
Author's personal copy

Mathematical properties of a discontinuous Cournot–Stackelberg model
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a b s t r a c t

The object of this work is to perform the global analysis of a recent duopoly model which
couples the two points of view of Cournot and Stackelberg [17,18]. The Cournot model is
assumed with isoelastic demand function and unit costs. The coupling leads to discontin-
uous reaction functions, whose bifurcations, mainly border collision bifurcations, are
investigated as well as the global structure of the basins of attraction. In particular, new
properties are shown, associated with the introduction of horizontal branches, which differ
significantly when the constant value is zero or positive and small. The good behavior of
the model with positive constant is proved, leading to stable cycles of any period.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

About a century after Cournot first invented duopoly
theory [9], von Stackelberg [20] proposed one of the most
original developments of it. Cournot defined an iterative
dynamical system in terms of reaction functions, which
stated the best decisions for maximizing profits of each
competitor given the decision of the other. As only expec-
tations of the latter, based on past observations, could be
formed, in the simplest case just extrapolating from the
preceding period, the reaction functions were easily inter-
preted as iterative systems. If the reaction functions were
taken as a simultaneous system of equations, they instead
determined equilibrium states, Cournot equilibria. Cour-
not’s theory hence came in both as a dynamic and a static
variant. A Cournot equilibrium defined by the static system
could be either stable or unstable when studied in terms of
the dynamic process.

Stackelberg proposed that either competitor could learn
the reaction function of the other, hence becoming a ‘‘lea-
der’’ treating the other as ‘‘follower’’, and so solve, not a
partial optimization problem, conditional upon the deci-
sion by the competitor, but an optimization problem that
took explicit account of such partial optimization by the

competitor. If the other competitor actually behaved as as-
sumed, i.e., followed the Cournot reaction function, then a
consistent leader/follower pair would be formed. In this
way two Stackelberg equilibria were added to the Cournot
equilibrium. It is clear that Stackelberg’s theory belongs to
the Cournot setting, though, unlike this, it only comes in an
equilibrium format. It therefore is not clear how one could
fit the theories together in one system, Stackelberg’s the-
ory is more general as it extends the possibilities for equi-
libria, but Cournot’s is more general as it contains a
dynamic perspective. In hindsight it seems a bit surprising
that Stackelberg never took a dynamic perspective; if the
follower always used the proper reaction function, the lea-
der might have devised a periodic or other changing policy
over time in the pursuit of maximum leadership profit. One
of the present authors in a recent publication [18,19]
showed how an oscillating sales policy could result in
higher leadership profits than sticking to an equilibrium
Stackelberg solution constant over time.

However, it is obvious that if one wants to unify the two
theories in a dynamic format, then one has to start out
from Cournot’s theory. One can include the possibility for
the duopolists to choose Stackelberg leadership action
along with traditional Cournot action in the Cournot dy-
namic process through some branch condition dependent
on the expected profits from Stackelberg leadership as
compared to current action using the proper Cournot
reaction function each and every time period. How this
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could be done was shown by one of the present authors in
Puu [17]. This proposed model will be the objective of the
present study, as its mathematical properties were not
fully analyzed.1

It is hence possible to generalize the Cournot dynamic
model to include Stackelberg action, and so contain Stac-
kelberg equilibria as additional fixed points, but doing this
one encounters a kind of paradox. It is well known that the
profits from Stackelberg leadership equilibrium, provided
the leader succeeds in keeping the competitor as follower,
are higher than the profits for that firm in Cournot equilib-
rium. But this only holds for the two kinds of equilibria.
Suppose the competitors are mid in a dynamic process,
and the leader has actually succeeded in making the com-
petitor behave as a follower, which is then the best choice
for the successful leader in the next period, keeping to
Stackelberg leadership, or switching to Cournot action?
Paradoxically it is to switch to Cournot action. The simple
reason is that the Cournot reaction function was defined
as the best reply in each market situation.

Hence, if one introduced a comparison between ex-
pected current profits from Cournot action to Stackelberg
equilibrium profits, the competitors would never choose
Stackelberg leadership. Is it then better to skip Stackelberg
action and always keep to Cournot action? This is not true
either, because we know that at least if the Cournot equi-
librium is stable, then the process would converge to this
state which yields lower profit than Stackelberg leader-
ship. As a matter of fact, with the model proposed in Puu
[17], one can see that in any period when the leader is suc-
cessful, it is better to switch to Cournot action in the next
period. But, in the period after that, when again Cournot
action is defined as the best current choice, it would have
been better to stay in Stackelberg equilibrium.

As the competitors would want the maximum of an
oscillating profit over time, an endogenous branch condi-
tion comparing Stackelberg and Cournot profits would
have to include a weighting factor, stating, for instance,
that the competitors switch to Stackelberg action when-
ever Stackelberg (equilibrium) profits exceed, say 75% of
current expected Cournot profits, not 100%, because they
never do. This is the meaning of the weighting factor.

After describing the model formulation, it will be stud-
ied purely mathematically, as the economics discussion in
Puu [17] was rather complete. It is worth noting that the
resulting reaction functions are piecewise smooth and dis-
continuous, and we shall combine mathematical results
from the continuous generic duopoly model in Bischi
et al. [7] and the discontinuous model in Tramontana
et al. [21]. The main result with respect to Cournot models
already known in the literature (see [12,15,1–6,22] to cite a
few), which can also have complex dynamics, is that the
Cournot–Stackelberg duopoly model here considered has
always coexisting stable cycles of low periods.

The techniques here used can be extended also to sev-
eral other models, proposed for example in Puu and Sushko
[16] and Bischi et al. [8] as well as in many other duopoly

or oligopoly piecewise smooth models. Moreover, follow-
ing Tramontana et al. [23], a new element is proposed also
in the model formulation, to avoid extinction in the
productions.

So the plan of the work is as follows. In Section 2 we
shall recall the model, considering the case in which the
reaction functions are defined with a zero branch, in order
to avoid negative productions which have no economic
meaning (as usual, since Puu [14]). The global dynamics
associated with it are described in Section 3: the new ele-
ments are due to the horizontal branches and the disconti-
nuity points of the reaction functions, leading to border
collision bifurcations. We shall see that the dynamics are
stable, converging either to equilibria or to cycles of low
period. However, in extreme situations, also when the
Cournot equilibrium is locally stable, many trajectories
may be mapped into the invariant coordinate axes (with
periodic zero productions). Thus in Section 4 we shall con-
sider the modified model in which the zero branch of the
reaction functions is changed into a small positive constant
value. This economically plausible change leads to dynam-
ics which are always positive. The states previously con-
vergent to the axes now are convergent to some cycle in
the positive phase space. As we shall see, also when the
Cournot fixed point is locally unstable the dynamics are
mainly convergent to a unique superstable cycle, whose
period may be any integer number, depending on the
parameters and on the small constant value assumed in
the model. Section 5 concludes.

2. Model setup

2.1. Cournot reaction functions

Assume the inverse demand function

p ¼ 1
xþ y

; ð1Þ

where p denotes market price and x, y denote the outputs
of the duopolists. The competitors have constant marginal
costs, denoted a, b, respectively, so the profits become,

U ¼ x
xþ y

� ax; ð2Þ

V ¼ y
xþ y

� by: ð3Þ

Putting the derivatives @U
@x ¼ 0 and @V

@y ¼ 0, and solving for x,
y, one obtains

x0 ¼
ffiffiffi
y
a

r
� y; ð4Þ

y0 ¼
ffiffiffi
x
b

r
� x; ð5Þ

which are the reaction functions. The dash represents the
next iterate of one competitor given the last observed sup-
ply of the other.

As the unimodal reaction functions eventually come
down to the axes, and as negative supplies make no sense,
a first choice is to replace negative values with a zero
branch. The function in (4) returns a negative reply x0 if

1 We must note that in the literature concerning Cybernetics and System
Analysis it is possible to find some different approaches to this problem
(see [10,11]).
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y > 1
a, and (5) a negative reply y0 if x > 1

b. To avoid this, we
put x0 = 0 whenever y > 1

a, and y0 = 0 whenever x > 1
b. This

means reformulating (4) and (5) as follows

x0 ¼

ffiffi
y
a

q
� y; y 6 1

a ;

0; y > 1
a ;

8<: ð6Þ

y0 ¼
ffiffi
x
b

p
� x; x 6 1

b ;

0; x > 1
b :

(
ð7Þ

As negative supplies would also be related to negative
profits it is natural, as remarked above, to assume that
after the reaction function comes down to the axis the firm
produces nothing. However, once one axis is hit, the sys-
tem can end up at the origin where the reaction functions
also intersect, i.e., at the collusion state. This is, however,
forbidden by law in most countries. Further, the reaction
functions intersect with infinite slope in the origin, so it
is totally unstable, and the system would be thrown away
by any slight disturbance. Yet, as we shall see in the next
section, solutions involving the zero branches are there
and even become stable in a weak Milnor sense. This has
never been properly investigated, and it will be done in
the next section.

One can also avoid the origin through stipulating that
the duopolists do not actually close down when they can-
not make any profit, but keep to some small ‘‘epsilon’’
stand-by output. This assumption was originally intro-
duced in Puu [14] to the end of keeping the computer from
sticking to a totally unstable origin in numerical work, but
it makes sense also in terms of substance. The importance
of the numerical value of this ‘‘epsilon’’ stand-by output
has been investigated for the first time in Tramontana
et al. [23] and in Section 4 we shall consider also its effect
in the present Cournot–Stackelberg model.

2.2. Cournot equilibrium

Putting x0 = x, y0 = y, one can solve for the coordinates of
the Cournot equilibrium point

x ¼ b

ðaþ bÞ2
; ð8Þ

y ¼ a

ðaþ bÞ2
: ð9Þ

Substituting back from (8) and (9) in (2) and (3), one fur-
ther gets the profits of the competitors in the Cournot equi-
librium point

U ¼ b2

ðaþ bÞ2
; ð10Þ

V ¼ a2

ðaþ bÞ2
: ð11Þ

Note that (10) and (11) are the profits in Cournot equilib-
rium. During the dynamic Cournot process (4) and (5),
profits can be considerably higher. To calculate these tem-
porary profits, just substitute from (4) into (2), and from
(5) into (3), to obtain

U ¼ 1�
ffiffiffiffiffiffi
ay
p

ð Þ2; ð12Þ

V ¼ 1�
ffiffiffiffiffi
bx
p� �2

: ð13Þ

2.3. Stackelberg equilibria

As mentioned, Stackelberg action only comes in an
equilibrium format. This also implies that only Stackelberg
equilibrium profits make sense, and it is these that will be
compared to the Cournot temporary profits (12) and (13).

According to Stackelberg’s idea, the competitor control-
ling x can take the reaction function (5) of the other for gi-
ven, and substitute it in its own proper profit function (2),
to obtain

U ¼
ffiffiffiffiffi
bx
p

� ax:

Putting dU
dx ¼ 0, and solving, one gets

x ¼ b
4a2 : ð14Þ

The corresponding value of y, provided that the firm really
adheres to its Cournot reaction function is obtained
through substituting (14) in (5) and equals

y ¼ 2a� b
4a2 : ð15Þ

Using (14) and (15) in (2), the Stackelberg leadership profit
can be easily calculated

U ¼ b
4a
: ð16Þ

Similarly for the second firm, obtaining:

y ¼ a

4b2 : ð17Þ

The corresponding Cournot response of the first firm
would then be

x ¼ 2b� a

4b2 ; ð18Þ

and the Stackelberg leadership profit

V ¼ a
4b

: ð19Þ

Obviously, for the positivity and economic relevance of
(15) and (18) the following condition must be fulfilled:

b < 2a < 4b:

It is easy to check that Stackelberg leadership profits al-
ways exceed the respective Cournot equilibrium profits,
i.e., (16) is higher than (10), and (19) higher than (11).

2.4. Reswitching to Cournot action

Suppose now that the firm controlling x successfully
established Stackelberg leadership, i.e., chose x ¼ b

4a2,

whereas the firm controlling y responded with y ¼ 2a�b
4a2 . Is

it better for the first firm to keep to leadership and obtain
the profit U ¼ b

4a, or switch to the reaction function, obtain-

ing the profit U ¼ 1� ffiffiffiffiffiffi
ay
p� �2, where y ¼ 2a�b

4a2 ? Substituting,
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U ¼ 1� 1
2

ffiffiffiffiffiffiffiffiffiffiffi
2� b

a

q� �2
, which is always higher than U ¼ b

4a,

unless a = b, in which case the expressions are equal. The
conclusion is that it always pays even for the successful
leader to switch to the reaction function for one period.
Continuing the calculations, which become too messy to
be reproduced, shows that this situation only lasts for
one period. The best choice for each single period is to keep
to Cournot action, but already the next period profits be-
come lower than those in Stackelberg leadership, and if
the Cournot equilibrium is stable, the successive process
will lead to this equilibrium which yields the long run

equilibrium profit U ¼ b2

ðaþbÞ2
, which definitely is lower than

U ¼ b
4a.

So, it seems that at some stage the leader firm will try to
reswitch to Stackelberg action, comparing expected Cour-

not profits 1� ffiffiffiffiffiffi
ay
p� �2 to leadership profits b

4a, but the con-

dition 1� ffiffiffiffiffiffi
ay
p� �2

> b
4a is not suitable, because it never

holds. That is not surprising, in fact the Cournot reaction
is by definition the best possible reaction in every situa-
tion. So, it is necessary to include a weighting factor in this
comparison. There is nothing absurd in this, because the
competitors will have to maximize profits over some long-
er period, and may establish such a weighting factor from
actual experience.

2.5. The jump condition

Denoting this weighting factor by k, and recalling that
both competitors can attempt Stackelberg leadership ac-
tions, one has the following two conditions for keeping to
Cournot reaction functions.

1�
ffiffiffiffiffiffi
ay
p

ð Þ2 P k
b

4a
; ð20Þ

1�
ffiffiffiffiffi
bx
p� �2

P k
a

4b
: ð21Þ

The value of the parameter k indicates how adventurous
the competitors are at attempting a jump to leadership
action. It was argued that it might exceed unity if the com-
petitors were ever to try leadership, but some competitors
might never do, so any positive values for k, here for
simplicity taken equal for the competitors, make sense.
Nevertheless, even if the competitors may potentially
adopt a value of k higher (or equal) to 1, in such a case
conditions (20) and (21) are not fulfilled and they will
never attempt Stackelberg leadership actions.2

2.6. The map

Recalling the zero branches, it is now possible to specify
the map,

x0 ¼

ffiffi
y
a

q
� y; y 6 1

a & 1� ffiffiffiffiffiffi
ay
p� �2 P k b

4a ;

b
4a2 ; y 6 1

a & 1� ffiffiffiffiffiffi
ay
p� �2

< k b
4a ;

0 y > 1
a ;

8>>><>>>: ð22Þ

y0 ¼

ffiffi
x
b

p
� x; x 6 1

b & 1�
ffiffiffiffiffi
bx
p� �2

P k a
4b ;

a
4b2 ; x 6 1

b & 1�
ffiffiffiffiffi
bx
p� �2

< k a
4b ;

0; x > 1
b :

8>>>><>>>>: ð23Þ

This can accommodate the Cournot equilibrium as well as
both Stackelberg equilibria.

3. The basic Cournot–Stackelberg model

For convenience the above map can be reformulated as
map T, T(x,y) = (x0,y0) defined as follows:

x0 ¼ f ðyÞ ¼
fCðyÞ ¼

ffiffi
y
a

q
� y; if y 6 dy ¼ 1

a 1� 1
2

ffiffiffiffiffi
kr
p� �2

;

fSðyÞ ¼ b
4a2 ; if dy < y 6 1

a ;

0; if y > 1
a ;

8>>><>>>:
ð24Þ

y0 ¼ gðxÞ ¼
gCðxÞ ¼

ffiffi
x
b

p
� x; if x 6 dx ¼ 1

b 1� 1
2

ffiffi
k
r

q� �2
;

gSðxÞ ¼ a
4b2 ; if dx < x 6 1

b ;

0; if x > 1
b ;

8>>><>>>:
ð25Þ

where we have used the ratio r ¼ b
a. It is immediate to see

that the parameters (a,b), which are the usual coefficients
in the Cournot duopoly game, also determine the constant
value for the Stackelberg regime. The parameter k, instead,
only influences the constraints, the interval of action of the
Cournot branch or of the Stackelberg value. It follows that
the equilibria and the cycles of the model (both the coordi-
nates of the periodic points and their local stability) only de-
pend on the two parameters (a,b). However, the existence of
cycles is also determined by the position of the discontinuity
points of the functions, and thus depends on dx(r,k) and
dy(r,k). The related conditions of appearance/disappearance
of cycles are called border collision bifurcations (BCB hence-
forth), because strictly related with the positions of the dis-
continuity points. It is also worth to mention that there is a
symmetry in the model, given by T(x,y,a,b) = T(y,x,b,a)
leading to a symmetric structure of the bifurcation curves
in the two-dimensional parameter plane (a,b), with respect
to the line a = b. It follows that it is suitable to reduce by one
unit the number of the parameters keeping, besides k, the
unique parameter r ¼ b

a. This requires a rescaling in the vari-
ables: setting X = bx and Y = ay we obtain a two-dimensional
map which only depends on ðX;Y ; r; kÞ; eT ðX;YÞ ¼ ðX 0;Y 0Þ
(which is clearly topologically conjugated with T) given by:

X 0 ¼ f ðYÞ ¼
fCðYÞ ¼ r

ffiffiffiffi
Y
p
�Y

� �
; if Y 6 dY ¼ 1� 1

2

ffiffiffiffiffi
kr
p� �2

;

fSðYÞ ¼ r2

4 ; if dY < Y 6 1;
0; if Y > 1;

8>><>>:
ð26Þ

X 0 ¼ gðXÞ ¼
gCðXÞ ¼ 1

r

ffiffiffiffi
X
p
�X

� �
; if X 6 dX ¼ 1� 1

2

ffiffi
k
r

q� �2
;

gSðXÞ ¼ 1
4r2 ; if dX < X 6 1;

0; if X > 1:

8>><>>:
ð27Þ2 See the recent book of one of the authors [19] for a deeper analysis.
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As we shall see, and as already known for duopoly games
having a second iterate with separate variables (see [7]),
the peculiarity of the map is the coexistence of stable equi-
libria. Moreover, the structure of the model leads to stable
dynamics: fixed points or cycles of low period. The only
dangerous situation occurs when the dynamics disappear,
i.e., the trajectories are leading to extinction of the game,
due to the zero branches in the reaction functions. This
second undesired behavior will be corrected in the next
section with the modified model.

Let us start our analysis noting a first condition that
must be satisfied. In order to have a meaningful model
the parameters must give positive discontinuity points,
dY > 0 and dX > 0, which leads to

k < min 4r;
4
r

� �
; r ¼ b

a
; ð28Þ

or, equivalently:

k
4
< r <

4
k
; ð29Þ

and the conditions dY < 1 and dX < 1 are always satisfied. As
proved in Bischi et al. [7], the dynamic behavior of a duop-
oly model is governed by the one-dimensional map
X0 = F(X) = f(g(X)) that in our case is discontinuous.

An example is shown in Fig. 1a (r = 3,k = 0.6), where we
can see that the function F(x) has two discontinuity points,
in X = dX and in X = 1. The first two branches of the function
F(X) are given by

FCCðXÞ ¼ fCðgCðXÞÞ; ð30Þ

FCSðXÞ ¼ fCðgSðXÞÞ ¼ fC
1

4r2

	 

¼ 1

2
1� 1

2r

	 

: ð31Þ

Considering the case shown in Fig. 1a, from the existence
of two fixed points of F(X), which are the origin O = (0,0)
(locally unstable) and the Cournot point C ¼ ðX�C ;Y

�
CÞ (lo-

cally stable) we know that also a 2-cycle exists on the axes,
say C2A, given by fðX�C ;0Þ; ð0;Y

�
CÞg which is locally a saddle.

From the main property of the Cournot models (to have a
separate second iterate function) the basin of attraction
of the Cournot fixed point for the two-dimensional map

eT is given by the Cartesian product BeT ðCÞ ¼ BFðX�CÞ�
BGðY�CÞ where BFðX�CÞ is the basin of attraction of the stable
fixed point X�C for the map F(X) and BGðY�CÞ is the basin of
attraction of the stable fixed point Y�C for the map
G(Y) = g�f(Y). Moreover we also know that in continuous
duopoly games the basins of attraction of the stable cycles
are bounded by the lines belonging to the stable sets of the
saddle cycles. But in our case the map is not continuous
and we can see that in the positive phase plane (X,Y) we
have no saddle cycle. It follows that the basins of attraction
are separated by the lines associated with the discontinu-
ities (see also [21,23]). In the case shown in Fig. 1a we have
that BFðX�CÞ is the whole segment ]0,1[ and BGðy�CÞ is the
whole segment ]0,dY[. It follows that the basin of attraction
of the Cournot fixed point for the two-dimensional map eT
is given by the Cartesian product BeT ðCÞ ¼ BFðX�CÞ�
BGðY�CÞ ¼�0;1½��0; dY ½ as shown in Fig. 1b. We can see that
all the other points of the phase plane are mapped on the
coordinate axes, either in the fixed point O or in the 2-cycle
saddle cycle C2A.

This is not in contradiction with the fact that these cy-
cles are locally unstable. From a dynamical point of view
these cycles (the origin O and the saddle C2A) are called sta-
ble in weak sense or in Milnor sense (see [13]3). The reason
why these cycles are stable in Milnor sense is the existence
of ‘‘zero-branches’’ in the definition of the maps F(X) and
G(Y). For the one-dimensional map F(X) all the points in
]1,+1[ are mapped into the origin, and thus also in the
one-dimensional case (map F(X)) the basin of the origin is
of positive measure. Similarly for G(Y).

It is worth to notice that the period observed in the
X-coordinate (corresponding to the period of the cycle for
the map F(X)) may not correspond to the period of the
cycle for the two-dimensional map because there may be
points of the cycle with the same X-projection. For each
cycle of the map F(X) we have coexistence of many cycles
for the two-dimensional game eT , following the rule already
described in Bischi et al. [7].

Fig. 1. r = 3, k = 0.6. (a) Reaction functions. (b) Basins of attraction.

3 A cycle is said stable in Milnor sense if it is locally unstable but its basin
of attraction is of positive measure in the phase space.
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Contrarily to what occurs in continuous maps, we can see
that in the case of discontinuous functions we can have mul-
tistability even if there are no saddle cycles, as further stable
cycles may appear by BCB. In the case considered above in
Fig. 1, we can see that an increase in the parameter r leads
to the appearance of a stable 2-cycle, as shown in Fig. 2.

From the existence of a 2-cycle of F(X), say {X1,X2}, lo-
cally stable and coexisting with the stable Cournot fixed
point, we can deduce the existence of two stable 4-cycles
(C4B,C4C) for our map eT , with periodic points all in the po-
sitive quadrant, and one more 4-cycle (C4A) with periodic
points on the axes (locally a saddle). All the periodic points
belong to the Cartesian product f0;X1;X

�
C ;X2g � f0;X1;

X�C ;X2g. In the case shown in Fig. 2 the periodic points
are evidenced. Correspondingly we can see that the related
basins of attraction are modified (compare Fig. 1b with
Fig. 2b). The rectangle which was previously the basin of
the Cournot point now includes quite smaller rectangles
as basin BeT ðCÞ plus two new basins BeT ðC4BÞ and BeT ðC4CÞ.
Similarly, the portion of phase plane previously the basin
BeT ðC2AÞ now includes a smaller basin for BeT ðC2AÞ plus a
new basin BeT ðC4AÞ. For more details on the structure of
the basins of attraction in discontinuous duopoly games
we refer also to Tramontana et al. [21]. It is clear that as
long as we have gC(X) < dY the function F(X) is defined by
FCC(X). The condition gC(X) < dY is satisfied for

x�
ffiffiffi
x
p
þ r 1�

ffiffiffiffiffiffiffi
k

r
4

r	 
2

> 0; ð32Þ

and in its turn (32) is always satisfied if its minimum value
is positive, which occurs if

r
ffiffiffi
k
p
� 2

ffiffiffi
r
p
þ 1 > 0: ð33Þ

We can see that for k > 1 the inequality in (33) always
holds, while for k < 1 it may be violated. Let

ffiffiffiffiffiffi
X�

p
¼ 1

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4r 1�

ffiffiffiffiffiffiffi
k

r
4

r	 
2
s

ð34Þ

¼ 1
2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r

ffiffiffi
k
p
� 2

ffiffiffi
r
p� �2

r
ð35Þ

then for X� < X < X+ we have F(X) defined by FCS(X). The
equation from (33):

ðBCBbasÞ : r
ffiffiffi
k
p
� 2

ffiffiffi
r
p
þ 1 ¼ 0; ð36Þ

(that is
ffiffiffi
k
p
¼ 2ffiffi

r
p � 1

r) or
ffiffiffi
r
p
¼ 1�

ffiffiffiffiffiffiffiffiffi
1�
ffiffi
k
pp� �ffiffi

k
p Þ corresponds to a

global bifurcation whose effect is a change in the structure
of the basins of attraction, as we can see comparing Fig. 2
with Fig. 3.

The BCB occurring when the condition in (36) holds (in
our example increasing the parameter r) is associated with
the appearance of new discontinuities in the function F(X).
In fact, after the bifurcation, for X� < X < X+ where X± is gi-
ven in (35), the function F(X) is constant (in the example
shown in Fig. 3a the value is high and not visible). So that
the fate of such points in the iteration of the map is chan-
ged, and precisely now they end in the flat zero branch.
Correspondingly the structure of the basins is changed, as
we can see from Fig. 3b, where the meaning of the colors
is the same as in Fig. 2b. There is a wider portion of points
now ending in zero under iteration of the map eT ðX;YÞ. It is
worth to notice that the rectangles and strips belonging to
the basins are not finite in number, as it may appear from
the numerical figures, because the continuous branch of
F(X) issuing from the origin implies infinitely many pre-
images having the origin as limit set. Thus the basins are
formed by infinitely many rectangles or strips.

As we know, when the Cournot fixed point

C ¼ ðX�C ;Y
�
CÞ ¼

r
1þ r

	 
2

;
1

1þ r

	 
2
 !

; ð37Þ

exists, it is stable as long as

3� 2
ffiffiffi
2
p

< r < 3þ 2
ffiffiffi
2
p

; ð38Þ

and a flip bifurcation of the fixed point of the function F(X),
corresponding to a degenerate Neimark–Sacker bifurcation
of the Cournot fixed point, occurs at r ¼ 3� 2

ffiffiffi
2
p

(for de-
tails see also [23]). So, depending on the range, we may
have a fixed point which, when existing, is always stable,
or it may change stability in its region of existence.
However the Cournot fixed point may not exist. A BCB
leading to the appearance/disappearance of the Cournot

Fig. 2. r = 3, k = 0.63. (a) Reaction functions. (b) Basins of attraction.
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equilibrium occurs when dX ¼ X�C , and similarly when
dY ¼ Y�C , that is for

ðBCBX�C
Þ : k ¼ 4r

ð1þ rÞ2
; ðBCBY�C

Þ : k ¼ 4

rð1þ rÞ2
; ð39Þ

and a BCB leading to the appearance/disappearance of the
Cournot equilibrium may also occur when the fixed point
X�C merges with the discontinuity point X+ given in (35),
that is, Xþ ¼ X�C occurs forffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r
ffiffiffi
k
p
� 2

ffiffiffi
r
p� �2

r
¼ r � 1

r þ 1
; ð40Þ

leading to a bifurcation in the structure of the basins of
attraction of the existing attractors. However, the related
BCB curve of equation

ðBCBCÞ : k ¼ 4
r

r þ 2
r þ 1

	 
2

; ð41Þ

seems to belong to the unfeasible region.
The curves (k1) : k = 4r and ðk2Þ : k ¼ 4

r given in (28),
bounding the feasible region, are shown in the bifurcation
diagram in Fig. 4, in the two-dimensional parameter plane
(r,k). In the same figure also the BCB curve (BCBbas) given in
(36) is shown, as well as the BCB curves given in (39) and
in (40), and the two lines r ¼ 3� 2

ffiffiffi
2
p

given in (38) bound-
ing the analytic stability region of the Cournot fixed point
(denoted SC in Fig. 4).

The vertical line at r = 3 shown in Fig. 4 includes the
examples shown in Figs. 1–3. As we can see, from
k = 0.63 considered in Fig. 2 to k = 0.69 considered in
Fig. 3 we have crossed the BCB curve given in (36). We re-
call again that the local eigenvalues are unchanged when
varying the parameter k, but border collision bifurcations
may occur. Indeed, increasing the parameter k the position
of the points X± given in (35) changes, and a collision of X+

with the lowest periodic point (X1) of the 2-cycle of F(X)
(which is associated with a periodic point of the 4-cycle
C4A, as well as an X-coordinate for the 4-cycles C4B and
C4C) causes the disappearance of all the three 4-cycles for

BCB, leaving a huge portion of points converging to zero.
A very extreme example is shown in Fig. 5 for k = 0.7.

The Cournot point exists and is locally stable, but its ba-
sin of attraction is so small that may be considered really
‘‘unimportant’’ from the applied point of view (while the
dominant state is zero, i.e., the origin, and some points con-
verge to the saddle 2-cycle C2A on the coordinate axes).

We have described above the disappearance of the 2-
cycle for F(X) (and thus of all the 4-cycles for the mapeT ðX;YÞ) via BCB, but also its appearance occurs via BCB.
Its analytical determination is more complicated due to
the complex structure of the functions involved in our
map. The periodic points {X1,X2} of the 2-cycle of F(X) are
obtained solving for F2(X) = X (and discarding the fixed
point of F(X)).

In our case, we cannot find them explicitly. However,
we can say that the appearance of the 2-cycle is associated
with some BCB occurring when X1 = dX or when X2 = 1. A
numerical investigation has been performed, reported in
Fig. 6. The colors there shown correspond to attracting cy-
cles of different periods for the one-dimensional map F(X),

Fig. 3. r = 3, k = 0.69. (a) Reaction functions. (b) Basins of attraction.

Fig. 4. Bifurcation curves in the two-dimensional parameter plane (r,k).
The gray region is unfeasible.
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and also to cycles of the same period but of different nat-
ure. In fact, the attracting fixed point of the map F(X)
may be the Cournot fixed point C, or the Stackelberg fixed
point S in the horizontal branch of the map, or the unstable
origin O, and depending on the initial condition a point of
the phase space may converge to one of them. The pres-
ence of two colors in Fig. 6 denotes the coexistence. Be-
sides the fixed points listed above, only a 2-cycle for the
map F(X) has been detected numerically, in two regions,
bounded by BCB curves (that is, this cycle is not associated
with a flip bifurcation of the fixed point of F(X)). This
means that the kind of cycles that we have described in
the examples given in the previous figures, are all the pos-
sible cycles for the two-dimensional map eT ðX;YÞ.

We can see that in Fig. 6, as well as in Fig. 4, the BCB
curve given in (36) and the BCB curves given in (39) and
(40) all intersect in the same point (r,k) = (1,1). This is
not surprising. We know that r = 1 is a symmetry value,
the stability of the Cournot point has the same behavior
as r is increased or decreased. This is due to the fact that
exchanging r with 1

r and X with Y, the model does not
change, that is:

eT ðX;Y ; rÞ ¼ eT Y;X;
1
r

	 

; ð42Þ

so it is enough to consider the bifurcations for r > 1. Similar
bifurcations also exist for r < 1.

3.1. The symmetric case r = 1

In the particular case r = 1 the firms are symmetric, in
the sense that their production functions are characterized
by the same marginal costs (b = a). In such a case, the Cour-
not fixed point becomes C ¼ ðX�C ;Y

�
CÞ ¼ 1

4 ;
1
4

� �
and it is

stable.
The structure of the basins in the particular point

(r,k) = (1,1) of the parameter plane is shown in Fig. 7, the
basin BeT ðCÞ is the square BFðX�CÞ � BGðY�CÞ ¼�0;1½��0;1½.

The dynamics in this case of basic model (with the zero
branches) are associated with the cycles commented
above. Fig. 6 shows that only at low values of k (k < 1)
we can have a stable Cournot point, and when it becomes
unstable or disappears by BCB, the dynamics are mainly
associated with the coordinate axes, except for the small

Fig. 5. r = 3, k = 0.7. (a) Reaction functions. (b) Basins of attraction.

Fig. 6. (a) Bifurcation diagram in the two-dimensional parameter plane (r,k). The gray region is unfeasible. The different colors refer to the three fixed
points C, O, S and to the 2-cycle of F(X). (b) An enlargement. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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regions associated with a 2-cycle of F(X). That is, the dom-
inating attracting sets are attractors in Milnor sense,
belonging to the coordinate axes. It follows that the states
are always alternating from X = 0 to Y = 0 and vice versa.

To improve the dynamic behavior, in the next section
we will modify the considered model.

4. The modified Cournot–Stackelberg model

The undesired features of the basic model considered in
the previous section are associated with the fact that once
the state variable gets a zero value, it cannot be increased
any longer, as X = 0 and Y = 0 are fixed points of the
reaction curves (although unstable) and those axes are
invariant and trapping in the phase-space. Thus a more
suitable model, satisfying the intuitive behavior, is that a
state variable X or Y can become very low, assuming a fixed
low value, say �, so that the last horizontal branch in the
reaction functions is not zero but a constant value � > 0.
Clearly this low value may also be different for the two
state variables. However, for sake of simplicity, let us take
the same low value for both. Thus the model we are now
considering is the map T�, T�(x,y) = (x0,y0) defined as
follows:

x0 ¼ f ðyÞ ¼
fCðyÞ ¼

ffiffi
y
a

q
� y; if y 6 dy ¼ 1

a 1� 1
2

ffiffiffiffiffi
kr
p� �2

;

fSðyÞ ¼ b
4a2 ; if dy < y 6 1

a ;

�; if y > 1
a ;

8>>><>>>:
ð43Þ

y0 ¼ gðxÞ ¼
gCðxÞ ¼

ffiffi
x
b

p
� x; if x 6 dx ¼ 1

b 1� 1
2

ffiffi
k
r

q� �2
;

gSðxÞ ¼ a
4b2 ; if dx < x 6 1

b ;

�; if x > 1
b :

8>>><>>>:
ð44Þ

Then, as before, by rescaling the variables, setting X = bx
and Y = ay, we obtain a two-dimensional map which only
depends on ðX; Y; r; kÞ; eT �ðX;YÞ ¼ ðX0;Y 0Þ (topologically
conjugated with T�) given by:

X 0 ¼ f ðYÞ ¼
fCðYÞ ¼ r

ffiffiffiffi
Y
p
�Y

� �
; if Y 6 dY ¼ 1� 1

2

ffiffiffiffiffi
kr
p� �2

;

fSðYÞ ¼ r2

4 ; if dY < Y 6 1;
�; if Y > 1

8>><>>:
ð45Þ

X 0 ¼ gðXÞ ¼
gCðXÞ ¼ 1

r

ffiffiffiffi
X
p
�X

� �
; if X 6 dX ¼ 1� 1

2

ffiffi
k
r

q� �2
;

gSðXÞ ¼ 1
4r2 ; if dX < X 6 1;

�; if X > 1:

8>><>>:
ð46Þ

It is clear that many results of the previous section hold
also now. However, the main fact is that the zero state
can no longer be reached. The function F(X) = f(g(X)) has
now the origin which is a true repelling fixed point, while
for X > 1 the function takes the constant value F(X) = f(�),
let us call this constant Xm ¼ f ð�Þ ¼ r

ffiffiffi
�
p
� �

� �
which is

the minimum value which can be reached by the iterated
points of the map in the absorbing interval. All the points
X for which g(X) > 1 are mapped into �, and thus F(X) is
mapped into Xm and the trajectory of this point converges
to an attracting set of the map, which is a superstable cycle
(as the derivative of the map in the periodic points higher
than 1 is zero). Thus when the maximum of F(X) exceeds 1
then � (that is Xm for F(X)) is a periodic point of the map
belonging to an attracting cycle. Stated in other words,
once the state variable X reaches a low value, the increas-
ing branch of F(X) issuing from the origin will push the
state to increase again. It follows that instead of the fixed
point O the trajectories are converging to a different cycle,
with positive state variables. Clearly the period of the cycle
depends on the value of � and on the values of the other
parameters.

As an example, let us consider the case shown in Fig. 2,
with the new model assuming � = 10�5: the existing cycles
are exactly the same with the same coordinates. What are
changed are the basins of attraction of the attracting cy-
cles. The result is shown in Fig. 8, where we can see that
now the cycles on the coordinate axes are truly saddles,
and no longer stable in Milnor sense: their stable set is a

Fig. 7. r = 1, k = 1. (a) Reaction functions. (b) Basins of attraction.
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set of zero measure. The points in the phase plane that
were converging to the axes in Fig. 2a are now converging
to the two stable cycles C4B and C4C for our map eT �.

Similar changes occur for the case shown in Fig. 3, now
shown in Fig. 9. As we can see, the bifurcation in the shape
of F(X) when we increase r crossing the BCB curve (BCBbas)
given in (36) is no longer important for the modified mod-
el, and the structure of the existing basins of attraction
changes smoothly (that is, without a bifurcation).

While a new situation occurs now after the BCB leading
to the disappearance of the 2-cycle of F(X). As we have seen
in the previous section the disappearance of the 2-cycle
leads to the dominance of the zero fixed point (see the
example in Fig. 5), while now, in the new map F(X), the dis-
appearance of the 2-cycle via BCB leads to the appearance
of a new attracting cycle with positive values, in the exam-
ple a cycle of period 5 with points {Xi, i = 1, . . . ,5} (see
Fig. 10). For the map eT � this means the disappearance of
the three 4-cycles and the appearance of three cycles:
one 5-cycle C5A together with three different 10-cycles
coexisting with the stable Cournot fixed point. All the peri-
odic points belong to the Cartesian product f0;Xi; i ¼ 1; . . . ;

5;X�Cg � f0;Xi; i ¼ 1; . . . ;5;X�Cg. The shape of the reaction
functions is shown in Fig. 10a while in Fig. 10b the five
basins of attraction are illustrated.

The main difference for the dynamics occurring in this
modified model can be appreciated at low values of the
parameter k. In fact, when the Cournot fixed point becomes
unstable, other stable cycles exist which enrich very much
the dynamics and the opportunities in the game. A numer-
ical example is shown in Fig. 11.

In Fig. 11 the two-dimensional bifurcation diagram in
the parameter plane (r,k) is reported at fixed value
� = 10�5. We can see that on the right side of the line at
which the Cournot changes its stability, several cycles
can occur, as magnified in the two enlargements. Regions
with different colors correspond to cycles of F(X) with dif-
ferent periods. It is plain that similar regions also exist in
the side with r < 1.

Also in this case, for each cycle of the map F(X) we have
coexistence of many cycles for the two-dimensional gameeT �, following the rule already described in Bischi et al.
(2008). The existence of cycles of any order may be better
observed in the one-dimensional bifurcation diagram in

Fig. 8. r = 3, k = 0.63, e = 10�5. (a) Reaction functions. (b) Basins of attraction.

Fig. 9. r = 3, k = 0.69, e = 10�5. (a) Reaction functions. (b) Basins of attraction.
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which the state variable X of the map F(X) is drawn as a
function only of the parameter r, at fixed values of � and
k. An example is shown in Fig. 12, where we have used
� = 10�5 and k = 0.44.

In the case shown in Fig. 12 we can see that a sequence of
BCBs occur. The period of the cycles of the map F(X) is
increasing with an increment of two units at some BCBs as
the parameter r tends to a bifurcation value r⁄, after which

the period of the cycles decreases by two units at other BCBs.
This sequence of bifurcations can be easily explained from
the graph of the function F(X). In Fig. 13a we can see that
for r < r⁄ the value Xm = f(�) is mapped below the Cournot
fixed point, which is unstable, and thus a few iterations
are needed to exit from that range reaching Xm again.

As r tends to r⁄ the point F(Xm) tends to the fixed point and
the period increases because this periodic points must do

Fig. 10. r = 3, k = 0.7, e = 10�5. (a) Reaction functions. (a) Basins of attraction.

Fig. 11. (a) Bifurcation diagram in the two-dimensional parameter plane (r,k) at e = 10�5 fixed. (b) Colored bifurcation diagram. (c and d) Two
enlargements. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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more and more turns around the unstable Cournot point.
Clearly the period tends to infinity and at the value r = r⁄

we have FðXmÞ ¼ X�C that is: the minimum value is preperi-
odic to the Cournot point. Then for r > r⁄ we have
FðXmÞ > x�C (as in the example shown in Fig. 13b) and F(Xm)

increases, so that the period from very high tends to
decrease.

We can also appreciate the dependence of the period of
the cycles of the map (F and thus of eT �) from the value of
the constant �. Fig. 14a shows the parameter plane (r,�)

Fig. 12. (a) One-dimensional bifurcation diagram of X as a function of the parameter r at k = 0.44 and e = 10�5 fixed. (b) An enlargement.

Fig. 13. Reaction functions. (a) At r = 5.8, k = 0.44, e = 10�5 is FðXmÞ < X�C . (b) At r = 6.4 is FðXmÞ > X�C .

Fig. 14. (a) Bifurcation diagram in the two-dimensional parameter plane (r,e) at k = 0.2 fixed. (b) One-dimensional bifurcation diagram of X as a function of
the parameter e at r = 0.8 and k = 0.2 fixed.
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at fixed k = 0.2. The one-dimensional bifurcation diagrams
at r = 8 fixed as a function of � are shown in Fig. 14b, evi-
dencing the same phenomenon explained above: from a
2-cycle, the period of the cycles tends to infinity and then
decreases up to the period one of the fixed point S
(Stackelberg).

5. Conclusions

A new Cournot–Stackelberg duopoly model has been
here investigated with respect to its global properties. As
we have shown in Section 3, the main result with respect
to Cournot models already known in the literature (which
can also have complex dynamics) is that the Cournot–
Stackelberg duopoly model here considered has always
coexisting stable cycles of low periods. The matter is which
points of the space phase lead to a stable equilibrium or to
a cycle. The structure of the basins of attraction shows that
many points are attracted to the coordinate axes, which
means periodically zero production. This undesired effect
is however due to a zero branch in the reaction functions,
which is reasonable and realistic to substitute with any
small positive quantity. The result, shown in Section 4, is
that the modified model is always stable and with cycles
having periodic positive quantities. However, now the
period may be any integer number, depending on the
parameters and on the small constant value assumed in
the production.
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