work that
considers a model of inflation and unemployment proposed in [16], where
these phenomena are studied with two innovations. On one hand, the
Phillips curve interacts with aggregate demand problems so that both
unemployment and inflation are studied within a system perspective.
On the other, it is assumed that a regime switching affects the parame-
ters of the model in a way that the dynamics of unemployment at time
t, ut, and consequently of inflation, are described by a one-dimensional
discontinuous map consisting of two linear branches, given by (as we
shall describe in Section 2):

ut+1 = θ(ut) =

½
θL(ut) = ωut + (1− ω)u∗ if ut ≤ uS

θR(ut) = ω0ut + (1− ω0)u∗0 if ut > uS
(1)

where uS is the threshold level of unemployment at which a regime
switching happens, u∗ and u∗0 are the NAIRU for regimes L and R,
respectively. That is, when the level of unemployment exceeds uS a
change of strategy occurs, so that the "Left side" with respect to uS rep-
resents the regime of low unemployment, or regime L, while the "Right
side" with respect to uS represents the regime of high unemployment,
or regime R. The two slopes are respectively ω and ω0.
Similarly, a two-phase system exists for the rate of inflation:

πt+1 = Θ(πt) =

½
ΘL(πt) = ωπt + (1− ω)π∗ if πt ≤ πS

ΘR(πt) = ω0πt + (1− ω0)π∗0 if πt > πS
(2)

where πS = m + uS/α is the threshold for the inflation rate1. Clearly
regime L is the virtuous one, with low unemployment and low rate of
inflation, while regime R is the vicious one, characterized by high un-
employment and high rate of inflation. And the dynamic behavior of
the two variables ut and πt is qualitatively the same, due to the linear
relation between them, πt = m+ ut

α
, as recalled in Section 2.

The results are very encouraging. First of all, inflation and deflation
can be explained by the same set of forces which can produce both low

1as described in Section 2, m is the rate of growth of money and the α measures
the impact of inflation on the aggregate demand.
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and high rates of unemployment. Secondly, the model can generate very
complex dynamics which are compatible with the coexistence of accelera-
tions and decelerations, without generating runaway situations. Finally,
policy implications are less straightforward than those originating from
the traditional approach. In fact, the NAIRU is not necessarily a single
value, nor necessarily reachable and therefore it is very difficult to mea-
sure. What happens is that an interval of values for unemployment (also
stressed by Solow in [48]) becomes compatible with a bounded situation
of inflation dynamics.
The dynamic behavior in our model (1) strongly depends on the

values of the two slopes ω and ω0 of the curves θL(ut) and θR(ut) respec-
tively. Following Ferri et al. [16], we shall consider the dynamic in three
different cases.
(I): In the first case the two slopes ω and ω0 are both less than 1.

This case is characterized by regular dynamics. In [16] the particular
case with 0 < ω0 < ω < 1 was considered2, showing that cycles of any
period may exist. Here we shall completely characterize the occurring
dynamics. We shall see that cycles may exist not only with any period,
but also with a different number of points in the two regimes L and R.
That is: suitable values of ω and ω0 exist such that the dynamics are
convergent to a periodic orbit of period k > 1 with several combinations
of p points in the regime L and (k− p) points in the regime R. For each
of such cycles a suitable parameter region is shown to exist, and each
existing cycle is always globally asymptotically stable. When a stable
cycle does not exist the dynamics are quasiperiodic with trajectories
dense on an interval.
(II): In the second case the two slopes ω and ω0 are both larger than

1. This is clearly a case with true chaotic dynamics (as already shown in
[16]), and we shall show that chaos may occur in cyclical intervals (not
only in one unique interval).
(III): In the third case the two slopes ω and ω0 are one lower than

1 and the other larger than 1. This case was mentioned in [16], but
not investigated. As we shall see, this is the case with a rich variety
of dynamics, which however may be summarized as in the two previous
cases. In fact, there may be either regular dynamics with bounded
quasiperiodic trajectories or asymptotically stable cycles of any period k,
or a chaotic dynamics (true robust chaos) in k−cyclical chaotic intervals
of any period k ≥ 1. As we shall see, there will be a sudden transition,
leading from the regular region in which the dynamics are the same as
those occurring in case (I), to the chaotic one, in which the dynamics

2representing the case in which the slope of the Phillips curve in regime (L) is
larger than in regime (R).
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are the same as those occurring in case (II).
The goal of the present paper is to describe the bifurcation curves

which can be analytically determined as a function of the parameters,
and a detailed description of the dynamics in the three cases described
above.
The study of the bifurcations in a piecewise-smooth system is quite

different from those occurring in the smooth one. It is nowadays well
known that in smooth systems the dynamics may evolve from a regular
dynamic behavior to a complex one via a sequence of bifurcations (as,
for example, routes to chaos via Feigenbaum cascades of period doubling
bifurcations). While in piecewise-smooth systems Border-Collision Bi-
furcations (BCB for short) may occur. And in piecewise-linear systems
(which is the case in this paper) mainly BCB and contact bifurcations3

occur (the local bifurcations, when occurring, are degenerate). It is clas-
sified as border-collision any contact between an invariant set of a map
with the border of its region of definition, and this may, or may not,
produce a bifurcation. The term border-collision bifurcation was used
for the first time by Nusse and Yorke in 1992 [41], (see also [42]) and
it is now widely used in this context (i.e. for piecewise smooth maps),
although the study and description of such border collision bifurcations
started several decades before that papers. These bifurcations have been
widely studied in the recent years, mainly because of their relevant ap-
plications in Engineering ([14], [6], [3], [4]). Also before and after the
works by Nusse and Yorke the bifurcations associated with piecewise
smooth maps were studied in some papers, even if the bifurcations were
not called of border-collision, see for example [36], [37], [30], [31], [32]
and others. In particular, in [14] some results by Feigen are republished,
which were already printed in 19784 (but unknown to a wide public).
We may also go further back, citing the works by Leonov in the 60th,
[28], [29]. In his works, Leonov described several bifurcations, giving a
recurrence relation to find the analytic expression of the family of bi-
furcations occurring in a one-dimensional piecewise linear map with one
discontinuity point, which also is still mainly unknown. Some of his
results will be also recalled later, because they are our starting point,
in order to understand and describe the bifurcations occurring in our
model.

3We recall that following [38] a contact bifurcation occurs when two invariant sets
of different nature have a contact in one or more points. The dynamic effect of a
contact bifurcation may be of several different kinds, and depends on the nature of
the invariant sets and on the map.

4It is worth noticing that the clear and simple analysis performed by Feigen in
1978 is the first one for n−dimensional piecewise linear continuous maps, with n > 1.
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However, it is particularly in the Economic context that piecewise
smooth models may arise, and in fact economic models described by one-
dimensional piecewise smooth or discontinuous maps are already present
in the literature. A pioneer in this context is Richard Day. In fact, his
first studies of piecewise smooth models start more then 25 years ago,
and his results, found independently on the authors cited above, on the
bifurcation curves in such models are still extremely up to date (although
they were not called border-collision bifurcation curves). We mention,
in particular, Day’s results in [10], [11], [12], [13], which have been used
also recently in [34]. Clearly other economists were interested in the
bifurcations of piecewise-smooth system, and it is worth of mention also
the works by Cars Hommes ([22], [23], [24], [25]). The BCBs have been
considered also recently in several economic models described by con-
tinuous functions, for example in Business Cycles models in [45], [46],
[49]; in Growth models in [50], [51], [33], [39], [40], [19]. While BCBs in
discontinuous models also occur in Duopoly models in [43], [44], [52].
Recently, a one-dimensional piecewise-linear discontinuous map was

considered in the one-sector growth model proposed by Böhm and Kaas
in [7]5, which is similar to our model. The case in which these authors
were interested in corresponds to the one called above of regular dy-
namics. In [7] the authors prove that all the existing cycles are globally
attracting, and refer to a remarkable paper by Keener [26] to state that
for a set of parameter values of zero Lebesque measure the attracting
set is a Cantor set, which however they have never observed. Indeed it
is correct, because the attracting set in regular dynamics cannot be a
Cantor set. As we shall recall in Sections 3 and 5 in such a case the
asymptotic dynamics are either periodic or quasiperiodic (and dense in
an interval). In the paper by Keener [26] there is an important results: it
is shown that for increasing piecewise smooth discontinuous maps (not
only linear), there exists a sharp transition from regular dynamics (no
chaotic set can exist) to the chaotic one (no stable cycle can exist). This
is also what occurs in our model (as we shall prove in Section 5). More-
over, in [7] the authors remark a surprisingly rich occurrence of periods
in the cycles, and the same occurs in our model: the rich structure of
periodicity regions with cycles of any period and with periodic points
in several positions between the L and R regions will be here fully de-
scribed.
The plan of the work is as follows. In Section 2 we shall describe the

model. In Section 3 we shall study the dynamics occurring in case (I): the
analytical bifurcation curves associated with the BCBs of the maximal
cycles will be given, as well as the mechanism to find all the existing

5We thank Cars Hommes for providing this reference.
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ones. In Section 4 we shall characterize the divergent case (II), showing
which kind of contact bifurcations occur, bounding in the parameter
space the region of existence of robust chaos (separating the case of
divergence almost everywhere). In Section (5) we shall consider the
intermediate case (III), determining (in agreement with the result in
[26]) the exact value at which a drastic change occurs: from regular
dynamics (only attracting cycles can exist characterized by the same
BCB curves determined in Section 3, or quasiperiodic trajectories) to
chaotic dynamics (robust chaos in cyclical intervals). Some conclusions
are given in Section 6.

2 The model

In the literature, the dynamics of inflation and unemployment is gen-
erally described by the Phillips curve. In the so-called accelerationist
version it can be written in the following way:

πt = πt−1 − τ(ut − u∗) (3)

where πt is the inflation rate at time t, ut the rate of unemployment
and u∗ the non-accelerating inflation rate of unemployment, or NAIRU.
The positive parameter τ measures the impact of the labor market con-
ditions on the inflation dynamics. Both the specification and the model
itself have been criticized in the literature. For instance, according to
Akerlof et al. [2] (p. 2) "...the inadequacy of such models has been
demonstrated forcefully in recent years, as low and stable rates of infla-
tion coexisted with a wide range of unemployment rates. If there were
a single, relatively constant natural rate, one should have seen inflation
slowing significantly when unemployment was above the rate, and rising
when it was below". To remedy this inadequacy, they propose a non-
linear equation. Ball and Mankiw [5] (p. 115), on the contrary, state
that "the NAIRU is a useful piece of business cycle theory...Once this
short-run trade-off is admitted, there must be some level of unemploy-
ment consistent with stable inflation". These authors practically admit
that there are difficulties in estimating the concept for the simple reason
that it can change over time. Their proposal is to assume a changing
NAIRU. The present paper takes into account these suggestions and
develops them in a particular way, by referring to a regime switching
technique.
Before dealing with these problems, one must close the model. In

fact, while the Phillips curve represents the supply side of the economy,
an aggregate demand (AD) must be added:

πt = m+
ut
α

(4)
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where m is the (constant) rate of growth of money and α is a parameter
that depends on the specification of the model. In fact, the demand
equation is traditionally formulated in terms of rate of growth of income.
In order to use the rate of unemployment, one has to refer to the Okun’s
law that states a negative relationship between the two variables. α
belongs therefore to this technological universe, even though its meaning
can change in a different specification of the model, as will be shortly
shown. Combining (3) and (4) we obtain the dynamics of unemployment:

ut+1 = ωut + (1− ω)u∗ (5)

and the dynamics of inflation:

πt+1 = ωπt + (1− ω)π∗ (6)

where ω = 1/(1 + τα) and π∗ = m+ u∗/α.
Equations (5) and (6) are both linear and the value of ω determines

the stability of the NAIRU. For ω < 1 the NAIRU is asymptotically
stable whereas it becomes unstable (divergent) for ω > 1.
More interesting dynamics emerge introducing nonlinearity in the

equations governing the evolution of inflation rate and unemployment.
Following [16] we adopt a regime switching to introduce the nonlinearity
in the model. In particular, we consider the case in which the regime
switching concerns the parameters of both the unemployment and the
inflation equations, giving rise to the maps (1) and (2).
Let us justify the changes in the parameter ω from an economic point

of view. A component of ω is τ , and 1/τ represents the sacrifice ratio
implicit in the Phillips curve. As stressed by Sbordone [47] (p. 3) "A
flatter Phillips curve carries the implication that, for a given degree of
inflation persistence, reducing inflation involves a higher ’sacrifice ratio’
than otherwise, namely it requires enduring a longer period of unem-
ployment above the natural rate for every percentage point of reduction
in inflation. On the other hand,..a flatter Phillips curve implies that an
overheated economy will tend to generate a smaller increase in inflation".
There are econometrics studies quoted in the above article showing that
the sacrifice ratio change in time.
The nature of the parameter τ depends on the specification of the

model. For instance, if the above equations are expressed in terms of
forward expectations, they usually do not include those terms that La-
yard et al. [27] define as nominal rigidities parameters. In this case, the
Phillips curve becomes a New-Keynesian Phillips curve (see [53]) and
changes in τ can be attributed to changes either in the labor market or
in the product market. One can assume that the real rigidity parameter
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can vary according to the state of the labor market, indexed by uS. La-
yard et al. [27] offers many reasons why the bargaining power of workers
can change according to the state of the labor market.
Mutatis mutandis, τ can change because the conditions on the prod-

uct market vary. For instance, some studies (see [8]) have linked vari-
ations in the slope of the Phillips curve to globalization. According to
them, both a decline in the autoregressive coefficient and a fall in the
slope have been experienced in recent periods. Some observations are
to be raised at this stage of the analysis in order to understand if they
support our hypotheses. First of all, these changes must be reversible in
order to be considered within a regime switching framework. In the case
of globalization, this implies that its intensity can reverse in time and
that the unemployment threshold can be a relevant barrier. Finally, the
changes in the autoregressive parameters, measuring persistence, imply
that some nominal inertia is present. Some authors have estimated in
other contexts (see [9]), that there is a nonlinear relationship between
these parameters and the level of inflation. Since this is related to the
level of unemployment, the findings are in keeping with our hypothesis.
When inflation is high, people become more concerned with inertia.
Since τ is positive, the case ω < 1 occurs when α is a positive con-

stant. Thus, if one wants to deal with the case ω > 1 the only possibility
is to have α negative. In the canonical dynamic AD equation, the ve-
locity of money is assumed to be constant. In that case α is derived
from the Okun’s law linking growth to unemployment. In the case of
financial turbulence, however, velocity can change and this can have an
impact on α. In fact, the velocity of circulation can be a function of
inflation, growth and the degree of uncertainty (see [15], [53]). In this
case α ceases to reflect only technological aspect to be influenced also
by financial factors. In periods of liquidity trap stressed by Keynes or of
debt deflation underlined by Minsky ([35]) there can be a negative rela-
tionship between money growth and price dynamics due to the offsetting
pattern of the velocity of circulation.6

In the following sections we focus only on the unemployment map (1)
knowing that when the low (resp. high) unemployment regime is active
than the low (resp. high) inflation rate regime is active too.
We notice that our model (1) ultimately depends on 5 parameters:

6Another possibility consists in referring to a medium-run model and suppose
that the relationship between the rate of growth of income and u is more complex
than that established by Okun. According to [1], this relationship is nonlinear and
therefore can justify different values of α.
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the two slopes ω and ω0, the two NAIRU constants influencing the width
of the jump in the discontinuity point: u∗ and u∗0, and the position of the
discontinuity point: uS. By rescaling the state variable ut we could set
one of the parameters to 1, leaving only 4 parameters which influences
the dynamic behaviors. However, due to the economic interpretation
of the model, we keep all the parameters as they are shown in (1) and
the bifurcation curves will be expressed analytically as a function of all
the five parameters, so as to see immediately where they play a role
(and setting one of them equal to one is something which can be done
whenever needed).
The fixed points of (1) may exist or not. Let us denote by P ∗ the

fixed point belonging to the L region, given by P ∗ = u∗, which exists
when u∗ ≤ uS, and its stability depends on the value of the slope ω. A
second possible fixed point, belonging to the R region, given byQ∗ = u∗0,
exists when u∗0 ≥ uS, and its stability depends on the value of the slope
ω0.

3 Analysis of case (I) ω < 1 , ω0 < 1

In this section we are going to describe the properties of our model in
(1) when the two positive slopes ω and ω0 are both less than 1. This
case is characterized by regular dynamics. Indeed, whenever a k−cycle
can exist, with p periodic points in the L region and (k − p) in the R
one, then the related eigenvalue is given by

λ = ωpω0(k−p) (7)

which is positive and less then 1, denoting the local stability of the cycle.
In particular, if the fixed point P ∗ = u∗ belonging to the L region exists,
then it attracts all the points in the L region (i.e. for u ≤ uS). If the
fixed point Q∗ = u∗0 belonging to the R region exists, then it attracts all
the points in the R region (i.e. for u > uS). When only one equilibrium
point exists then it is globally attracting. When both exist then those
described above (the L/R regions) are their basins of attraction, and we
notice that the values of the jump in the discontinuity point are such
that um = θR(u

S) tends to P ∗ while uM = θL(u
S) tends to Q∗. It follows

that when the parameters satisfy

u∗0 < uS < u∗

then no fixed point exists. Indeed this is the regime which allows for
stable cycles of any period, and all belong to the so-called absorbing
interval made up of the maximum uM taken from the L region and the
minimum um taken from the R region:

I = [um, uM ] (8)
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where

um= θR(u
S) = (1− ω0)u∗0 + ω0uS < uS (9)

uM = θL(u
S) = (1− ω)u∗ + ωuS > uS

Fig.1 gives an example of the shape of the map in this case (I).

Fig.1. Shape of the map θ(ut) at
u∗0 = 0.2, uS = 0.4, u∗ = 0.8, ω = 0.5, ω0 = 0.6.

That I is an absorbing interval comes from the fact that any initial con-
dition u < um has an increasing trajectory entering I in a finite number
of steps, and similarly any initial condition u > uM has a decreasing
trajectory entering I in a finite number of steps. On the other hand I
is invariant (I = θ(I)) which means that a point in I has a trajectory
which cannot escape I, so that its omega limit set must be a set inside
the interval itself.
Let us now describe how several kinds of cycles can exist. As we

shall see, the region of existence of a k−cycle in the parameter space
is bounded by two BCB curves. We describe first those related with
the so called maximal cycles (also called principal cycles or cycles of
the first degree of complexity), which are the regions of existence of a
k−cycle (for any integer k > 1) having one point in the region R and
(k − 1) points in the other region L. As a first example let us consider
the region associated with a 4−cycle. When such a cycle exists, we
must have a fixed point of the map7 θL ◦ θL ◦ θL ◦ θR (as well as for the
other compositions of maps obtained cyclically from this one), that is,
by denoting the periodic points of the cycle as {ui} with u1 > uS and the
other points u2 < u3 < u4 < uS, we have θ3L ◦ θR(u1) = u1. Such a cycle
disappears by border collision bifurcation either when the periodic point
on the right u1 is at its lowest value: the discontinuity point u1 = uS,
or when it reaches the rightmost value, u1 = uM , which also means that
the periodic point which is its preimage has reached the discontinuity

7the symbol ◦ represents the composition of functions, that is g ◦ f(.) = g(f(.)).
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point: u4 = uS. In our case the two situations are shown in Fig.2a and
Fig.2b, respectively.

Fig.2 u∗ = 0.8, u∗0 = 0.2, uS = 0.7 and ω0 = 0.4. In (a): ω = 0.63; in (b):
ω = 0.51.

Similarly we can reason with a maximal cycle of any period k, and the
conditions given above are used to find the conditions for the two BCBs
associated with a maximal k−cycle with periodic points {ui} having
u1 > uS and the other points u2 < ... < uk < uS. In formulae we get:

u2=ω0u1 + (1− ω0)u∗0

u3=ωu2 + (1− ω)u∗ = ωω0u1 + ω(1− ω0)u∗0 + (1− ω)u∗

...

uk+1=ωk−1ω0u1 + ωk−1(1− ω0)u∗0 + (1− ωk−1)u∗

and a k−cycle occurs when the equality u1 = uk+1 holds, which gives:

u1 =
u∗ − ωk−1(u∗ + ω0u∗0 − u∗0)

(1− ωk−1ω0)
(10)

Thus we have the analytical expression of the periodic points of such
k−cycles: one point, u1, comes from (10), and the others are easily found
by applying the map θL. In particular we have:

uk =
u∗ + ωk−2[u∗0 ∗ (1− ω0) + ω0u∗(1− ω)− u∗]

(1− ωk−1ω0)
(11)

Moreover, as commented above, from these expressions we can also ob-
tain the conditions on the parameters at which the two BCBs occur. In
fact, the equation of one BCB curve is obtained when u1 = uS, which
gives, from (10):

BCB1
k : uS(1− ωk−1ω0)− u∗ + ωk−1(u∗ + ω0u∗0 − u∗0) = 0 (12)
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while the equation of the second one occurs when uk = uS which gives,
from (11):

BCB2
k : u

S(1−ωk−1ω0)−u∗−ωk−2[u∗0 ∗ (1−ω0)+ω0u∗(1−ω)−u∗] = 0
(13)

The equations in (12) and (13) can be put in explicit form with respect
several parameters, for example with respect to ω0 we get:

BCB1
k : ω

0 =
u∗ − uS + ωk−1(u∗0 − u∗)

ωk−1(u∗0 − uS)

BCB2
k : ω

0 =
u∗ − uS + ωk−2(u∗0 − u∗)

ωk−2(u∗0 − u∗) + ωk−1(u∗ − uS)

and these are used to plot the analytical bifurcation curves in Fig.3b,
for k = 2, ..., 16, below the region of the 2-cycle, while Fig.3a shows the
periodicity regions obtained numerically, where different colors denote
different periods.

Fig.3 In (a): two-dimensional bifurcation diagram in the (ω, ω0) plane at
fixed u∗ = 0.8, u∗0 = 0.2, and uS = 0.7. In (b) the bifurcation curves of

first degree for k = 2, ..., 16.

Clearly we can also reason differently, searching for maximal k−cycles
having one point in the region L and (k−1) points in R (for any integer
k > 1), a kind of symmetric case, in which L and R are changed into R
and L respectively. Indeed, by repeating the same reasoning as above,
and labelling the k−cycle with periodic points {xi} with x1 < uS and
the other points as x2 > ... > xk > uS, we obtain the same equations
as above, in (10), (11), (12) and (13), with the parameters ω and u∗

respectively changed in ω0 and u∗0 and vice versa, ω0 and u∗0 respectively
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changed in ω and u∗. Thus for the analytical expressions of the periodic
points we get:

x1 =
u∗0 − ω0k−1(u∗0 + ωu∗ − u∗)

(1− ω0k−1ω)
(14)

xk =
u∗0 + ω0k−2[u∗ ∗ (1− ω) + ωu∗0(1− ω0)− u∗0]

(1− ω0k−1ω)
(15)

The two BCB curves, which we denote by BCB
i

k (i = 1, 2) to distinguish
them from the previous ones, are obtained via x1 = uS which gives:

BCB
1

k : u
S(1− ω0k−1ω)− u∗0 + ω0k−1(u∗0 + ωu∗ − u∗) = 0 (16)

and the second one via xk = uS which gives:

BCB
2

k : u
S(1−ω0k−1ω)−u∗0−ω0k−2[u∗ ∗ (1−ω)+ωu∗0(1−ω0)−u∗0] = 0

(17)
These equations are used to plot the analytical bifurcation curves in
Fig.3b above the region of the 2-cycle, for k = 3, ..., 16 (as clearly for
k = 2 the two cases give the same BCB curves).
The equations given above are the analytic expressions of the bifurca-

tion curves at which a BCB occurs. For example, the two white points
in the periodicity region of the 4-cycle shown in Fig3a (at u∗ = 0.8,
u∗0 = 0.2, uS = 0.7 and ω0 = 0.4) are used to plot the map in the two
cases shown in Fig.2: the 4−cycle does not exists for ω < ω1 = 0.51, at
ω = ω1 the 4−cycle appears via BCB as shown in Fig.2b (i.e. we have
u1 = uM and u4 = uS), the 4−cycle exists for parameters inside the
periodicity region, ω1 < ω < ω2, at ω = ω2 = 0.63 another BCB occurs,
the periodic point u1 collides with the boundary of its region (i.e. we
have u1 = uS) and the cycle will disappear: it does not exist any longer
for ω > ω2.

Note that the BCB curves given in (12) and (13), as the symmetric
ones in (16) and (17), are generic, and hold whichever is the position of
the discontinuity point uS, and a change in its value gives curves which
are only slightly deformed.
Moreover, it is worth noticing that following similar arguments it is

possible to find also the boundaries of the other bifurcation curves. In
fact, besides the periodicity regions of first degree associated with the
maximal cycles there are infinitely many (countable) periodicity regions
of cycles with different number of periodic points in L and R. The
simplest well known mechanism to find the periods that characterize
these infinite sequences of periodicity regions is that between any two
regions having periods k1 and k2 there exists also a regions having period
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k1+ k2 (see the numbers of the periods indicated in Fig.3a: between the
regions of period 2 and 3 a region of period 5 exists, and between 5 and
2 we can see 7, and so on...).
To be more specific, in the description of the periodicity regions we

can associate a number to each region, which may be called rotation
number, in order to classify all the periods and several cycles with the
same period. In this notation a periodic orbit of period k is characterized
not only by the period but also by the number of points in the two
branches separated by the discontinuity point uS (denoted by L and
R respectively). We can say that a cycle has a rotation number p

k
if

a k-cycle has p points on the L side and the others (k − p) on the
R side. Then, between any pair of periodicity regions associated with
the rotation numbers p1

k1
and p2

k2
there exists also the periodicity region

associated with the rotation number p1
k1
⊕ p2

k2
= p1+p2

k1+k2
(where ⊕ stands for

the so-called Farey composition rule, or summation rule, see for example
in [20]).
Then, following [28] and [36] (see also [37] pp. 56-61 and pp. 80-84),

between any pair of consecutive regions of first degree, say with rotation
numbers 1

k1
and 1

k1+1
, we can construct two infinite families of periodicity

regions, called regions of second degree via the sequence obtained by
adding with the Farey composition rule ⊕ iteratively the first one or the
second one, i.e. 1

k1+1
⊕ 1

k1
= 2

2k1+1
, 2
2k1+1

⊕ 1
k1
= 3

3k1+1
, 3
3k1+1

⊕ 1
k1
=

4
4k1+1

, ...and so on, that is:

n

nk1 + 1
for any n > 1

and 1
k1
⊕ 1

k1+1
= 2

2k1+1
, 2
2k1+1

⊕ 1
k1+1

= 3
3k1+2

, 3
3k1+2

⊕ 1
k1+1

= 4
4k1+3

..., that
is:

n

nk1 + n− 1 for any n > 1

which give two sequences of regions accumulating on the boundaries of
the two starting ones.
Clearly, this mechanisms can be repeated: between any pair of con-

tiguous "regions of second degree", for example n
nk1+1

and n+1
(n+1)k1+1

, we
can construct two infinite families of periodicity regions, called "regions
of third degree" via the sequence obtained by adding with the composi-
tion rule ⊕ iteratively the first one or the second one. And so on. All
the rational numbers are obtained in this way, giving all the infinitely
many periodicity regions.
We also remark (to be used in Section 5) that, by using (7), the

product λ = ωk−1ω0 < 1 gives the eigenvalue of the k−cycle with
symbolic sequence L...LR=Lk−1R, inside its region of existence, while
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λ = ωω0k−1 < 1 gives the eigenvalue of the k−cycle associated with sym-
bolic sequence R...RL=Rk−1L. This for the maximal cycles. However
other periodicity regions exist between two consecutive regions, whose
rotation numbers are obtained by using the Farey composition rule ⊕ as
explained above, and the eigenvalue of a cycle obtained by the composi-
tion rule ⊕ is the product of the eigenvalues of the two cycles entering in
the composition. That is, let us consider for example the cycle with rota-
tion number n

nk1+1
(obtained combining the cycle with rotation number

1
k1+1

and (n− 1) times the cycle with rotation 1
k1
), then the eigenvalues

of the cycle is

(λk1)
(n−1)λk1+1 = (ω

k1−1ω0)(n−1)(ωk1ω0) (18)

Fig.4 Bifurcation diagram in ω at fixed ω0 = 0.3, u∗ = 0.8, u∗0 = 0.2, and
uS = 0.7.

It is worth to notice that all the periodicity regions determined in this
case of regular dynamics never overlap, and this implies that the coex-
istence of different k−cycles is impossible. This has already been proved
in [28], [36], [37]. Moreover, considering the complementary region in
the parameter space, not belonging to any periodicity region or to their
boundaries, the map has no attracting cycle in I, and the dynamics are
topologically conjugated to those of a linear rotation (or linear circle
map, see [37]) with irrational rotation number. That is, any point in I
has a quasiperiodic trajectory which is dense in the whole interval I.We
remark that no chaos can occur as there is no sensitivity with respect
to the initial conditions (initial conditions close to each other will have
iterated points forever close to each other). Also it is not possible to
have a Cantor set as attractor, as a Cantor set requires the existence
of infinitely many coexisting unstable cycles, which cannot occur in this
regime of stable dynamics.
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In Fig.4 we show the bifurcation diagram which plots the asymp-
totic behavior of the state variable ut as the slope ω increases along
the line with an arrow shown in Fig.3a (at ω0 = 0.3 fixed). It is worth
noticing that the main part of the parameter plane (ω, ω0) is covered by
the regions associated with the maximal cycles, with symbolic sequence
L...LR, and increasing ω the number of states in the L region increases
(as it increases with the period). Also from Fig.4, which is numerically
obtained, it is difficult to see that the existing periods are more than the
maximal ones, but some cycles of the second degree are visible: Between
the cycles of periods 3 and 4 we see the period 7, and enlarging we can
see also another cycle of the second degree: between the period 3 and 7
there is a cycle of period 10, but its region of existence is so thin that it
is almost undetectable in a real application of the model. This enforces
the results of the applied model: the good region L is dominant, and the
state R occurs occasionally and once, as it is followed by a sequence of L
states. This will be remarked also in the next example, let us conclude
here stating that we have so proved the following:
Theorem 1. Let ω and ω0 be positive and less than 1 in the model

(1), and u∗0 < uS < u∗, then an invariant interval I = [um, uM ] ex-
ists, which is globally absorbing and whose basin of attraction is B(I) =
]−∞,+∞[. Inside I the dynamics are regular, associated with attract-
ing cycles of any period or quasiperiodic trajectories. The regions of
existence of the maximal cycles are bounded by BCB curves given in
(12), (13), (16) and (17). The set of parameter values not belonging to
periodicity regions or their boundaries are associated with quasiperiodic
dynamics in I.

3.1 0 < ω0 < ω < 1

In this subsection we are going to show how the widest regions in the
parameter space are those associated with the preferred regime, in which
several states are on the L side and only a few states on the R one. In
Fig.3 we have already shown this in the two-dimensional parameter plane
(ω, ω0) (and also at different values of the other parameters the figures
are qualitatively the same). Now we show that similar results hold also
when we vary a different parameter. We illustrate here the particular
case considered in [16], that is with the restriction

0 < ω0 < ω < 1

when the parameter uS, i.e. the discontinuity point, is let to vary in its
feasible region, that is between u∗0 and u∗. Fig.5 shows the bifurcation
curves, and it can be seen that on the right side of the region of the 2-
cycle we have the periodicity regions associated with the maximal cycles
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with symbol sequence L...LR, while the others occur moving to the left.
This is an important result as indeed, the higher the value of uS (point
in which the switching regime occurs) the longer is the stable branch on
the L side, and thus the longer is the sequence of states on the L regime.
This can be better appreciated in a one-dimensional bifurcation diagram,
as shown in Fig.6a, which illustrates the dynamic behavior of ut as a
function of uS, when the parameter moves along the line with an arrow
shown in Fig.5a. From values of uS higher than 0.4 the dynamics are
mainly in the good regime L, and the R regime occurs rarely. It is clear
that from a mathematical point of view we know the existence of other
cycles obtained combining different cycles with the symbolic sequence
L...LR, as shown in the enlargement of Fig.6b, but their existence is
related to so thin regions which may be considered rare to occur.

Fig.5. Periodicity regions of the principal k−cycles in the two-dimensional
parameter plane (uS, ω) at fixed values of the other parameters: u∗0 = 0.2,

u∗ = 0.8, and ω0 = 0.3.

We can see that fixing a value of uS and increasing ω all the periodicity
regions are crossed.
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Fig.6 Bifurcation diagram in uS at fixed ω = 0.75, ω0 = 0.3, u∗ = 0.8,
u∗0 = 0.2. Fig. (b) is an enlargement of the portion of the bifurcation

diagram (a) evidenced by the red rectangle.

From the one-dimensional bifurcation diagram showing the related dy-
namics of ut reported in Fig.6 it can be seen that the qualitative shape
of the bifurcation diagram recalls the "devil staircase" ([20]). Indeed,
all the cycles of the period-adding scheme described in the previous sec-
tion exist for parameters in suitable intervals, and a kind of self-similar
property occurs, as between any two periods there are infinitely many
other related periods. And, as previously remarked, from a mathemat-
ical point of view we know that all the bifurcation curves are limit sets
of other bifurcation curves.
Clearly similar comments hold also if we consider fixed uS > 0.4

increasing ω : we can say that there is a predominance of states belong
to the L region.

4 Analysis of case (II) ω > 1 , ω0 > 1

In this section we consider the case in which the slopes are both higher
then 1. If some k−cycle with k ≥ 1 exists, then the related eigenvalue is
always higher than 1, and thus it is unstable. It is easy to see that if none
or only one fixed point exists then all the dynamics are divergent (except
for the fixed point). It follows that bounded dynamics in some intervals
can occur only when both the two fixed points exist, although it is a
necessary condition, not sufficient. In fact, let us consider the fixed point
P ∗ = u∗ in the L region having the maximum uM = (1−ω)u∗+ωuS, and
the fixed point Q∗ = u∗0 belonging to the R region giving the minimum
um = (1 − ω0)u∗0 + ω0uS. Then an invariant absorbing interval I =
[um, uM ] exists iff it is inside the two repelling fixed points, that is iff
P ∗ ≤ um and uM ≤ Q∗, i.e.:

u∗ ≤ (1− ω0)u∗0 + ω0uS and (1− ω)u∗ + ωuS ≤ u∗0 (19)
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The qualitative shape of the model in this case is shown in Fig.7a. All
the points on the right of the fixed point P ∗ and on the left of the fixed
point Q∗ have trajectories entering the absorbing interval I, from which
the trajectory cannot escape. So that the basin of attraction of I is the
interval bounded by the two unstable fixed points:

B(I) =]P ∗, Q∗[=]u∗, u∗0[
while initial conditions lower than the fixed point P ∗ diverge to−∞, and
those starting with values of the unemployment higher than u∗0 = Q∗

are divergent to +∞.

Fig.7 Parameter values u∗ = 0.01, u∗0 = 0.166, ω = 1.324, ω0 = 1.204 and
uS = 0.07. Graph of the map in (a), when there are 3-cyclical chaotic
intervals. Versus time trajectory in (b). Bifurcation diagram in (c).

Inside I the attracting set consists in k−cyclical (k ≥ 1) chaotic intervals,
in which the aperiodic trajectories are dense. We notice that it is not
true that the dynamics are chaotic in the whole interval I, anyhow the
k-th iterate of the map has invariant chaotic intervals, and an absolutely
continuous invariant measure exists (cfr. [12], [16]). An example of the
versus time trajectory in the case with three chaotic intervals shown
in Fig.7a is reported in Fig.7b. This is a classical case of pure chaos in
cyclical chaotic intervals in the phase space (for the independent variable
ut), and also occurring in an interval of values for each parameter. This
is an important property in the applied context, often missed. It is well
known that also in smooth models this pure chaos exists (we may think
at several cases modelled for example with the logistic map, and cyclical
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chaotic intervals), but often it cannot occur for an interval of parameter
values. Differently, in piecewise linear models, when a chaotic regime
occurs, then it is persistent as a function of the parameters, and this
property is often called of robust chaos. An example is shown in the
one-dimensional bifurcation diagram of Fig.7c. From Fig.7c it can be
seen that starting from a value of uS at which we have bounded chaotic
intervals, then both increasing and decreasing the parameter we end in
a bifurcation which is followed by divergent dynamics. Indeed both such
bifurcations are contact bifurcations of the invariant absorbing interval.
If the invariant interval I has a contact with its basin boundary in the
point P ∗, which occurs when u∗ = (1 − ω0)u∗0 + ω0uS, say at uS = uSm
where

uSm =
u∗ − (1− ω0)u∗0

ω0
(20)

then (for u∗ > (1− ω0)u∗0 + ω0uS i.e. uS < uSm) the invariant interval is
destroyed, after which almost all the trajectories below Q∗ are divergent
to−∞ (except those of an invariant repelling Cantor set of points of zero
Lebesque measure). An example of this case is shown in Fig.8a. The
result of the contact bifurcation is thus very dangerous. Its effect is due
to the fact that the fixed point P ∗ is on the boundary of the basin B(I)
and also on the boundary of the basin of trajectories divergent to −∞
as B(−∞) = (−∞, P ∗). Thus after the contact the invariant interval
ends to exist, and the basin B(−∞) expands above P ∗.

Fig.8 shape of the map at u∗ = 0.01, u∗0 = 0.15, ω = 1.9, ω0 = 1.3 (as in
Fig.7) and uS = 0.035 in (a), uS = 0.1 in (b).

Similarly, when the invariant interval I has a contact with its basin
boundary in the point Q∗, which occurs when (1 − ω)u∗ + ωuS = u∗0,
say at uS = uSM where

uSM =
u∗0 − (1− ω)u∗

ω
(21)

then (for u∗0 < (1−ω)u∗+ωuS i.e. uS > uSM) the invariant interval is de-
stroyed, after which almost all the trajectories of the points above P ∗ are
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divergent to +∞. That is, now the contact bifurcation occurs between
the basin B(I) and the boundary of the basin of trajectories divergent to
+∞, B(+∞) = (Q∗,+∞), and after the contact the invariant interval
ends to exist, and the basin B(+∞) expands below Q∗. An example of
this case is shown in Fig.8b. We have so proved the following:

Theorem 2. Let ω > 1 and ω0 > 1 in the model (1), then an in-
variant absorbing interval I = [um, uM ] with basin B(I) =]u∗, u∗0[ exists
iff (19) holds. For uSm < uS < uSM there is robust chaos in with cyclical
chaotic intervals in I. When one of the two inequalities in (19) is not
verified then almost all the trajectories are divergent.

5 Analysis of case (III)

In this section we turn to the dynamics associated with case (III). Let
us consider the case with

0 < ω < 1 , ω0 > 1 (22)

as clearly a similar reasoning can be applied in the case 0 < ω0 < 1 and
ω > 1 (exchanging ω0 with ω and vice versa). However, due to a suitable
interpretation of our model, it is preferable to have a stable slope in the
branch associated with the region L, where it is good to have many states
with low unemployment, while in the branch associated with high unem-
ployment it is reasonable to assume a high speed and thus a high slope.
Indeed this case may be considered as quite reasonable and interesting
to investigate.
We don’t consider the case in which Q∗ does not exist, as this case

is not suitable for our interpretation: if Q∗ does not exist then for any
ut > uS the dynamics are divergent to +∞. If P ∗ exists then it attracts
all the points ut < uS, otherwise everything is divergent.
It follows that when um < uS < uM then Q∗ exists (whereas P ∗

does not exist), and an invariant absorbing interval I = [um, uM ] exists,
which attracts all the points at his left, where the increasing function
θL has a stable slope, and from the right side I attracts all the points
below Q∗. So we have B(I) = (−∞, Q∗) = (−∞, u∗0), while trajectories
are diverging to +∞ for u > u∗0.
Let us start with the obvious consideration that under such condi-

tions we may expect both regular dynamics (with attracting cycles or
quasiperiodic trajectories) and chaotic dynamics. The most striking re-
sult is that we cannot have them both simultaneously (as it occurs in the
smooth case, for example in the standard logistic map when the para-
meter is in a periodic window after the Feigenbaum point), and chaos
is always robust. The most obvious expectation in the case (III) is a
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kind of progressive destabilization of the possible cycles, while this does
not occur. As we shall show, the transition from a regular regime to a
chaotic one occurs instantaneously for all the possible cycles. That is to
say, before a given condition all the possible cycles are stable, while after
all the cycles are unstable. This is clearly a very particular bifurcation.
This was already proved in [26] for a discontinuous map F (x) increasing
the interval [0, 1] into itself, with a discontinuity in x = d ∈]0, 1[ with
jump equal to 1, for which there are regular (resp. chaotic) dynamics
for F (0) > F (1) (resp. F (0) < F (1)) and the bifurcation occurs at
F (0) = F (1). The same result is proved in this section for our map:
which has regular (resp. chaotic) dynamics for u∗ < u∗0 (resp. u∗ > u∗0)
and the bifurcation occurs at u∗ = u∗0, with a description of the dynam-
ics at the bifurcation value, which are homeomorphic to a linear rotation
with rational or irrational rotation number, when the points of the ab-
sorbing interval I = [um, uM ] are periodic or quasiperiodic, respectively.
To illustrate the dynamics of this case (III) let us start with the

description of the possible bifurcation diagrams in the one- and two-
dimensional parameter space. Fig.9a shows the two-dimensional para-
meter space (u∗, ω0), the slope in the region L is fixed at ω = 0.3 while
uS = 0.1 and u∗0 = 0.15. In that bifurcation diagram it is shown a sta-
bility region of the fixed point P ∗(= u∗) which undergoes a BCB when
the fixed point merges with the discontinuity point, at u∗ = uS (here
at u∗ = uS = 0.1). When the fixed point P ∗ exists it is the unique
attracting set in I. When it disappears by BCB the dynamics enter in a
different stability region: no fixed point exists inside the absorbing inter-
val I, but stable cycles of several periods or quasiperiodic trajectories.
This is shown in the rectangle for uS < u∗ < u∗0. Inside that region the
two BCB curves of the 2-cycle are also drown, by using the equations de-
termined in Section 3. On its right side there are the regions associated
with the families R...RL while on its left are those of the families L...LR.
For any point in this rectangular region the dynamics are bounded and
stable, i.e. for points in a periodicity region a unique attracting cycle
exists in I, for a set of zero measure of points not belonging to a closed
periodicity region the trajectories are quasiperiodic in I. The dynamics
change from regular to robust chaos at the bifurcation occurring on ver-
tical line in Fig.9a at u∗ = u∗0 = 0.15. To prove that this bifurcation is
particular we make use of the equations of the BCB curves.
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Fig.9 In (a): two-dimensional bifurcation diagram in the (u∗, ω0) plane at
fixed ω = 0.3, u∗0 = 0.15, and uS = 0.1. In (b) one-dimensional bifurcation
diagram showing ut as a function of u∗ at ω0 = 1.25. The value of u∗F is

' 0.1714.
In Fig.9a it can be seen that the boundaries of the regions associated
with the maximal cycles of period 3, 4 and 5 intersect exactly at u∗ = u∗0.
In fact, from the analytical expressions of the bifurcation curves given
in (12), (13), (16) and (17) we can see (for example by using the ex-
plicit expression of ω0 as a function of u∗) that all these curves are
increasing with u∗ and are intersecting at u∗ = u∗0. Then inserting
u∗ = u∗0 in the BCB curves given in (12) and (13) we obtain the equa-
tion (uS − u∗)(1− ωk−1ω0) = 0 and having u∗ 6= uS we get the following
condition:

u∗ = u∗0 =⇒ ωk−1ω0 = 1 (23)

while inserting u∗ = u∗0 in (16) and (17) we get (symmetrically):

u∗ = u∗0 =⇒ ωω0k−1 = 1 (24)

Notice that the product λ = ωk−1ω0 (which is also a continuous func-
tion, increasing with respect both arguments) gives the eigenvalue of the
k−cycle associated with the BCB curves of type L...LR (as we have re-
marked in Section 3). It follows that for u∗ < u∗0 we have λ = ωk−1ω0 < 1
inside the region between each pair of BCB curves, which must inter-
sect at u∗ = u∗0 where we have the eigenvalue λ = ωk−1ω0 = 1 and for
u∗ > u∗0 the bifurcation curves are crossing and we have the eigenvalue
λ = ωk−1ω0 > 1 where the cycle exists. The same reasoning applies for
the symmetric family. As an example consider the periodicity region
of the 4-cycle in Fig.9a: as the boundaries are increasing functions the
curves must intersect at u∗ = u∗0 and cross at u∗ > u∗0 (the upper and
lower boundaries are exchanged), and the 4-cycle exists for parameter
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points between the two curves. Regarding its eigenvalue λ = ωω03 we
have that increasing u∗ for u∗ < u∗0 ω0 is increasing and λ = ωω03 < 1 is
also increasing; for u∗ = u∗0 we have λ = ωω03 = 1 and increasing u∗ for
u∗ > u∗0 we have ω0 increasing and λ = ωω03 > 1 also increasing. Thus
the cycle is stable for u∗ < u∗0 and unstable for u∗ > u∗0.
Up to now we have considered only the maximal cycles, however

the other cycles (see Fig.9a) exist between the BCB curves which are
obtained by using the Farey composition rule ⊕ as explained in Section
3. Moreover, as already noticed, the eigenvalue of a cycle obtained by
the composition rule ⊕ is the product of the eigenvalues of the two
cycles entering in the composition. Let us consider for example the
cycle with rotation number n

nk1+1
(obtained combining the cycle with

rotation number 1
k1+1

and (n−1) times the cycle with rotation 1
k1
), then

the eigenvalues of the cycle is given in (18), thus we have

u∗ = u∗0 =⇒ λ = (λk1)
(n−1)λk1+1 = (ω

k1−1ω0)(n−1)(ωk1ω0) = 1 (25)

More generally, consider any existing cycle inside its proper region, let
m be the number of periodic points in the L side and n the number
of periodic points in the R side (so that the period is n +m), then its
eigenvalue is λ = ωmω0n, and whichever is the value of the slopes of the
model with 0 < ω < 1 and ω0 > 1 then from (23), (24) and from (25) we
have:

u∗ = u∗0 =⇒ λ = 1

and for u∗ > u∗0 we have8 λ > 1 which implies that any existing cycle is
unstable. We can so state the following
Proposition. At the particular bifurcation occurring for u∗ = u∗0 the

map in (1) is topologically conjugated with a linear rotation (or linear
circle map) with rational or irrational rotation number. The rotation
number is rational in all the points of this set in which two BCB curves
are intersecting, and all the points in I = [um, uM ] are periodic with
the same period. Otherwise the rotation number is irrational and the
trajectories in I are quasiperiodic and dense in I.
The dynamics change completely after this particular bifurcation. In

fact for u∗ > u∗0 we have a chaotic regime, that is all the trajectories in-
side I enter some cyclical chaotic interval, inside which the dynamic are
completely chaotic, in the sense of pure chaos. An absolutely continuous
invariant measure exists, and this regime is persistent under perturba-
tions. This is due to the fact that as long as an invariant interval I exists,
from which the trajectories cannot escape, we must have that either a

8due to the fact that the boundaries of the periodicity regions are increasing
functions and the eigenvalue also is an increasing function of its arguments
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trajectory is periodic, and we know that this occurs only on unstable
cycles, or it is aperiodic, but then it must be dense in some intervals,
either in I or some cyclical chaotic intervals in I, bounded by the images
of the local extrema um and uM .
Let us illustrate this via a one-dimensional bifurcation diagram. In

Fig.9b we show the values of the unemployment ut as a function of u∗

for fixed ω0 = 1.25, the horizontal line in Fig.9a, which crosses regions
of the families R...RL. As in Section 3, let us denote the periodic points
of a maximal k−cycle as {xi} with x1 < uS and the other points as
x2 > ... > xk > uS. The upper line in Fig.9b denotes the maximum
value uM while the lower line denotes the minimum value um. In Fig.9b
it is clearly evident the regime of stable cycles existing for u∗ < u∗0 and it
is easy to argue that it is chaotic for u∗ > u∗0 (as we have proved above).
In the regular regime we have emphasized the intervals associated with
the periodic orbits of period 2, 3, 4 and 5. From the bifurcation diagram
it can be seen that the interval of the 2−cycle starts with a BCB in
which the periodic points satisfy x2 = uS and x1 = um while it closes
at a BCB in which x1 = uS and x2 = uM . The interval of the 3−cycle
starts with a BCB in which the periodic points satisfy x3 = uS and it
closes at a BCB in which x1 = uS. The 4−cycle starts when x4 = uS and
it closes when x1 = uS, and similarly for the 5-cycle. Infinitely many
stable cycles exist for u∗ < u∗0, never coexisting.
Also evident are the other lines in that stability region, which bound

the asymptotic points: they are the iterates of the points of maximum
uM and of minimum um, and it is clearly evident that such lines are
intersecting at the BCB occurring for u∗ = u∗0 when all the periodic
points merge with the discontinuity point. The first iterate of uM belongs
to the line of equation

uM1 (u
∗) = u∗(1− ω)ω0 + (1− ω0)u∗0 + ω0ωuS (26)

while the first iterate of um belongs to the line of equation

um1 (u
∗) = u∗(1− ω) + ω(1− ω0)u∗0 + ω0ωuS (27)

and these lines intersect at the bifurcation occurring at u∗ = u∗0, giving
uM1 = um1 = u∗(1− ωω0) + ω0ωuS.
From Fig.9b we also see that there is a final bifurcation curve at a

value u∗F after which all the dynamics are divergent. This is the contact
bifurcation already described in the previous section. That is, a contact
bifurcation of the invariant interval I (and thus of its basin of attraction)
with the unstable fixed pointQ∗, which occurs when uM = Q∗ , i.e. when
u∗0 = (1− ω)u∗ + ωuS. Stated in other words, bounded dynamics exists
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iff u∗ ≤ u∗F where

u∗F =
u∗0 − ωuS

(1− ω)

and everything is divergent for u∗ > u∗F except for the points of an
invariant Cantor set of zero Lebesque measure (which includes all the
existing unstable cycles).
We have so proved the following

Theorem 3. Let 0 < ω < 1, ω0 > 1 and um < uS < uM in the
model (1), then an invariant absorbing interval I = [um, uM ] with basin
B(I) =] −∞, u∗0[ exists iff (19) u∗ ≤ u∗F holds. For u∗ ≤ uS the fixed
point P ∗ is the unique attractor. For uS < u∗ < u∗0 there are regular
dynamics (periodic or quasiperiodic), each closed periodicity region is
associated with a unique attracting k-cycle in I. For u∗0 < u∗ < u∗F
there is robust chaos, in k-cyclical intervals belonging to I for k ≥ 1.
For u∗ > u∗F all the trajectories are divergent, except for an invariant
Cantor set of zero Lebesque measure.

6 Concluding remarks

The present paper has focused the attention on the dynamics of unem-
ployment and inflation in a model based upon the presence of a NAIRU,
the non accelerating-inflation rate of unemployment. In the literature
there is a considerable debate ranging from its very existence to its em-
pirical value in the various economic systems. In the present work, two
innovations have been brought about. On the one hand, the Phillips
curve have been considered in a system perspective and therefore also
aggregate demand has been appended. On the other, a regime switching
device has been taken into account.
The results of the analysis are worth stressing. First of all, the model

allows to consider in a unified manner different phenomena such as infla-
tion and deflation as well as situations of low unemployment and periods
of high unemployment. In the second place, the model does not constrain
the dynamics to ignore phenomena such as accelerations or decelerations
that are typical in periods of turbulence. Finally, the system does not
necessarily create explosive situations. This implies that the NAIRU is
not necessarily a single value, nor is it reachable and therefore it becomes
very difficult to measure. What happens is that an interval of values for
unemployment (also stressed by Solow in [48]) is generated, compatible
with a bounded situation. From an economic policy perspective, this
situation implies that the razor’s edge property of the NAIRU can be
avoided and more degrees of freedom are allowed.
The dynamics depend very much on the value of the parameters and
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the structure of the model. In particular, three situations have been
envisaged, showing in each case the fundamental bifurcations occurring.
As the model with regime switching is represented by a discontinuous
piecewise-linear map, the dynamic changes are mainly due to border
collision bifurcations and contact bifurcations. We have shown that the
abrupt change from a regular regime to a chaotic one occurs in case
(III) and leading to robust chaos. The same robust chaos also exists in
case (II), while the regular region also include case (I). The dynamics
in the regular regime have been fully explained, and we have given the
analytical equations of the BCB curves of the maximal cycles.
To close this work, some generalization of the model should be con-

sidered. First of all, one can increase the dimension of the system in
order to make more explicit the relationship between the rate of growth
of income and unemployment on one hand, and the credit conditions
and money supply on the other. In particular, regime switching can be
applied more explicitly to policy regimes. In the second place, one does
not need to operate with backward oriented variables. Assuming naive
expectations might be reasonable in an environment where the inflation
process is a near-unit root process. However, using a fixed expectation
scheme regardless of macroeconomic conditions, is difficult to defend. A
theory of expectations that takes into account the possibility of evolving
forecasting rule, as those suggested by some learning mechanism, should
be considered.
Finally, the empirical performance of the model can be improved.

Even tough the values of the parameters, as well their changes, remain
within the region established by the econometric research, it is true that
the model is more capable to frame alternative scenarios than to carry
out precise forecasts. Furthermore, the time series properties generated
by the model (such as the different time the system spends in different
regimes or the asymmetries between expansion and deceleration) can
be better investigated and also the structure of the model itself can be
improved.
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