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Systems in backward models
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Abstract

Several applied models (specially in Economics) appear formulated in the
so called ”backward dynamics”, as discrete models in the form xt = F (xt+1),
and the interest is in the behavior of the forward values of the state variable
(xt, xt+1, xt+2...), in which the function F (.) has not a unique inverse. We shall
show that the knowledge of the properties of the dynamical system xt+1 =
F (xt) when there are homoclinic orbits, coupled with the theory of Iterated
Function Systems, may be used in the study also of the backward model
xt = F (xt+1) to describe fractal ”attractors” in the forward states of the
model, by using an approach much simpler and immediate with respect to the
Inverse Limit Theory, a different technique frequently used in this context.

1 Introduction

In the recent years several models, specially in Economics, appeared formulated in
the so called ”backward dynamics”. That is, as discrete models in the form xt =
F (xt+1), and the interest is in the behavior of the forward values of the state variable
(xt, xt+1, xt+2...) (see [8], [9], [26], [27], [10], [22], [16]). There are no problems when
the function F (.) is invertible (as xt+1 = F−1(xt) is a dynamical system), while
difficulties arise in the cases in which the function F (.) has not a unique inverse,
and difficulties may also arise in the interpretation of the models.

Mathematically, this kind of models have been investigated considering the space
of all possible sequences, which is a space of infinite dimension (the so-called Hilbert
Cube), and is known as Inverse Limit Theory (for the interested reader we refer to
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[14], [15] and the references therein). As applications to economic models see [25],
[17], [18]).

However, the inverse limit approach is rather abstract (as it always considers
infinitely many states all together at once, without a real selection of the states step
by step), so we prefer to follow a different approach, which is based on the theory of
Iterated Function Systems, as described in [2], [3]. The theory of Iterated Function
Systems, IFS for short, is a generic tool to obtain fractal sets by iterating contrac-
tion functions. This subject is clearly related with chaotic systems and expanding
functions, although the connection is not so widely known. We shall see how the
homoclinic orbits existing in the standard dynamical system xt+1 = F (xt), which
are the basic tools to prove the existence of chaotic behavior (see for example in
[20], [5]), are also the basic tools to get the contraction functions giving us fractal
sets in the IFS context. That is, we show a kind of ”bridge” between the theory
of Dynamical Systems and the theory of IFS, which is useful to describe fractal
”attractors” in the forward states of backward models.

The plan of the work is as follows. In Section 2 we introduce the definition of
Cantor sets, and their relations with the theory of IFS, giving examples of chaos
game and of Random IFS. In Section 3 we recall the homoclinic theorem of expanding
periodic points, and its relation with invariant Cantor sets of points, giving a new
proof in Theorem 2, by using the IFS theory. In Sections 4 we illustrate the results by
using both a 1-dimensional example and a 2-dimensional one, coming from economic
models (of overlapping generations).

2 Iterated Function System (IFS)

As stated in the introduction, the homoclinic orbits give us a kind of ”bridge” be-
tween the theory of Dynamical Systems and the theory of Iterated Function Systems
(IFS). To see this connection let us recall the basic tools: the properties of Cantor
sets, and its relation with the IFS. That is, such kind of sets are the limit sets, or
invariant sets, occurring in the IFS.

2.1 Invariant Cantor sets

Let us start recalling the definition of a Cantor set, which plays an important role as
a repelling invariant set in chaotic systems and as a fractal attractor for an IFS. By
definition a set Λ is a Cantor set if it is closed, totally disconnected and perfect1. The

1Totally disconnected means that it contains no intervals (i.e. no subset [a, b] with
a 6= b) and perfect means that every point is a limit point of other points of the set.
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Figure 1: Middle-third Cantor set.

simplest example is the celebrated ”Middle-third Cantor set”: start with a closed
interval I and remove the open ”middle third” of the interval (see Fig.1). Next,
from each of the two remaining closed intervals, say I0 and I1, remove again the
open ”middle thirds”, and so on. After n iterations, we have 2n closed intervals
inside the two intervals I0 and I1. The Cantor set is obtained as the limiting set of
the process, as n →∞.

Cantor sets are obtained in a natural way as chaotic invariant sets in dynamical
systems (see e.g. in [5] or in [19]). To illustrate this point, consider the well known
logistic map:

xt = fµ(xt+1) = µxt+1(1− xt+1). (1)

Notice that we have written this quadratic difference equation as a backward dy-
namical system, as it is used within the theory of Overlapping Generation Models
(OLG for short) by Medio and Raines [25] (and it will be used as example also here,
in Section 4). Since fµ is non-monotonic, its inverse map is not unique. For any
point ξ belonging to the interval I = [0, 1] there are two distinct inverse functions2,
say

f−1
µ (.) = f−1

0 (.) ∪ f−1
1 (.) (2)

where

f−1
1 (ξ) =

µ−
√

µ2 − 4µξ

2µ
, f−1

0 (ξ) =
µ +

√
µ2 − 4µξ

2µ
. (3)

Hence for the OLG-model, the forward state is not uniquely defined. To clarify the
notation (and to avoid confusion) we shall call by ”dynamics” only the repeated
application of the function f , which is a real dynamical systems, independently
on the fact that it is used as a forward or backward model, i.e. as xt+1 = f(xt) or

2Instead of the two symbols 0 and 1, one may use L and R, respectively.
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Figure 2: Logistic map for µ > 2+
√

5 and the two disjoint intervals f−1
µ (I) = I0∪I1.

xt = f(xt+1), while in the second case, within a backward model, the states obtained
by applications of one of the inverses give a ”sequence of forward states”.

It is well known that for µ > 4, the standard map xt+1 = fµ(xt) has a chaotic
invariant Cantor set Λ. Moreover, as we shall see, the same Cantor set is an attractor
of the Iterated Function System formed by the interval I and the two inverses f−1

0

and f−1
1 . To simplify the exposition let us consider the case µ > 2 +

√
5 (although

the result is true for µ > 4). For µ > 2 +
√

5 the two inverses f−1
0 and f−1

1 are
contractions in I.3

The set of points whose dynamics are bounded forever in the interval I can be
obtained removing from the interval all the points which exit the interval after n
iterations, for n = 1, 2, .... Thus let us start with the two closed disjoint intervals

f−1
µ (I) = f−1

0 (I) ∪ f−1
1 (I) = I0 ∪ I1, (4)

as shown in Fig.2: i.e. by applying (2) to the interval I we have removed the points
leaving I after one iteration. Next we remove the points exiting after two iterations
obtaining four closed disjoint intervals

f−2
µ (I) = I00 ∪ I10 ∪ I01 ∪ I11,

3We recall that a function f is a contraction in a space X if ||f(x)− f(y)|| < k||x− y|| for any
pair of points in X, with a fixed constant of contraction 0 < k < 1. If f is a contraction in a space
X then there exists a unique fixed point in X, globally attracting.
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defining in a natural way f−1
µ (I0) = f−1

0 (I0) ∪ f−1
1 (I0) = I00 ∪ I10 and f−1

µ (I1) =

f−1
0 (I1) ∪ f−1

1 (I1) = I01 ∪ I11. Note that if a point x belongs to I01 (or to I11) then
fµ(x) belongs to I1 (i.e. one iteration means dropping the first symbol of the index).
Continuing the elimination process we have that f−n

µ (I) consists of 2n disjoint closed

intervals (satisfying f
−(n+1)

µ (I) ⊂ f−n
µ (I)), and in the limit we get

Λ =
∞⋂

n=0

f−n
µ (I) = lim

n→∞
f−n

µ (I). (5)

The set Λ is closed (as intersection of closed intervals), invariant by construction (as
f−1(Λ) = f−1(∩∞n=0f

−n
µ (I)) = ∩∞n=0f

−n
µ (I) = Λ) and it cannot include any interval

(because otherwise, since fµ is expanding, after finitely many applications of fµ to
an interval, we ought to cover the whole set [0, 1]). Thus Λ is a Cantor set.

Moreover, by construction, to any element x ∈ Λ we can associate a symbolic
sequence, called itinerary, or address, of x: Sx = (s0s1s2s3...) with si ∈ {0, 1}, i.e.
Sx belongs to the set of all one-sided infinite sequences of two symbols

∑
2 . Sx

results from the symbols that we put as indices to the intervals in the construction
process, and there exists a one-to-one correspondence between the points x ∈ Λ and
the elements Sx ∈

∑
2 . Moreover, from the construction process we have that if x

belongs to the interval Is0s1...sn then fµ(x) belongs to Is1...sn . Thus the action of the
function fµ on the points of Λ corresponds to the application of the ”shift map σ”
to the itinerary Sx in the code space

∑
2:

if x ∈ Λ has Sx = (s0s1s2s3...)

then

fµ(x) ∈ Λ has Sf(x) = (s1s2s3...) = σ(s0s1s2s3...) = σ(Sx)

Given a point x ∈ Λ, to construct its itinerary Sx we proceed in the obvious way:
we put s0 = 0 if x ∈ I0 or s0 = 1 if x ∈ I1, then we consider fµ(x) and we put
s1 = 0 if fµ(x) ∈ I0 or s1 = 1 if fµ(x) ∈ I1, and so on. It is easy to see that
each periodic sequence of symbols of period k represents a periodic orbit with k
distinct points, and thus a so-called k−cycle. Since the elements of

∑
2 can be put

in one-to-one correspondence with the real numbers4, we have that the periodic
sequences are dense in the space, thus the periodic orbits are dense in Λ. Also there
are infinitely many aperiodic sequences (i.e. trajectories) which are dense in Λ and
we also have sensitivity with respect to the initial conditions. It follows that the
(standard) dynamics of fµ is chaotic in Λ. But more, we also have nice properties in
the forward process we are interested in (within a backward model). In fact, for any

4We can think for example of the representation of the numbers in binary form.
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initial condition x0 ∈ I, whichever is the sequence that we construct, by applying
at each iteration any one of the two inverses of fµ, the forward states (x0, x1, x2, ...
where xi+1 = f−1

j (xi) with j = 0 or j = 1 for any i) tend to Λ (i.e. the distance from
Λ of the points so obtained tends to zero). Thus the Cantor set Λ also describes the
asymptotic states of all the possible forward sequences.

2.2 Iterated Function System (IFS)

The construction process with the two contraction functions in (4) leading to the
Cantor set in (5) can be repeated with any number of contraction functions defined
in a complete metric space D of any dimension5, as it is well known since the
pioneering work by Barnsley [3]. Let us recall the definition of an IFS:

Definition 1. An Iterated Function System (IFS) {D; H1, ...Hm} is a collection
of m mappings Hi of a compact metric space D into itself.

We can so define W = H1 ∪ ... ∪Hm. Denoting by si the contractivity factor of
Hi then the contractivity factor of W is s = max {s1, ...sm}, and for any point or
set X ⊆ D we define

W (X) = H1(X) ∪ ... ∪Hm(X).

The main property of this definition is given in the following theorem:

Theorem 1. (Barnsley [3], p. 82) Let {D; H1, ...Hm} be an IFS. If the Hi are
contraction functions then there exists a ”unique attractor” Λ such that Λ = W (Λ)
and Λ = limn→∞ W n(X) for any non-empty set X ⊆ D.

The existence and uniqueness of the set Λ is guaranteed by the theorem and it
is also true that given any point or set X ⊆ D by applying each time one of the m
functions Hi the sequence tends to the same set Λ.

In the case described above (in Section 2.1) with the logistic map we have D =
I = [0, 1], H1 = f−1

0 , H2 = f−1
1 , so that W (X) = f−1

µ (X) = f−1
0 (X) ∪ f−1

1 (X) (as
it has been used in (2)), and the set Λ = limn→∞ W n(X) = limn→∞ f−n

µ (X) for any
X ⊆ D is the set already described above and obtained in (5).

In general, if the sets Di = Hi(D), i ∈ {1, ..., m}, are disjoint, we can put the
elements of Λ in one-to-one correspondence with the elements of the code space
on m symbols

∑
m . The construction is the generalization of the process described

5or better (D, d) where d denotes the function distance.



286 F. Tramontana and L. Gardini

above for the two inverses of the logistic function. Let U0 = D and define

U1 = W (U0) = H1(D) ∪ ... ∪Hm(D) = D1 ∪ ... ∪Dm ⊂ U0

U2 = W (U1) = W 2(U0) = H1(U1) ∪ ... ∪Hm(U1) = D11 ∪ ... ∪Dmm ⊂ U1

...

Un = W (Un−1) = W n(U0) ⊂ Un−1

i.e. all the disjoint sets of U1 are identified with one symbol belonging to {1, ...,m} ,
all the disjoint sets of U2 are identified with two symbols belonging to {1, ..., m}
(m2 in number) and so on, all the disjoint sets of Un are identified with n symbols
belonging to {1, ..., m} (mn in number). And in the limit, as Λ = limn→∞ Un =
limn→∞ W n(U0) = ∩∞n=0W

n(U0), each element x ∈ Λ is in one-to-one correspondence
with the elements Sx ∈

∑
m, where Sx = (s0s1s2s3...), si ∈ {1, ..., m} .

Moreover, for any element x ∈ Λ we can define a transformation (or map) F
on the elements of Λ by using the inverses of the functions Hi (the so called shift
transformation or shift dynamical system in Barsnley [3], p. 144):

if x ∈ Hi(D) then F (x) = H−1
i (D)

so that we can also associate an induced dynamic to the points belonging to Λ, and
the rule described above holds for F , i.e. if x ∈ Λ has itinerary Sx = (s0s1s2s3...)
then F (x) ∈ Λ has itinerary SF (x) = (s1s2s3...) = σ(s0s1s2s3...) = σ(Sx). Clearly,
when the functions Hi are distinct inverses of a unique function f then the induced
dynamic system is the same, as F = f .

2.3 The chaos game and Random IFS

As a second relevant example let us consider another well known IFS with three
functions, the so-called chaos game. Choose three different points Ai, i = 1, 2, 3,
in the plane, not lying on a straight line. Let D be the closed set bounded by
the triangle with vertices given by the three points Ai, and consider the system
{D; H1, H2, H3} where the Hi are linear contractions in D with center Ai and con-
tractivity factor 0.5. Then choose an arbitrary initial state x0 in D. An orbit of
the system is obtained by applying one of the three maps Hi, after throwing a dice.
More precisely, xn+1 = Hi(xn) with i = 1 after throwing 1 or 2, i = 2 after throwing
3 or 4, i = 3 after throwing 5 or 6. For any initial state x0 ∈ D, plotting the
points of this orbit after a short transient gives Fig.3. This fractal shape is called
the Sierpinski triangle and it is the unique attractor of the chaos game. Almost all
the orbits generated in the chaos game are dense in the Sierpinski triangle.
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Figure 3: Sierpinski triangle, unique attractor Λ of the IFS {D; H1, H2, H3}.

Moreover, in Barnsley ([3], p. 335) it is also shown how, besides the standard
IFS, we can consider a Random IFS (RIFS for short, or IFS with probabilities)
by associating a probability pi > 0 to each function Hi, such that

∑m
i=1 pi = 1.

Considering a point x0 ∈ D then we choose recursively

xn+1 ∈ {H1(xn), ..., Hm(xn)}

and the probability of the event xn+1 = Hi(xn) is pi. The iterated points always
converge to the unique attractor Λ of the standard IFS, but the density of the
points over the set Λ reflects in some way the chosen probabilities pi. However,
we note that if the probabilities in the RIFS are strictly positive, pi > 0, then the
unique attractor does not change, and the iterated points are dense in Λ.

This may be very useful and convenient when using IFS theory applied to back-
ward dynamic models. Using an approach similar to the Random IFS, we can define
a Restricted IFS (or IFS with restrictions) imposing that, depending on the position
of a point x ∈ D not all the maps Hi can be applied but only some of them. Stated
differently, we can impose some restrictions on the order in which the functions can
be applied. As an example let us consider the chaos game described above, but now
with some restrictions, that is: The order in which the three different maps Hi are
applied is not completely random, but subject to certain restrictions. Suppose for
example that the map H1 is never applied twice consecutively, i.e. whenever H1 is
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Figure 4: A subset of the Sierpinski triangle. Λ∗ is the unique attractor of the
RIFS {D; H1, H2, H3} with the restriction that whenever H1 is never applied twice
consecutively.

applied then the next map to be applied is either H2 or H3. Let
∑

3 be the code space
on three symbols, and let

∑∗ ⊂ ∑
3 be the subset of all sequences which do not

have two consecutive 1’s. The chaos game {D; H1, H2, H3} with the restriction so
described has a unique attractor Λ∗ whose points are in one-to-one correspondence
with the restricted space

∑∗. A typical orbit of this chaos game with restrictions,
after a short transient, is shown in Fig.4. The unique attractor of the chaos game
with restrictions is a subset of the Sierpinski triangle, the attractor of the chaos
game. In fact, the attractor contains precisely those points of the Sierpinski triangle
whose itinerary, or addresses, do not have two consecutive 1’s.

This example shows that when some restrictions upon the order in which the
maps are applied is imposed, then a unique fractal attractor can arise, which is
some subset of the unique attractor of the IFS.

In the following sections we shall see how IFS are related in a natural way to
non-uniquely defined forward sequences within a backward model. We will also see
that the forward states can be described by IFS, whenever the uniquely defined
dynamics has homoclinic trajectories due to the existence of a snap-back repellor.
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3 Homoclinic theorem for expanding periodic

points

Let us now recall how chaotic behaviors exist in a dynamical system whenever we
have transverse (or non critical) homoclinic orbits of expanding cycles, also called
snap-back repellors by Marotto [20]. Without loss of generality we can deal with an
expanding fixed point x∗ of a C(1) map T from a space X into itself, X ⊂ Rn with
n ≥ 1, as for a cycle of period k we can consider the map T k (k-th iterate of T ).

We recall that a fixed point x∗ is hyperbolic if all the eigenvalues of JT (x∗) are
different from 1 in modulus, when all are less then 1 in modulus then x∗ is attracting,
when all are higher then 1 in modulus, then x∗ is expanding (or repelling). Also, a
homoclinic trajectory of a fixed point x∗ is called non degenerate (or non critical,
or transverse) if detJT (.) 6= 0 in all the points of the homoclinic trajectory.

Definition 2. A fixed point x∗ of a smooth dynamical system is called a snap-
back repellor if it possesses a neighborhood U such that the Jacobian matrix has all
the eigenvalues higher than 1 in modulus in all the points of U, and in U there exist
a homoclinic point of x∗.

It is well known that in any neighborhood of a nondegenerate homoclinic trajec-
tory we can find an invariant set Λ in which a suitable iterate of T , and thus T , is
chaotic in the sense of Li and Yorke. For the proof we refer to [5], [20], [21] (see also
[6]), but it is convenient to reformulate it for our purposes, showing its connection
with the IFS.

The proof consists in showing that in any neighborhood U of x∗ we can find two
disjoint compact sets, U0 and U1, U0 ∩ U1 = ∅, such that for a suitable m we have

Tm(U0) ⊃ U0 ∪ U1 and Tm(U1) ⊃ U0 ∪ U1 (6)

thus for the map Tm there exists an invariant chaotic set Λ ⊂ U0 ∪ U1. In the
following we illustrate:

(I) how the set property in (6) is used to construct an invariant Cantor set
Λ ⊂ U0 ∪ U1, on which Tm, and thus T , is chaotic;

(II) in Theorem 2 we show how the set property in (6) can be found associated
with a given homoclinic trajectory.

(I) Let us consider T̃ = Tm. As, from (6), T̃ (U0) ⊃ U0 then a suitable inverse,

say F = T̃−1
0 , exists such that F (T̃ (U0)) = U0, and as T̃ (U1) ⊃ U1 (from (6) as well)

then a suitable inverse, say G = T̃−1
1 , exists such that G(T̃ (U1)) = U1.

Let S = U0 ∪ U1 then F (S) is made up of two disjoint pieces U00 ⊂ U0 and

U10 ⊂ U0, and the action of the map T̃ on such sets may be read on the symbols
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Figure 5: Qualitative picture showing the application of F and G on the sets U0 and
U1.

which label the set, dropping the first symbol: T̃ (U00) = U0 and T̃ (U10) = U0 (see
the qualitative picture in Fig.5). Similarly G(S) is made up of two disjoint pieces

U01 ⊂ U1 and U11 ⊂ U1, and the action of the map T̃ on such sets may be read
on the symbols which label the set, dropping the first symbol: T̃ (U01) = U1 and

T̃ (U11) = U1. And so on, by repeating this mechanism we construct, in the limit
process, a set Λ ⊂ S = U0 ∪ U1, Λ = ∩∞n=0(F ∪ G)n(S). The elements (or sets) Vs

of Λ are in 1− 1 correspondence with the elements s = (s0s1s2s3...) (si ∈ {0, 1}) of
the space

∑
2 of (one sided) infinite sequences on two symbols. Moreover the action

of the map T̃ in Λ corresponds to the action of the shift map σ to elements of
∑

2,

that is: if x is a point of Λ and x ∈ Vs then T̃ (x) ∈ Vσ(s) (when s = (s0s1s2s3...) the
shift map drops the first symbol σ(s) = (s1s2s3...)).

This set Λ constructed up to now, without any other information on the map T̃ ,
is invariant (T̃ (Λ) = Λ), and its elements satisfy Vs 6= ∅ for any s, and Vs∩Vs′ = ∅
for s 6= s′ : It is what we call a set with Cantor like structure, and its elements Vs

are closed and compact (and thus Λ is closed and compact) and simply connected
if so are the starting sets U0 and U1.

When F and G are ”contraction mappings” then Λ is a classical Cantor set of
points. In fact, if the inverses F and G of T̃ are contractions in U (or in S = U0∪U1),
then we can apply the IFS theory which states that {U ; F, G} is an Iterated Function
System (IFS) (or {S; F, G} is a IFS) which has a unique attractor Λ ⊂ U or (S):

an invariant Cantor set on which the shift automorphism T̃ is chaotic. Let us show
when we are in this situation (with contractions). We distinguish between the cases
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n = 1 and n ≥ 2.

If T̃ is a one dimensional map, i.e. n = 1, and U0 and U1 intervals, then the
condition on the first derivative |T̃ ′(x)| > 1 in any point x ∈ S is enough to state

that the inverses F and G of T̃ are one-dimensional functions such that |F ′(x)| < 1
for all x ∈ S and |G′(x)| < 1 for all x ∈ S. In the one-dimensional case this is
enough to state that F and G are contractions (as contractivity constant for F we
can take the maximum of |F ′(x)| in S, and similarly for G). In this case the set
Λ ⊂ S constructed above is a classical Cantor set of points (i.e. any element Vs of Λ

is a point, and the periodic orbits of T̃ , all those associated with a periodic symbol
sequence, are dense in Λ).

When U0 and U1 are subsets of Rn, n ≥ 2, then (a) the condition on the Jacobian
determinant |JT̃ (x)| > 1 in any point x ∈ S is not enough to state that the inverses

F and G of T̃ are contractions (we may have saddle points), and (b) also assuming
that in any point x ∈ S the two eigenvalues of JT̃ (x) are greater than 1 in absolute
value, we have not a sufficient condition for F and G to be contractions. However,
when in any point x ∈ S all the eigenvalues of JT̃ (x) are greater than 1 in absolute
value, then for the local inverse the eigenvalues are less than 1 in absolute value,
and the map is locally homeomorphic to a contraction mapping in a neighborhood
of the fixed point.

In fact, in Hirsch and Smale [13] pp.278-281, it is proved that if a C(1) map f in
X ⊆ Rn has a hyperbolic attracting fixed point x∗ then it is a local contraction in
a suitable norm; it is locally invertible and for the local inverse x∗ is a hyperbolic
repellor, and the local inverse is a local expansion in a suitable norm.

Thus, from a mathematical point of view the above ”imperfection” of the Cantor
like set, existing for n ≥ 2, can be overcome, leading to a Cantor set of points. In
fact, an expanding fixed point implies the existence of a suitable norm d1 for which
the inequality d1(f(x), f(y)) < s d1(x, y) holds in a neighborhood W of x∗. But
all the norms in Rn are equivalent. So an homeomorphism h exists such that,
for any pair of points, d1(x, y) = d2(h(x), h(y)), where d2 denotes the Euclidean
distance. It follows that we have d2(h ◦ f(x), h ◦ f(y)) < s d2(h(x), h(y)), and for
any (ξ, η) ∈ U = h(W ) we have that d2(h◦f ◦h−1(ξ), h◦f ◦h−1(η)) < s d2(ξ, η). That
is: in the Euclidean norm the function f , in a suitable neighborhood U, is locally
topologically conjugated with a contraction (and thus, qualitatively, the dynamics
are the same). We have so proved the following property:

Property 1. If a k−cycle is a hyperbolic attractor (resp. repellor) for a C(1)

map f , then f is a local contraction (resp. expansion) in a suitable norm, and f is
locally topologically conjugated with a contraction (resp. expansion) in the Euclidean
norm.
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The functions F and G used above may be constructed as contractions in the
euclidean norm, so that to the above properties of the set with Cantor like structure
we can add that any set Vs associated with a (periodic or aperiodic) symbol sequence
s is really a single point, and all the cycles in Λ are unstable, so we may say that Λ is
unstable for T̃ . In fact, assume that F is not a contraction in U , then we can consider
the function F̃ = F p where p is a suitable integer such that F̃ is a contraction in U
(which necessarily exists). Similarly for G, if it is not a contraction then we consider

G̃ = F q ◦ G where q is a suitable integer such that G̃ is a contraction in U (which

necessarily exists). Then {U ; F̃ , G̃} is an Iterated Function System (IFS) which has
a unique attractor Λ ⊂ U : an invariant Cantor set on which the shift automorphism
T̃ is chaotic.

(II) Well, these conditions are satisfied when we have a repelling fixed point (or
cycle), unstable node or unstable focus, and a non degenerate homoclinic trajectory,
which means that the preimages of the fixed point belonging to the considered homo-
clinic orbit are not on the critical curves (while degenerate homoclinic trajectories
denote homoclinic explosions). We prove now the following:

Theorem 2. If a fixed point x∗ is expanding for a C(1) map T in X ⊆ Rn with
a non degenerate homoclinic orbit, then in any neighborhood of the homoclinic orbit
there exist an invariant set Λ on which T is chaotic.

Proof. Consider a compact neighborhood U of x∗ in which T is expanding (i.e.
all the eigenvalues of JT (x) are higher then 1 in modulus for all the points x in U).
Let us first show that under the assumptions of the theorem we can always find two
disjoint compact sets in U , U0 and U1, U0 ∩ U1 = ∅, such that for a suitable m we
have Tm(U0) ⊃ U0 ∪ U1 and Tm(U1) ⊃ U0 ∪ U1. Then we show that two suitable
inverses are contractions, so that the result comes from the properties described in
(I).

Let O(x∗) = {x∗, x1, x2, ...xp, ...} be the homoclinic orbit, and let T−1
0 be the

local inverse, satisfying T−1
0 (x∗) = x∗ and T−1

1 the inverse such that T−1
1 (x∗) = x1,

while the point xp is such that the repeated applications of T−1
0 to xp converge to

x∗. Notice that T−1
1 (U) ∩ U = ∅. The nondegeneracy implies that DetJT (xi) 6= 0

in all the points of the homoclinic orbit. The expansivity in a neighborhood implies
that T−1

0 is a contraction in U or locally homeomorphic to a contraction, but we can
choose a suitable integer p such that T−p

0 is a contraction in U. Define F = T−p
0 , and

U0 = F (U). Then we apply to U the sequence of inverses which follow the homoclinic
orbit until we have again points located inside U (see the qualitative picture in
Fig.6). Define G = T−s

0 ◦ ... ◦ T−1
1 where the integer s is such that G(U) ⊂ U and

G is a contraction in U . Define U1 = G(U). Obviously x∗ ∈ U0, U1 and U0 are
disjoint (because T−1

1 (U) and T−1
0 (U) are disjoint by construction), and thus all the



Homoclinic orbits and Iterated Function Systems 293

Figure 6: Qualitative description of the construction of an IFS.

applications of the inverses give disjoint sets, and by properly choosing the integers
p and s (number of local inverses with T−1

0 ) in the construction of G and F we can
assume m = p and such that Tm(U0) = U ⊃ U0 ∪ U1 and Tm(U1) = U ⊃ U0 ∪ U1.
Now we have that F and G are contractions in U , so that {U ; F,G} is an Iterated
Function System (IFS) which has a unique attractor Λ ⊂ U : an invariant cantor set
on which the shift automorphism Tm, and thus T , is chaotic, which ends the proof.

In the next section we shall show applications of the above theorem to examples
in 1 and 2 dimensional phase spaces in backward dynamic models coming from
economics.

4 Examples

Let us now introduce suitable applications of the theory recalled in the previous
sections, to models in the economic context, the first of which is in a 1-dimensional
space, while the second refers to a 2-dimensional map.
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Figure 7: Example of a homoclinic trajectory of x∗ at µ = 3.837.

4.1 Example in R1

In the work by Medio and Raines [25] it is proposed an overlapping generation model
represented by the backward model with the one-dimensional logistic map:

xt = fµ(xt+1) = µxt+1(1− xt+1)

already used in Section 2, whose two inverses are given in (3). It is clear that when
µ > 4 then for any initial condition x0 belonging to the unit interval I = [0, 1],
no matter which one of the two inverses we apply at each step to get the sequence
x0, x1, x2, ... we can never escape from the interval I, and we can say that we have a
unique chaotic set Λ ⊂ I as attractor for the forward states of the model. However
it is not necessary to take µ > 4 in order to have forward states in a bounded chaotic
set. Whenever we have a cycle with homoclinic trajectories we can construct suitable
Iterated Function System or Random Iterated Function System. For example, let
µ∗ < 4 be the bifurcation value of the parameter such that the positive fixed point
x∗ of the function fµ(.) has a critical homoclinic orbit. Then for any µ > µ∗ there
are noncritical (i.e. nondegenerate) homoclinic orbits of x∗. Let us consider such a
case, and let O(x∗) = {x∗, x1, x2, ...xp, ...} be the homoclinic orbit (see Fig.7), such
that x1 = f−1

1 (x∗) (while x∗ = f−1
0 (x∗)), and xi = f−1

0 (xi−1) for any i > 1.
Let U be a neighborhood of x∗ in which fµ(.) is expanding and such that U1 =
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f−4
0 ◦ f−1

1 (U) ⊂ U, U0 = f−5
0 (U) (clearly U0 ∩ U1 = ∅), G = f−5

0 (.) and F =
f−4

0 ◦ f−1
1 (.) are contractions in S = U0 ∪U1. Thus {S; F, G} is an Iterated Function

System (IFS) which has a unique attractor Λ ⊂ S: an invariant Cantor set on which
fµ is chaotic.

Then, to find some particular sequences in the forward process, for any initial
condition x0 ∈ S let us consider the following rule: whenever we apply the left inverse
f−1

1 then we apply the right inverse f−1
0 for at least 4 times consecutively, i.e. any

number q of times with the only restriction q ≥ 4. It is clear that the sequence of
forward states of the backward model always belongs to the set A =

⋃4
i=0 Si where

S0 = S, S1 = f−1
1 (S), Si = f−1

0 (Si−1) for i = 2, 3, 4, and the points have a kind of
chaotic behavior in this set.

The ”rules” which we may construct leading to bounded forward sequences
(which seem chaotic) are infinitely many. Thus it depends on the applied mean-
ing of the model to have meaningful rules or not. In the economic context such
rules have been associated to ”sunspot” dynamics ([4], [27], [1]).

4.2 Example in R2

The example we propose here is similar to the two-dimensional model presented in
[7]. It is still related with an overlapping generation model (we refer to that paper for
its deduction). Here it is enough to say that it reduces to a map T of the plane into
itself of so-called Z0 − Z2 type (for more details see [24], and the pioneering works
[11], [12], [23]). In our case there exists a critical line LC−1 in which DetJT (X) = 0
for any X ∈ LC−1, which is mapped into a line LC = T (LC−1) which separates the
phase plane in two regions: Z0 whose points have no rank-1 preimages and Z2 whose
points have two distinct rank-1 preimages, T−1

R (.) and T−1
L (.) giving one point on

the right and one point on the left of LC−1, respectively. Explicitly we have that
the backward dynamics is described by the two-dimensional backward map

(xt, yt) = T (xt+1, yt+1) = (f [a(1− δ +
1

a
)xt+1 − ayt+1], yt+1).

where the function f is a unimodal C(1) function with a unique critical point, a local
maximum, and two inverses, say f−1

L and f−1
R . Thus for the map T the two inverses

are given by

T−1
i :

{
xt+1 = yt

yt+1 = (1− δ + 1
a
)yt − 1

a
f−1

i (xt)

where i = L,R. For the shake of simplicity we consider for f(.) the standard logistic
function already introduced in the previous sections, that is: f(x) = µx(1− x).
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At suitable values of the parameters we have that the fixed point X∗ of the map
T , which belongs to the L side with respect to LC−1, becomes an unstable node,
with homoclinic points, i.e. it becomes a snap-back repellor. Then we may consider
forward states of the backward model as described below.

For a suitable neighborhood U of X∗ we have that U1 = G(U) = T−13
L ◦T−1

R (U) ⊂
U is disjoint from U0 = F (U) = T−14

L (U) ⊂ U . Thus T 14(U0) = U ⊃ U0 ∪ U1 and
T 14(U1) = U ⊃ U0 ∪ U1. Either the functions F and G are contractions in U or we
choose a suitable integer s, and p = s+1, such that G = T−s

L ◦T−1
R and F = T−p

L are
contractions in U. In our numerical example, at the parameters’ values δ = 0.226,
a = 3 and µ = 5.16, we have s = 13 and p = 14, and {U ; F, G} is an Iterated
Function System (IFS), leading to an invariant Cantor set Λ in U .

Then we conclude that the forward states obtained as follows: ”whenever a
point belongs to the R region then we apply the function T−1

L at least 13 time
consecutively before the application of T−1

R ” give a kind of random sequence of
points in the bounded region obtained by the starting interval U and its images
with the functions which are involved in the definition of the contractions of the
IFS. In our example all the states belong to the set

A = U ∪ T−1
R (U) ∪ T−2

LR(U) ∪ ... ∪ T
−(14)
L...LR.

The sequence of points is trapped in A, i.e. the forward states cannot escape, and
the qualitative shape of the asymptotic points has the set Λ and its images by T as
limit set.

Moreover, as discussed in Section 2, we can also consider the IFS with prob-
abilities, or Random Iteration Function System (RIFS) {U ; F, G; p1, p2}, pi > 0,
p1 + p2 = 1, which means that given a point x ∈ U we consider the trajectory
obtained by applying the function F with probability p1 or the function G with
probability p2, that is, one of the functions is selected at random, with the given
probability. Also in such a case the unique attractor of the RIFS is the same Cantor
set, although some points in Λ are visited more often than others, that is, the typical
trajectory may be described by an invariant measure with support on the fractal set
Λ.

It is clear that once that we have a homoclinic fixed point, we can find infinitely
many different IFS. For example, it is not always necessary to apply the function T−1

R

only once in a row, as we may construct an IFS in which two consecutive applications
of T−1

R occur. In our example, with the same parameter values δ = 0.226, a = 3

and µ = 5.16, we have that U1 = G̃(U) = T−14
L ◦ T−2

RR(U) ⊂ U is disjoint from U0 =

F̃ (U) = T−16
L (U) ⊂ U (thus T 16(U0) = U ⊃ U0 ∪ U1 and T 16(U1) = U ⊃ U0 ∪ U1),

and the functions F̃ and G̃ are contractions in U , so that {U ; F̃ , G̃} is an Iterated
Function System (IFS), leading to an invariant Cantor set in U .
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Figure 8: Qualitative description of the construction of the different sets involved in
the IFS similar to the ”chaos game” associated with the two-dimensional model.

As a third example, we follow a different approach in order to get invariant sets
by applying the iterated function systems technique to three functions, combining
the two examples given above. In this way we obtain an IFS similar to the chaos
game, with which we can construct forward sequences.

Consider the following functions: H1 = F̃ = T
−(16)
L , H2 = G̃ = T

−(16)
L...LRR, and

H3 = T
−(16)
RL...L (note that in the definition of H3 the inverse T−1

L is applied 15 times,
while in the definition of H2 the inverse T−1

L is applied 14 times). As the first two
iterates T−2

LL (U), T−2
RR(U) and T−2

RL(U) are disjoint sets, it follows that also U1 =
H1(U), U2 = H2(U), and U3 = H3(U) are disjoint sets, all belonging to U. See
the qualitative picture in Fig.8, where the dark gray neighborhoods denote the
preimages by T−1

L of T−1
R (U), while the black neighborhoods denote the preimages

by T−1
L of T−2

RR(U). In our numerical example we have three contractions (in general,
as stated above, it is always possible to reach this situation by applying the inverse
map T−1

L as much as necessary). Thus we can consider the set associated with
the IFS {U ; H1, H2, H3} (invariant for the backward dynamics of T (16)), defining



298 F. Tramontana and L. Gardini

W = H1 ∪H2 ∪H3

U1 = W (U) = H1(U) ∪H2(U) ∪H3(U) ⊂ U (= U0)

and iteratively
Un+1 = H1 (Un) ∪H2 (Un) ∪H3 (Un) ⊂ Un,

for n ≥ 1 each Un consists of 3n elements, and we have

Λ3 =
⋂
n≥0

Un =
⋂
n≥0

W n(U) = lim
n→∞

Un,

which is an invariant chaotic set (repelling for the backward map T ), and the unique
attractor in U for the iterated function system. Notice that the contraction H1 has
a unique fixed point in U , belonging to U1, which is the fixed point X∗ of the map T,
while the contraction H2 has a unique fixed point P ∗ in U , belonging to U2, which
is a cycle of period 16 for T , and similarly the contraction H3 has a unique fixed
point Q∗ in U , belonging to U3, which is a cycle of period 16 for T .

Moreover, as shown for the 1-D case, we may consider the Random Iteration
Function Systems, say RIFS {U ; H1, H2, H3; p1, p2, p3}, pi > 0, p1+p2+p3 = 1, which
means that given a point x ∈ U we consider the trajectory obtained by applying
the function Hi with probability pi, that is, at each step one of the functions is
selected at random, with the given probability. Then the random sequence of points
is trapped in U , i.e. the forward states cannot escape, and the asymptotic orbit is
always dense in the set Λ3. The distribution of points of the fractal set Λ3 may be
uneven, as some regions may be visited more often than others depending on the
magnitude of the probabilities.

In our example, in order to have forward sequence for the model, we may choose
to follow some specific rule, for example as follows: whenever we apply the function
T−1

R it is once or at most two time consecutively, immediately thereafter we must
the function T−1

L as many times as needed, but at least 13 times (if the right T−1
R

was applied once) or at least 14 times (if the right inverse T−1
R was applied twice).

In this way we can conclude that ”the generic forward states” can be obtained as a
random sequence of points with an initial state in the set U and the states always
belong to U and its images with the functions which are involved in the definition
of the contractions of the IFS. For example, in the chaos game given above the
states always belongs to the set

A = U ∪ T−1
R (U) ∪ T−2

LR(U) ∪ ... ∪ T
−(14)
L...LR ∪ T−2

RR(U) ∪ T−3
LRR(U) ∪ ... ∪ T−16

L...LRR(U)

An example of forward states numerically obtained in our 2-dimensional model with
this last rule is shown in Fig.9.



Homoclinic orbits and Iterated Function Systems 299

Figure 9: Examples of numerically calculated forward states belonging to the set A,
in the example similar to the ”chaos game” for our model. (b) shows an enlargement
of (a).
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